用户名: 密码: 验证码:
基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于硫酸根自由基(SO4·-)的高级氧化过程具有氧化能力强、矿化程度高、氧化剂本身稳定性好、氧化剂利用率高、反应不受pH影响、抗碳酸盐和氯化物等无机盐能力强等优点,在有机污染物的降解中有着良好的应用前景。应用S04·-高级氧化技术的关键是寻找高效活化过硫酸盐产生SO4·-的方法和催化剂。常规的活化方法包括紫外光、热、微波等物理手段和过渡金属离子等化学方法。考虑物理方法能耗高、成本高,而过渡金属离子活化可以在常温、常压下快速进行,而且不需要额外的能量,因此,过渡金属离子活化过硫酸盐的研究更受关注。在过硫酸盐中,过一硫酸盐(PMS, HSO5-)的分子结构不对称,多种过渡金属离子都可以将其活化,其中以Co2+的活化效果最好。LCo2+的毒性限制了该体系的广泛应用,科学家们不得不开发载钴多相催化剂。载钴多相催化剂虽能有效活化PMS产生高活性的SO4·一降解有机污染物,但却仍存在钴离子溶出量大、稳定性差等突出问题,故开发高效、稳定的多相催化剂是当前环境催化领域研究的热点。本文主体考察了纳米氧化钴和氧化铋复合物(Co3O4-Bi2O3)、纳米铁酸铜(CuFe2O4)和微米具有赤铜铁矿结构的CuFeO2催化活化PMS及在有毒有机污染物降解方面的应用。主要研究内容包括:
     (1)提出了一种制备纳米Co3O4-Bi2O3复合物催化剂的方法,采用这一新方法制备了纳米Co304-Bi203复合物催化剂,研究了其催化活化PMS并降解多种有机污染物的过程。制备方法涉及到反相共沉淀和热处理的联用。研究发现,在纳米Co3O4-Bi2O3复合物中,Bi和Co之间存在强的相互作用,这种相互作用增大了复合物表面的羟基氧含量。与纳米CO3O4(?)目比,纳米Co3O4-Bi2O3复合物对PMS分解反应的催化活性更强,更有利于有机污染物的氧化降解。在相同的催化剂(0.05g L-1)和PMS用量(0.5mmolL-1)下,Co3O4-Bi2O3-PMS体系中亚甲基蓝(MB,20μmol L-1)降解遵循一级反应动力学,速率常数k为0.361min-1,是Co3O4-PMS体系中表观速率常数k (0.042min-1)的8.6倍。同时,这种相互作用还加强了纳米Co3O4-Bi2O3催化剂的稳定性。在酸性条件(pH3.2-3.4)下,0.05g L-1Co3O4-Bi2O3的钴离子溶出量为43μg L-1,远小于相同条件下纳米Co3O4的钴离子溶出量(158μgL-1)。由于Co3O4-Bi2O3具有优良的化学稳定性,它能够多次循环使用。
     (2)提出了纳米CuFe2O4的溶胶-凝胶制备法,并以此构建了纳米CuFe2O4-PMS的新型高级氧化体系。纳米CuFe2O4是一种非钴类的PMS活化剂,可克服载钴多相催化剂中钴溶出的缺点。研究发现,在CuFe2O4量为0.1g L-1,PMS浓度为0.2mmol L-1的条件下,CuFe2O4-PMS体系在30min内对10mg L-1四溴双酚A(TBBPA)的降解率达到了99%。当PMS浓度提高到1.5mmol L-1时,反应180min后,TOC去除率达到了56%,脱溴率达到了67%。用醇淬灭试验证实了在CuFe2O4-PMS体系中对TBBPA降解起主导作用的自由基为S04·-。对反应前后CuFe2O4表面Cu和Fe的结合能的分析发现纳米CuFe2O4表面Cu和Fe都参与了PMS的活化,据此,提出了纳米CuFe2O4活化PMS产生SO4·-的机理。最后,用HPLC及LC-MS技术,检测了CuFe2O4-PMS体系降解TBBPA的中间产物,并给出了SO4·-降解TBBPA的机理。
     (3)为了进一步提高Cu-Fe氧化物多相催化活化PMS的性能,提出了用含亚铜Cu+的微米CuFeO2作为活化剂活化PMS降解有机污染物的新方法。研究发现,与Cu2O、Fe2O3和CuFe2O4催化剂相比,CuFeO2表现出了更高的催化活性。当CuFeO2微米颗粒投加量为0.5g L-1,PMS的用量为0.2mmol L-1时,30min内对10mg L-1的TBBPA的降解率达到了100%,高于Fe2O3和Cu2O催化剂对TBBPA的降解率(24%和66%)。纳米CuFeO2和纳米CuFe2O4活性对比实验表明,纳米CuFeO2催化剂在TBBPA降解、TOC去除和TBBPA脱溴上比纳米CuFe2O4催化剂都更高效。当催化剂用量和PMS为0.5g L-1和1.5mmol L-1,60min内,CuFeO2-PMS-TBBPA体系中TOC去除率和脱溴率分别达到了75%和81%,高于CuFe2O4-PMS-TBBPA体系的TOC去除率和脱溴率(62%和74%)。此外,微米CuFeO2催化剂易于回收,活性稳定,可重复利用,可广泛应用于实际污水的处理。
     最后,在总结了上述研究结果的基础上,为了将相关工作进行延伸,本文针对已研究的几种新型环境催化剂的研究进行了展望,期待通过可见光光催化的引入、多相类Fenton催化体系的构筑以及酚类增效媒介物的引入等措施进一步强化这些催化剂的催化性能,扩展其在环境催化领域中的应用。
Sulfate radical (SO4-) based advanced oxidation technologies (AOTs) have a good application prospect in the field of wastewater treatment due to the stronger oxidizing ability of sulfate radicals (standard potential2.5-3.1V) than hydroxyl radicals (2.2-2.7V), the high mineralization rate, the persistent nature of the precursors (persulfate and peroxymonosulfate (PMS)) compared to H2O2, the high oxidant utilization, wide operating pH range, and its strong endurability to inorganic salts such as carbonate and chloride in practical aqueous enviornment. The key of SO4-based AOTs is to develop highly efficient activation