用户名: 密码: 验证码:
肝硬化患者肠道微生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝硬化是我国消化系统常见疾病,患者常死于如上消化道出血、自发性细菌性腹膜炎等各种并发症。肠道与肝脏通过“肠-肝轴”密切关联。肝硬化时肠道微环境常因肝脏功能损害和门脉高压受到直接和间接的影响。研究表明肠道细菌移位参与肝硬化各种并发症的发生发展。肝硬化状态下肠道细菌移位发生主要与三方面因素有关:肠道细菌过度生长、肠壁通透性增加以及机体免疫力下降。以往对于肝硬化肠道菌群结构研究多依赖细菌培养法。然而很多肠道细菌无法在体外分离培养,因此无法从整体对肠道菌群结构进行分析。近年来,越来越多的肠道菌群研究依赖非培养的分子生态学方法进行,这些方法能够更好的反映肠道菌群群落多样性特点,为理解肠道菌群在肝硬化病理机制中的作用提供依据。为了全面分析肝硬化肠道微生态失衡情况,本研究拟利用分子生态学方法对肝硬化患者肠道菌群进行结构和功能两方面研究。
     方法
     本研究以酒精性肝硬化患者、乙肝肝硬化患者及健康对照个体为研究对象,利用基于16S rRNA的454高通量测序和荧光定量PCR法分析患者肠道菌群群落结构特点,同时利用微生物功能基因芯片GeoChip分析患者肠道微生物功能基因多样性,从结构到功能对肝硬化患者肠道微生态进行全面分析,并探讨肝硬化不同病因对肠道菌群的影响。
     结果
     1.从群落结构上来看,肝硬化患者粪便菌群结构与健康对照存在明显差异。在门的水平上,肝硬化患者肠道菌群中类杆菌门细菌比例明显下降,而变形菌门和梭杆菌门细菌比例显著增加。在科的水平上,与健康对照组相比,肝硬化患者肠道菌群中肠杆菌科、韦荣球菌科和链球菌科细菌明显增加,毛螺菌科细菌比例明显下降。肠道链球菌科细菌比例与肝硬化Child-Pugh评分呈正相关,毛螺菌科细菌比例与Child-Pugh评分呈负相关。链球菌等潜在致病菌在肝硬化患者肠道中显著增加,可能与肝硬化并发感染等密切相关。
     2.从功能结构看,肝硬化患者肠道菌群涉及营养物质代谢通路的功能基因显著缺失,如氨基酸合成和代谢基因,脂类代谢基因、辅因子合成代谢基因等较正常对照组明显减少。肠道菌群营养物质分解潜力下降可能与肝硬化营养不良发生相关。
     3.在群落结构上,酒精性肝硬化与乙肝肝硬化患者相比差异较小,主要表现为酒精性肝硬化患者普雷沃菌科细菌比例显著增加。在功能结构上,酒精性肝硬化与乙肝肝硬化患者相比差异显著,酒精性肝硬化肠道微生物富集了很多涉及重金属降解、有机污染物降解、应激反应、毒力等通路的功能基因。因此长期大量饮酒可能主要在功能层面对菌群产生影响。
     结论
     肝硬化患者菌群群落结构及功能结构都发生了显著改变,菌群改变可能与肝硬化并发感染、营养不良及肝性脑病等并发症有关。本研究对肝硬化患者肠道微生态失衡进行了从结构到功能的全面分析,可以为临床通过菌群调节诊治肝硬化提供理论依据。
Liver cirrhosis is the pathologic end stage of chronic liver disease. In China and some other Asian countries, hepatitis B virus infection is one of the leading causes. On the other hand, alcohol-related cirrhosis is a major cause of morbidity and mortality in Western countries. Increasing evidence suggests that gut flora is implicated in the pathogenesis of liver cirrhosis complications. It is well recognized that the gut flora may play an important role in the development of complications of liver cirrhosis, including bacterial infections, the hyperdynamic circulatory state, and hepatic encephalopathy. Although it is widely accepted that cirrhosis leads to characteristic changes in intestinal microbiota, this has not been easily demonstrated in previous studies using culture-dependent methods. Over the past decade, culture-independent methods have been applied to studies of human gut bacterial diversity where the majority of the bacteria are not culturable. These methods are helping scientists to better understand the role of human intestinal microbiota on human health and illness with a broader and less biased view
     The aim of our study is to characterize the fecal microbial community in patients with alcoholic liver cirrhosis, HBV-related liver cirrhosis and healthy controls. The fecal microbial community was analyzed by454pyrosequencing of the16S ribosomal RNA (16S rRNA) V3region followed by functional gene array GeoChip.
