用户名: 密码: 验证码:
稀磁半导体GaMnN薄膜的ECR-PEMOCVD生长和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家自然科学基金(GaN基稀磁半导体量子点的自组织生长与特性,项目批准号:60476008)项目的支持下进行的。
     GaN基稀磁半导体,尤其是GaMnN以其超过室温的居里温度和本底材料GaN可以在高温、大功率光电器件领域得到广泛应用,而成为最有前景的稀磁半导体材料。
     本文是在生长GaN薄膜工艺基础之上,通过掺入Mn而对GaMnN稀磁半导体薄膜的生长与特性进行研究。实验是在自行研制的配有反射高能电子衍射(RHEED)原位监测设备的电子回旋共振—等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)装置上进行。采用二茂锰(Cp_2Mn)作为锰源,高纯氮气作为氮源,三乙基镓(TEGa)作为镓源,在蓝宝石(α-Alv_O_3)(0001)衬底上外延生长GaMnN稀磁半导体薄膜。
     实验研究了生长温度、二茂锰流量和N_2流量对薄膜中Mn摩尔含量的影响。实验发现,提高二茂锰的流量,合适的生长温度和提高N_2的流量都可以提高Mn的含量。实验中,温度太低,不利于二茂锰的离解,造成薄膜中Mn不高;温度太高,反而造成沉积到薄膜中的Mn挥发,所以锰含量减小;680℃时为合适的生长温度。提高N_2流量,能够提高氮等离子体密度,这显然有利于促进二茂锰的离解,所以提高N_2流量更易于获得高Mn含量的GaMnN薄膜。实验生长出了Mn含量高达为2.952%,且晶质较好的稀磁半导体薄膜。
     同时还研究了Mn含量对晶体质量的影响。对于Mn摩尔含量0.134%~2.952%的GaMnN薄膜,反射高能电子衍射(RHEED)可以看出衍射点亮而规则,说明GaMnN薄膜的结晶质量很好。X射线衍射(XRD)均表现出良好的(0002)择优取向,表明制备的薄膜倾向于C轴方向生长,薄膜保持很好的纤锌矿结构。同时原子力显微镜(AFM)还表征了GaMnN薄膜的表面形貌。表面形貌是由许多亚微米量级的晶粒按一致的取向规则堆砌而成的。
     超导量子干涉仪(SQUID)分析表明,薄膜呈铁磁性,铁磁性仅可能来源于三元相GaMnN,薄膜的居里温度高于350K。而且,高Mn的含量可以提高薄膜的居里温度。
This work is supported by the national natural science foundation of China (theself-organized growth and characteristic of GaN based diluted magnetic semiconductorquantum dot #60476008 ).
     In GaN based diluted magnetic semiconductor(DMS) , GaMnN becomes the brightestoutlook diluted magnetic semiconductor, because in particular the Cruie Temperature ofGaMnN surpasses the room temperature and background material GaN can obtain thewidespread application in high temperature and high efficiency photoelectric device area.
     The paper is based on the fact that the craft of the GaN film has been studied out. Andfurther study the growth and characteristic of GaMnN DMS by mixing Mn. The experiment iscarried on the Electron Cyclotron Resonance-Plasma Enhanced Metal Organic ChemistryVapor Deposition (ECR-PEMOCVD) equipment which is installed Reflection High EnergyElectron Diffraction equipment to monitor. DMS film GaMnN is grown on substrate sapphire(0001) using Cp_2Mn, N_2 and TEGa by ECR--PEMOCVD.
     Mn mole of concentration in the film dependence of the temperature, Cp_2Mn flux and N_2flux is studied in this experiment. We find that enhancing the Cp_2Mn flux, appropriate growthtemperature and enhancing the N_2 flux all can enhance the Mn concentration. In theexperiment, the temperature is too low,which can make against the dissociation of Cp_2Mn toresult in Mn concentration not to be high; the temperature is too high,instead creating thevolatilization of Mn deposited to the film, therefore the manganese concentration reduces;680℃is the appropriate growth temperature.Enhancing N_2 flux can enhance the density of Nplasma, which evidently is useful to promote the dissociation of Cp_2Mn, therefore enhancingN_2 flux is easier to obtain high Mn concentration GaMnN film. The GaMnN film which hasMn content 2.952% is successfully obtained and the crystal quality is very good.