     Community-wide changes of fecal microbiota in liver cirrhosis were observed compared with healthy controls. The proportion of phylum Bacteroidetes was significantly reduced (p=0.008), while Proteobacteria and Fusobacteria were highly enriched in the cirrhosis group (p=0.001and0.002, respectively). Enterobacteriaceae (p=0.001), Veillonellaceae (p=0.046), and Streptococcaceae (p=0.001) were prevalent in cirrhotic patients at the family level. A positive correlation was observed between Child-Pugh (CP) score and Streptococcaceae (R=0.386, p=0.02). Lachnospiraceae significantly decreased in the cirrhotics (p=0.004), and correlated negatively with CP score (R=-0.49, p=0.002). By Partial Least Square Discriminate Analysis (PLS-DA), we identified149operational taxonomic units (OTUs) as key phylotypes that responded to cirrhosis, and most of them were Lachnospiraceae (65OTUs), Streptococcaceae (23OTUs), and Veillonellaceae (21OTUs).
     GeoChip data showed that the microbial community functional composition and structure were dramatically altered in the alcoholic cirrhosis and HBV-related cirrhosis. A variety of functional genes relevant to nutrient metabolism were significantly under-represented in cirrhotic patients than in controls, including genes for amino acid metabolism, lipid metabolism, cofactor biosynthesis and isoprenoid biosynthesis. Significant correlations were observed between functional genes and Child-Pugh score, such as aspartate-ammonia ligase gene,transaldolase gene, adenylosuccinate synthetase gene and IMP dehydrogenase gene.
     The454data showed significant increase of Prevotellaceae in alcoholic cirrhosis patients than in HBV-related cirrhosis patients. Various microbial functional genes involved in organic remediation, stress response, antibiotic resistance and virulence were highly enriched in the alcoholic cirrhosis group compared with control group and HBV-related cirrhosis group. Long term consumption of alcohol may stimulate microbial activities in stress response, organic remediation, antibiotic resistance and virulence.
     Conclusion:Fecal microbial communities are distinct in cirrhotic patients compared with healthy individuals. The prevalence of potentially pathogenic bacteria, such as Enterobacteriaceae and Streptococcaceae, with the reduction of beneficial populations such as Lachnospiraceae in cirrhotics may affect prognosis. Also, cirrhosis may have distinct influences on metaobolic potential of fecal microbial communities, which may have an effect in the progression of malnutrition.
引文
1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307:1915-1920.
    2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, et al. Diversity of the human intestinal microbial flora. Science 2005:308:1635-1638.
    3. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355-1359.
    4. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-693.
    5. Zeuzem S. Gut-liver axis. Int J Colorectal Dis 2000:15:59-82.
    6. Phear EA, Ruebner B. The in vitro production of ammonium and amines by intestinal bacteria in relation to nitrogen toxicity as a factor in hepatic coma. Br J Exp Pathol 1956; 37:253-262.
    7. Floch MH, Katz J, Conn HO. Qualitative and quantitative relationships of the fecal flora in cirrhotic patients with portal systemic encephalopathy and following portacaval anastomosis. Gastroenterology 1970; 59:70-75.
    1. Garcia-Tsao G, Wiest R. Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract Res Clin Gastroenterol 2004; 18:353-372.
    2. Riordan SM, Williams R. Gut flora and hepatic encephalopathy in patients with cirrhosis. N Engl J Med; 362:1140-1142.
    3. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 1979; 23:403-411.
    4. Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005; 41:422-433.
    5. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307:1915-1920.
    6. Cucchiara S, Iebba V, Conte MP, Schippa S. The microbiota in inflammatory bowel disease in different age groups. Dig Dis 2009:27:252-258.
    7. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009; 106:2365-2370.
    8. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One; 5:e9085.
    9. Zeuzem S. Gut-liver axis. Int J Colorectal Dis 2000; 15:59-82.
    10. Norman K, Pirlich M. Gastrointestinal tract in liver disease:which organ is sick? Curr Opin Clin Nutr Metab Care 2008; 11:613-619.