     At the same time the crystal quality dependence of Mn content is also studied. For theconcentration of the GaMnN film 0.134%~2.952%, RHEED exhibiting that the diffracttiondot is bright and regular, shows the crystal quality is very good. Through XRD Measurement,GaMnN films exhibiting good (0002) preferred orientation, show the films are inclined toc-axis growth and retain good wurtzite structure. AFM is used to characterize the surfacetopography of GaMnN film, which is composed of many submicron grains piled in theconsistent orientation.
     Superconducting Quantum Interference Device (SQUID) measurement shows the film isferromagnetic, which only probably come from the ternary phase GaMnN. The temperature ofGaMnN film is higher than 350K. Moreover, higher Mn concentration can enhance the Curietemperature of the film.
引文
[1] 闫发旺,梁春广。Ⅲ-Ⅴ族磁半导体的研究与进展。半导体情报,2001,38:2.
    [2] 刘宜华,张连生。稀释磁性半导体。物理学进展,1994,14(1):82-120.
    [3] Ohono H. Making Nonmagnetic semiconductors ferromagnetic. Science. 1998, 281:951-956.
    [4] 夏建白。半导体纳米材料和物理,2003,32(10):693-699.
    [5] Liu C, Alves E, Ramos A R, Silva M F da, et al. Nuclear Instruments and Methods in Physics Research Section B, 2002,191,1-4:544-548.
    [6] Munekata H, Ohno H, Molnar S von et al. Diluted magnetic Ⅲ-Ⅴ semiconductors. Phys. Rev. Lett. 1989, 63: 1849-1852.
    [7] Munekata H, Ohno H, Molnar S von et al. Diluted magnetic Ⅲ-Ⅴ semiconductors. Phys.Rev. Lett. 1989, 63: 1849-1852.
    [8] Hidenobu H, Saki S, Takahiko S et al. High-Tc ferromagnetism in diluted magnetic semiconducting GaN:Mn films.Physical. 2002, B324:142-150.
    [9] Reed M L, Riturms M K, Stadelmaier H H et al. Room temperature magnetic Ga,Mn N: a new material for spin eleclronic devices. Materials Letters. 2001, 51: 500-503.
    [10] Furdyna J K.J.Appl.Phys.,1988,64:R29.
    [11] Munekata H ,Ohno H,von Molnar S et al. Phys.Rev.Lett.,1989,63:1849;Ohno H,Munekata H,Penney T et al.Phys.Rev.Lett., 1992,68:2664.
    [12] Ohno H, Shen A ,Matsukura F et al .Appl.Phys.Lett., 1996, 69: 363.
    [13] Overberg M E et al.Appl.Phys.Lett.,2001, 79:1312 ;Reed ML et al.Appl.Phys.Lett., 2001, 79:3473;Theod-oropoulou N et al. Appl.Phys.Lett., 2001,78:3475.
    [14] 王基庆,陈平平,李志锋等。基于离子注入技术的GaMnN室温铁磁性半导体制备及其表征.中国科学(G辑)。2003,33(2):126-131.
    [15] Overberg M E, Abernathy C R, Pearton S J, et al. Indication of ferromagnetism in molecular beamepitaxy-derived N-type GaMnN. Appl. Phys. Lett.,2001,79(9) : 1312-1314.
    [16] Thaler G T,Overberg M E,Gila B, et al. Magnetic properties of n-GaMnN thin films.AppI.Phys.Lett. 2002,80: 3964-3966.
    [17] Chen P P, Makino H, Kim J J, et al. MBE growth of GaMnN diluted magnetic semiconductors and its magnetic properties. J.Crystal Growth. 2003, 251: 331-336.
    [18] Sonoda S, Shimizu S, Sasaki T, et al. Molecular beam epitaxy of wurtzite (Ga, Mn)N films on sapphire (0001) showing the ferromagnetic behaviour at room temperature. J.Crystal Growth.2002, 237-239: 1358-1362.
    [19] 王学忠,陈辰嘉,刘国彬。新型稀磁半导体Zn_(1-x)Co_xS光谱特性的实验研究。北京大学自然科学学报,1995,31(5):580-585.
    [20] 陈晞,王学忠,刘继周。稀磁半导体Zn_(1-x)Mn_xSe外延薄膜与超晶格的光学特性研究。半导体学报,1996,17(8):573-577.
    [21]莫要武,吴汶海。Te溶液生长半磁半导体Cd_(1-x)Mn_xTe的光学和电学性质研究。应用科学学报,1997,15(1):107-111.
    [22] Ando K. Appl.Phys.Lett.,2003,82:100; Saito H,Ando K. Phys.Rev.Lett., 2003,90:207202.
    [23] Shinji K, Yoshikazu T, Koki T. Self-organized quantum dots of diluted magnetic semiconductors Cd_(1-x)Mn_xTe.J.Cryst.Growth. 2000, 214/215:140-149.
    [24] Chang K, Xia J B, Peeters F M. Magnetic field tuning of the effective gfactor in a diluted magnetic semiconductor quantum dot. Appl. Phys. Lett, 2003, 82 (16) : 2661-2663.
    [25] Daudin B, Widnann F, Feuiilet G et al. Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN. Phys. Rev. B 56. R7069(1997).
    [26] Mukai T, Nagahama S, N.Iwasa. Proc.China-Japan Workshop on Nitride Semicon-ductor Materials and Devices. Shanghai, P.R.China. 2001:96.
    [27] 王学忠,陈辰嘉,刘国彬等。稀磁半导体Zn_(1-x)Mn_xSe外延膜的反射和光致发光谱。光谱学与光谱分析,1995,15(3):7-10.
    [28] Chisholm J A, Lewis D W, Bristowe P D .Classical simulations of the properties of group-Ⅲ nitrides .J.Phys.:Condens.Matter. 1999,11 : L235-L239.
    [29] Jain S C, Willander M, Narayan J ,et al, Ⅲ-nitrides: Growth,Characterization ,and properties, J.APPl.Phys.,2000,87:965-1006.
    [30] Shul R.J, Vawter G.A, Willison C.G, et al. Comparison of plasma etch techniques for Ⅲ-Ⅴ nitrides. Solid State Electronics, 1998,42(12) :2259-2267.
    [31] Lakshmi E. Dielectric properties of reactively sputtered gallium nitride films .Thin Solid Films,1981,83:L137.
    [32] Morimoto Y. Few characteristics of epitaxial GaN etching and thermal decomposition. J. Electrochem. Soc., 1974,121:1383.
    [33] Ito K, Amano H, Hiramatsu K, et al. Cathodoluminescence properties of undoped and Zn-doped Al_xGa_(1-x)N grown by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys., 1991,30:1604.
    [34] Lin M. E, Sverdlow B. N, Morkoq H. Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy. Appl. Phys. Lett, 1993,63(26) : 3625-3627.
    [35] Nakamura S, Mukai T, Senoh M, et al. Si and Ge doped GaN films grown with GaN buffers layers. Jpn.J.Appl.Phys, 1992,31:2883.
    [36] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn. J. Appl. Phys,1989,28:L2112-2114.
    [37] Nakamura S, et al. Characteristics of InGaN multi-quantum-well-structure laser diodes. AppI.Phys. Lett, 1996,68 (23) :3269-3271.
    [38] Lin M E, Ma Z, Huang F Y, et al. Low resistance ohmic contacts on wide band-gap GaN. Appl.Phys.Lett. 1994,64(8) :1003-1005.