    11. Grange JD, Roulot D, Pelletier G, Pariente EA, Denis J, Ink O, Blanc P, et al. Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites:a double-blind randomized trial. J Hepatol 1998; 29:430-436.
    12. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora:effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004; 39:1441-1449.
    13. Novella M, Sola R, Soriano G, Andreu M, Gana J, Ortiz J, Coll S, et al. Continuous versus inpatient prophylaxis of the first episode of spontaneous bacterial peritonitis with norfloxacin. Hepatology 1997; 25:532-536.
    14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635-1638.
    15.Ludwig W, Schleifer KH. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 1994; 15:155-173.
    16. Schutte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008; 80:365-380.
    17.Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998; 73:127-141.
    18. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380.
    19. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 2007; 35:e120.
    20. Muyzer G, de Waal EC, Uitterlinden AG Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695-700.
    21. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010; 4:232-241.
    22. Llovet JM, Bartoli R, March F, Planas R, Vinado B, Cabre E, Arnal J, et al. Translocated intestinal bacteria cause spontaneous bacterial peritonitis in cirrhotic rats:molecular epidemiologic evidence. J Hepatol 1998; 28:307-313.
    23. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5:e9085.
    24. Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 2007; 32:453-468.
    25. Grice EA, Segre JA. The human microbiome:our second genome. Annu Rev Genomics Hum Genet 2012; 13:151-170.
    26. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008:371:838-851.
    27. Zhao HY, Wang HJ, Lu Z, Xu SZ. Intestinal microflora in patients with liver cirrhosis. Chin J Dig Dis 2004; 5:64-67.
    28. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480-484.
    29.McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 2008; 4:e20.
    30. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6:e280.
    31.Karlsson C, Ahrne S, Molin G, Berggren A, Palmquist I, Fredrikson GN, Jeppsson B, Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon; a randomized controlled trial. Atherosclerosis 2010; 208:228-233.
    32. Borzio M, Salerno F, Piantoni L, Cazzaniga M, Angeli P, Bissoli F, Boccia S, et al. Bacterial infection in patients with advanced cirrhosis:a multicentre prospective study. Dig Liver Dis 2001; 33:41-48.
    33. Fernandez J, Navasa M, Gomez J, Colmenero J, Vila J, Arroyo V, Rodes J. Bacterial infections in cirrhosis:epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35:140-148.
    34. Guarner C, Runyon BA, Young S, Heck M, Sheikh MY. Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. J Hepatol 1997; 26:1372-1378.
    35. Bauer TM, Steinbruckner B, Brinkmann FE, Ditzen AK, Schwacha H, Aponte JJ, Pelz K, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol 2001; 96:2962-2967.
    36. Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett's esophagus. Clin Infect Dis 2007; 45:29-38.
    37. Duncan SH, Louis P, Flint HJ. Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 2007;44:343-350.
    38. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235-243.
    39. Vince AJ, McNeil NI, Wager JD, Wrong OM. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Br J Nutr 1990;63:17-26.
    40. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011;53:96-105.
    41. Utne HE, Winkler K. Hepatic and extrahepatic elimination of ethanol in cirrhosis. With estimates of intrahepatic shunts and Km for ethanol elimination. Scand J Gastroenterol 1980;15:297-304.
    42. Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M. Ciprofloxacin decreases the rate of ethanol elimination in humans. Gut 1999;44:347-352.
    43. Salaspuro V, Nyfors S, Heine R, Siitonen A, Salaspuro M, Jousimies-Somer H. Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand J Gastroenterol 1999; 34:967-973.
    1. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, Latorre A, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 2011;6:e17447.
    2. He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 2011.
    3. He Z, Van Nostrand JD, Zhou J. Applications of functional gene microarrays for profiling microbial communities. Curr Opin Biotechnol 2011.
    4. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-693.
    5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
    6. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-1359.
    7. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, et al. A core gut microbiome in obese and lean twins. Nature 2009;457:480-484.
    8. Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2012.
    9. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4578-4585.
    10. Guarner C, Runyon BA, Young S, Heck M, Sheikh MY. Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. J Hepatol 1997;26:1372-1378.
    11. Kalaitzakis E, Simren M, Olsson R, Henfridsson P, Hugosson I, Bengtsson M, Bjornsson E. Gastrointestinal symptoms in patients with liver cirrhosis:associations with nutritional status and health-related quality of life. Scand J Gastroenterol 2006;41:1464-1472.
    12. Izbeki F, Kiss I, Wittmann T, Varkonyi TT, Legrady P, Lonovics J. Impaired accommodation of proximal stomach in patients with alcoholic liver cirrhosis. Scand J Gastroenterol 2002;37:1403-1410.
    13. Aqel BA, Scolapio JS, Dickson RC, Burton DD, Bouras EP. Contribution of ascites to impaired gastric function and nutritional intake in patients with cirrhosis and ascites. Clin Gastroenterol Hepatol 2005;3:1095-1100.
    14. Tsiaousi ET, Hatzitolios AI, Trygonis SK, Savopoulos CG. Malnutrition in end stage liver disease:recommendations and nutritional support. J Gastroenterol Hepatol 2008;23:527-533.
    15. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome:a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1:6ra14.
    16. Shanks OC, Kelty CA. Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, et al. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 2011;77:2992-3001.
    17. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011:334:105-108.
    18. Sam J, Nguyen GC. Protein-calorie malnutrition as a prognostic indicator of mortality among patients hospitalized with cirrhosis and portal hypertension. Liver Int 2009;29:1396-1402.
    19. Periyalwar P, Dasarathy S. Malnutrition in cirrhosis:contribution and consequences of sarcopenia on metabolic and clinical responses. Clin Liver Dis 2012; 16:95-131.
    20. Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 2011;91:771-785, viii.
    21. Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 2000;130:1857S-1864S.
    22. Metges CC, Petzke KJ. Utilization of essential amino acids synthesized in the intestinal microbiota of monogastric mammals. Br J Nutr 2005;94:621-622.
    23. Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002;22:283-307.
    24. Norman K, Pirlich M. Gastrointestinal tract in liver disease:which organ is sick? Curr Opin Clin Nutr Metab Care 2008; 11:613-619.
    25. Kokavec A. Is decreased appetite for food a physiological consequence of alcohol consumption? Appetite 2008;51:233-243.
    26. Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol 2003;17:575-592.
    27. Lindenbaum J, Lieber CS. Effects of chronic ethanol administration on intestinal absorption in man in the absence of nutritional deficiency. Ann N Y Acad Sci 1975;252:228-234.
    28. Levitt MD, Doizaki W, Levine AS. Hypothesis:metabolic activity of the colonic bacteria influences organ injury from ethanol. Hepatology 1982;2:598-600.
    29. Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Salaspuro M. Ciprofloxacin decreases the rate of ethanol elimination in humans. Gut 1999;44:347-352.
    30. Korem M, Gov Y, Rosenberg M. Global gene expression in Staphylococcus aureus following exposure to alcohol. Microb Pathog 2010;48:74-84.
    31. Redelman CV, Maduakolam C, Anderson GG. Alcohol treatment enhances Staphylococcus aureus biofilm development. FEMS Immunol Med Microbiol 2012;66:411-418.
    32. Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 2003;14:262-269.
    1. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003;361:512-519.
    2. Abt MC, Artis D. The intestinal microbiota in health and disease:the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 2009;25:496-502.
    3. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, et al. Diversity of the human intestinal microbial flora. Science 2005;308:1635-1638.
    4. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-693.
    5. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, et al. Evolution of mammals and their gut microbes. Science 2008;320:1647-1651.
    6. Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 2007;32:453-468.
    7. Zeuzem S. Gut-liver axis.Int J Colorectal Dis 2000; 15:59-82.
    8. Sleator RD, Shortall C, Hill C. Metagenomics. Lett Appl Microbiol 2008;47:361-366.
    9. Grice EA, Segre JA. The human microbiome:our second genome. Annu Rev Genomics Hum Genet 2012;13:151-170.
    10. Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology. Gastroenterol Res Pract 2010;2010.
    11. Van de Graaff KM. Anatomy and physiology of the gastrointestinal tract. Pediatr Infect Dis 1986;5:S11-16.
    12. Plauth M, Raible A, Gregor M, Hartmann F. Inter-organ communication between intestine and liver in vivo and in vitro. Semin Cell Biol 1993;4:231-237.