    [39] Fan Z, Mohanmmad S N, Kim W, et al. Very low resistance multilayer Ohmic contact to n-GaN . AppI.Phys.Lett, 1996,68(12) :1672-1674.
    [40] Dingle R, Ilegems M, Donor-acceptor pair recombination in GaN. Solid State Commun., 1971, 9:175.
    [41] Dingle R, Sell D. D, Stokowaki S. E, et al, Absorption, Reflectance, and Luminescence of GaN Epitaxiai Layers. Phys. Rev., 1971,B4(4) :1211-1218.
    [42] Pankove J. I, Berkeyheiser J. E, Maruska H. P, et ai. Luminescent properties of GaN. Solid State Commun, 1971,8:1051.
    [43] Monemar B. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev,1974,B10(2) :676-681.
    [44] Camphausen D. L, Connell G. A. N. Pressure and temperature dependence of the absorption edge in GaN. J. Appl. Phys., 1971,42:4438.
    [45] Manchon D. D, Barker A. S, Dean P. J, et al. Optical studies of the phonons and electrons in gallium nitride. Solid State Commun, 1970,8:1227.
    [46] Monemar B,Lagerstsdt O,and Gislason H. P, J. Properties of Zn-doped VPE-grown GaN.I.Lumines-cence data in relation to doping conditions.Appl.Phys, 1980,51(1) :625-639.
    [47] Cingolani R, Ferrara M, Lugara M, et al. First order Raman scattering in GaN. Solid State Commun,1986,58:823.
    [48] 马平,杨涛,谢飞翔等。高温超导量子干涉仪磁强计的发展现状及其应用。现代仪器,2001,5:28.
    [49] 张焱,高政祥。磁性测量仪器(MPMS-XL)的原理及其应用。现代仪器,2003,5:36-39.
    [50] S.R.Mejia,RD.Mccleod,et al.Rev Sci lnstrum.1986,57:493.
    [51] 郑伟涛等。薄膜材料与薄膜技术。北京:化学工业出版社,2003:130.
    [52] 钱振型。固体电子学中的等离子体技术。北京:电子工业出版,1987:215.
    [53] 赵华侨。等离子体化学与工艺。合肥:中国科学技术大学出版社,1993:211.
    [54] 甄汉生。等离子体加工技术。北京:清华大学出版社,1990:109.
    [55] 徐茵,顾彪,秦福文等。GaN薄膜低温外延的ECR-PEMOCVD技术,1998,23(1):37-39.
    [56] Morkoq H, Strite S, Gao G. B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl. Phys., 1994,76 (3) : 1363-1398.
    [57] Nakamura S, Mukai T, Senoh, et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys., 1992,31:L139-142.
    [58] Akasaki I, Sota S, Sakai H, et al. Shortest wavelength semiconductor laser diode. Electron. Lett,1996,32(15) :1105.
    [59] Fasol G. Longer life for the blue laser. Science, 1997,278(5345) :1902-1903.
    [60] Nakamura S, Senoh, N. lwasa et.al. Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys., 1995, 34:L1332-1335.
    [61] Mukai T., Nagahama S., lwasa N. et al. In: Proc.China-Japan Workshop on Nitride Semi-conductoor Materials and Devices. Shanghai, P.R.China. 2001:96.
    [62] Juza R. Hahn H., Zeitschr, et al. Uber die Kristallstrukturen von Cu_3N, GaN und InN.Chem., 1938,239:282.
    [63] Schiestel S., Molnal B., Carosella C.A., et al. Patterning of GaN by ion implantation-dependent etching. Materials Science and Engineering, 2001, B82(1-3) :111-113.
    [64] Xu Y,Gu B,Xia Y H, Qin F W. Electron energy distribution in a nitrogen ECR plasma. Nuclear Fusion and Plasma Physics, 1997, I7(3) :45-50.
    [65] Yoon I.T., Kang T.W., Kim D.J. Magnetic behavior of Mn_3GaN precipitates in ferromagnetic Ga_(1-x)Mn_xN layers .Materials Science and Engineering B ,2006 134 49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700