    13.Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-1359.
    14.Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003;299:2074-2076.
    15. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984;39:338-342.
    16. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001;81:1031-1064.
    17. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031.
    18. Payne AN, Chassard C, Banz Y, Lacroix C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol Ecol 2012;80:608-623.
    19. El Aidy S, Merrifield CA, Derrien M, van Baarlen P, Hooiveld G, Levenez F, Dore J, et al. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut 2012.
    20.Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 2007;5:e156.
    21. Guarner F. Hygiene, microbial diversity and immune regulation. Curr Opin Gastroenterol 2007;23:667-672.
    22. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011;474:327-336.
    23. Othman M, Aguero R, Lin HC. Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 2008;24:11-16.
    24. Szabo G, Bala S. Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16:1321-1329.
    25. Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, et al. Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 2005;62 Suppl 1:106-113.
    26. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47:241-259.
    27. Ridlon JM, Hylemon PB. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7alpha-dehydroxylating intestinal bacterium. J Lipid Res 2012;53:66-76.
    28. Okuda H, Ogura K, Kato A, Takubo H, Watabe T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J Pharmacol Exp Ther 1998;287:791-799.
    29. Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 1973;25:451-523.
    30. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008;363:1-25.
    31. Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 2009;4:e6958.
    32. Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008;371:838-851.
    33. Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005;41:422-433.
    34. Norman K, Pirlich M. Gastrointestinal tract in liver disease:which organ is sick? Curr Opin Clin Nutr Metab Care 2008;11:613-619.
    35. Merli M, Nicolini G, Angeloni S, Gentili F, Attili AF, Riggio O. The natural history of portal hypertensive gastropathy in patients with liver cirrhosis and mild portal hypertension. Am J Gastroenterol 2004;99:1959-1965.
    36. Ito K, Shiraki K, Sakai T, Yoshimura H, Nakano T. Portal hypertensive colopathy in patients with liver cirrhosis. World J Gastroenterol 2005; 11:3127-3130.
    37. Gunnarsdottir SA, Sadik R, Shev S, Simren M, Sjovall H, Stotzer PO, Abrahamsson H, et al. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am J Gastroenterol 2003;98:1362-1370.
    38. Chesta J, Defilippi C. Abnormalities in proximal small bowel motility in patients with cirrhosis. Hepatology 1993; 17:828-832.
    39. Chang CS, Chen GH, Lien HC, Yeh HZ. Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 1998;28:1187-1190.
    40. Raedsch R, Stiehl A, Gundert-Remy U, Walker S, Sieg A, Czygan P, Kommerell B. Hepatic secretion of bilirubin and biliary lipids in patients with alcoholic cirrhosis of the liver. Digestion 1983;26:80-88.
    41. Sung JY, Shaffer EA, Costerton JW. Antibacterial activity of bile salts against common biliary pathogens. Effects of hydrophobicity of the molecule and in the presence of phospholipids. Dig Dis Sci 1993;38:2104-2112.
    42. Guarner C, Soriano G. Bacterial translocation and its consequences in patients with cirrhosis. Eur J Gastroenterol Hepatol 2005; 17:27-31.
    43. Plauth M, Schutz ET. Cachexia in liver cirrhosis. Int J Cardiol 2002;85:83-87.
    44. Izbeki F, Kiss I, Wittmann T, Varkonyi TT, Legrady P, Lonovics J. Impaired accommodation of proximal stomach in patients with alcoholic liver cirrhosis. Scand J Gastroenterol 2002;37:1403-1410.
    45. Bauer TM, Schwacha H, Steinbruckner B, Brinkmann FE, Ditzen AK, Kist M, Blum HE. Diagnosis of small intestinal bacterial overgrowth in patients with cirrhosis of the liver:poor performance of the glucose breath hydrogen test. J Hepatol 2000;33:382-386.
    46. Bauer TM, Steinbruckner B, Brinkmann FE, Ditzen AK, Schwacha H, Aponte JJ, Pelz K, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol 2001;96:2962-2967.
    47. Riordan SM, McIver CJ, Thomas DH, Duncombe VM, Bolin TD, Thomas MC. Luminal bacteria and small-intestinal permeability. Scand J Gastroenterol 1997;32:556-563.
    48. Pande C, Kumar A, Sarin SK. Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Aliment Pharmacol Ther 2009;29:1273-1281.
    49. Phear EA, Ruebner B. The in vitro production of ammonium and amines by intestinal bacteria in relation to nitrogen toxicity as a factor in hepatic coma. Br J Exp Pathol 1956;37:253-262.
    50. Floch MH, Katz J, Conn HO. Qualitative and quantitative relationships of the fecal flora in cirrhotic patients with portal systemic encephalopathy and following portacaval anastomosis. Gastroenterology 1970;59:70-75.
    51. Chen Y, Yang F, Lu H, Wang B, Lei D, Wang Y, Zhu B, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011;54:562-572.
    52. Liu J, Wu D, Ahmed A, Li X, Ma Y, Tang L, Mo D, et al. Comparison of the gut microbe profiles and numbers between patients with liver cirrhosis and healthy individuals. Curr Microbiol 2012;65:7-13.
    53. Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S, Sikaroodi M, et al. Linkage of Gut Microbiome with Cognition in Hepatic Encephalopathy. Am J Physiol Gastrointest Liver Physiol 2011.
    54. Gines P, Rimola A. Planas R, Vargas V, Marco F, Almela M, Fome M, et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990:12:716-724.
    55. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora:effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004;39:1441-1449.
    56. Bass NM, Mullen KD. Sanyal A, Poordad F, Neff G, Leevy CB, Sigal S, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010;362:1071-1081.
    57. Sharma BC, Sharma P, Agrawal A, Sarin SK. Secondary prophylaxis of hepatic encephalopathy:an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology 2009;137:885-891,891 e881.
    58. Pereg D, Kotliroff A, Gadoth N, Hadary R, Lishner M, Kitay-Cohen Y. Probiotics for patients with compensated liver cirrhosis:a double-blind placebo-controlled study. Nutrition 2011;27:177-181.
    59. Gerber T, Schomerus H. Hepatic encephalopathy in liver cirrhosis:pathogenesis, diagnosis and management. Drugs 2000;60:1353-1370.
    60. Williams R. Review article:bacterial flora and pathogenesis in hepatic encephalopathy. Aliment Pharmacol Ther 2007;25 Suppl 1:17-22.
    61. Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 2004;40:247-254.
    62. Lighthouse J, Naito Y, Helmy A, Hotten P, Fuji H, Min CH, Yoshioka M, et al. Endotoxinemia and benzodiazepine-like substances in compensated cirrhotic patients:a randomized study comparing the effect of rifaximine alone and in association with a symbiotic preparation. Hepatol Res 2004;28:155-160.
    63. Zeneroli ML, Venturini I, Stefanelli S, Farina F, Miglioli RC, Minelli E, Amedei ER, et al. Antibacterial activity of rifaximin reduces the levels of benzodiazepine-like compounds in patients with liver cirrhosis. Pharmacol Res 1997;35:557-560.
    64. Camma C, Fiorello F, Tine F, Marchesini G, Fabbri A, Pagliaro L. Lactitol in treatment of chronic hepatic encephalopathy. A meta-analysis. Dig Dis Sci 1993;38:916-922.
    65. Zeneroli ML, Avallone R, Corsi L, Venturini I, Baraldi C, Baraldi M. Management of hepatic encephalopathy:role of rifaximin. Chemotherapy 2005;51 Suppl 1:90-95.
    66. Law K, Brunt EM. Nonalcoholic fatty liver disease. Clin Liver Dis 2010;14:591-604.
    67. Miele L, Marrone G, Lauritano C, Cefalo C, Gasbarrini A, Day C, Grieco A. Gut-liver axis and microbiota in NAFLD:insight pathophysiology for novel therapeutic target. Curr Pharm Des 2013.
    68. Fox JG, Feng Y, Theve EJ, Raczynski AR, Fiala JL, Doernte AL, Williams M, et al. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 2010;59:88-97.
    69. Ishida M, Naka S, Shiomi H, Tsujikawa T, Andoh A, Nakahara T, Saito Y, et al. Hepatocellular carcinoma occurring in a Crohn's disease patient. World J Gastroenterol 2010;16:3215-3218.
    70. Zheng SM, Cui DJ, Ouyang Q. Gut-liver axis plays a role in hepatocarcinogenesis of patients with Crohn's disease. World J Gastroenterol 2011;17:3171-3172.
    71. Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M, Banan A, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 2009;50:538-547.
    72. Mathurin P, Deng QG, Keshavarzian A, Choudhary S, Holmes EW, Tsukamoto H. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology 2000;32:1008-1017.
    73. Rao RK, Seth A, Sheth P. Recent Advances in Alcoholic Liver Disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2004;286:G881-884.
    74. Kavanaugh MJ, Clark C, Goto M, Kovacs EJ, Gamelli RL, Sayeed MM, Choudhry MA. Effect of acute alcohol ingestion prior to burn injury on intestinal bacterial growth and barrier function. Burns 2005;31:290-296.
    75. Rao RK. Acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Alcohol Clin Exp Res 1998;22:1724-1730.
    76. Wheeler MD, Kono H, Yin M, Nakagami M, Uesugi T, Arteel GE, Gabele E, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med 2001;31:1544-1549.
    77. Mendez-Sanchez N, Almeda-Valdes P, Uribe M. Alcoholic liver disease. An update. Ann Hepatol 2005;4:32-42.
    1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, et al. Diversity of the human intestinal microbial flora. Science 2005;308:1635-1638.
    2. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312:1355-1359.
    3. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-693.
    4. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem Biol 1998;5:R245-249.
    5. Steward GF, Rappe MS. What's the 'meta' with metagenomics? ISME J 2007;1:100-102.
    6. Lal R. The new science of metagenomics:fourth domain of life. Indian J Microbiol 2011;51:245-246.
    7. Jurkowski A, Reid AH, Labov JB. Metagenomics:a call for bringing a new science into the classroom (while it's still new). CBE Life Sci Educ 2007;6:260-265.
    8. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009;25:195-203.
    9. Grice EA, Segre JA. The human microbiome:our second genome. Annu Rev Genomics Hum Genet 2012;13:151-170.
    10. Hugenholtz P, Tyson GW. Microbiology:metagenomics. Nature 2008;455:481-483.
    11. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
    12. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
    13.Ludwig W, Schleifer KH. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 1994;15:155-173.
    14. Rudi K, Zimonja M, Trosvik P, Naes T. Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 2007; 120:95-99.
    15.Schutte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008;80:365-380.
    16.Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998;73.127-141.
    17. Chen Y, Yang F, Lu H, Wang B, Lei D, Wang Y, Zhu B, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011.
    18. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4516-4522.
    19. He Z. Van Nostrand JD, Zhou J. Applications of functional gene microarrays for profiling microbial communities. Curr Opin Biotechnol 2011.
    20. He Z, Gentry TJ. Schadt CW, Wu L, Liebich J. Chong SC, Huang Z, et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 2007:1:67-77.
    21. Xie J, He Z, Liu X, Van Nostrand JD, Deng Y, Wu L, Zhou J, et al. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl Environ Microbiol 2011;77:991-999.
    22. Liang Y, Van Nostrand JD, Deng Y, He Z, Wu L, Zhang X, Li G, et al. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 2011;5:403-413.
    23.Xiong J, Wu L, Tu S, Van Nostrand JD, He Z, Zhou J, Wang G. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl Environ Microbiol 2010;76:7277-7284.
    24. Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee YJ, et al. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 2011.
    25. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 2010;4:1167-1179.
    26. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, et al. The NIH Human Microbiome Project. Genome Res 2009; 19:2317-2323.
    27. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, et al. A diversity profile of the human skin microbiota. Genome Res 2008;18:1043-1050.
    28.Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4680-4687.
    29. Ledder RG, Gilbert P, Huws SA, Aarons L, Ashley MP, Hull PS, McBain AJ. Molecular analysis of the subgingival microbiota in health and disease. Appl Environ Microbiol 2007;73:516-523.
    30. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837-848.
    31. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-11975.
    32. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-521.
    33. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, et al. The human gut virome:inter-individual variation and dynamic response to diet. Genome Res 2011;21:1616-1625.
    34. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, et al. Enterotypes of the human gut microbiome. Nature 2011;473:174-180.
    35. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108.
    36. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031.
    37. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008;455:1109-1113.
    38. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.
    39. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 2009:106:14728-14733.
    40. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011:472:57-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700