ways and catalysts of persulfate and PMS. The generally used activation ways include physical methods such as light, heating and microwave irradiation and chemical methods by using transition metal ions as activators. Compared to disadvantages of high energy consuming by using physical activation ways, chemical activation can be achieved under ambient conditions and thus has great attention in the activation of persulfate and PMS. Among the two oxidants, PMS has an unsymmetric structure for only one H is replaced by SO3and can be more easily activated by versatile transition metal ions. Among these transition metal ions, Co(Ⅱ) is the most effective catalyst of PMS activation for the production of sulfate radicals. Due to the toxicity of Co(Ⅱ) ion, heterogeneous immobilized cobalt catalysts were developed. However, many of them show high cobalt-leaching and low catalytic stability. Thus, to develop highly catalytic activity and highly stable heterogeneous catalysts for the activation of PMS is a currently hot research spot in the field of environmental catalysis. The aim of this dissertation is to develop heterogeneous catalysts including Co3O4-Bi2O3nanocomposites, CuFe2O4nanoparticles and CuFeO2microparticles to improve the activation ability and the oxidant efficiency of PMS for removal of toxic organic pollutants. The major contents are described as follows:
     (1) An innovative method involving the couple of reverse co-precipitation method and post-calcination for preparing Co3O4-Bi2O3nanocomposite oxides were developed and the prepred Co3O4-Bi2O3nanocomposite oxides as heterogenous catalysts of PMS for the degradation of several organic pollutants were investigated. It was found there was a strong interaction between Bi and Co components in the nanocomposite, which was found to enhance surface hydroxyl oxygen content and in favor of the formation of Co(Ⅱ)-OH complexes. Co3O4-Bi2O3nanocomposite oxides showed stronger catalytic activity for the heterogeneous activation of PMS and the degradation of organic pollutanst than CO3O4. With the addition0.05g L-1catalysts of and0.5mmol L-1PMS, the Co3O4-Bi2O3nanocomposite oxides produced fast and full degradation of methylene blue (MB,20μmol L-1) with the apparent rate constant of0.36min-1, being8.6folds of that (0.042min-1) over nano-Co3O4. The cobalt leaching to43μg L-1was observed for0.05g L-1Co3O4-Bi2O3nanocomposite oxides, being much less than that (158μg L-1) from Co3O4in the acidic aqueous solutuion (pH3.2-3.4). Due to the excellent chemical stability, Co3O4-Bi2O3nanocomposite oxides show favorable catalytic performance during three successive cycles.
     (2) A sol-gel method was developed to prepare CuFe2O4nanoparticles and an innovative adcanced oxidation system of CuFe2O4/PMS was constructed. CuFe2O4nanoparticles is a cobalt-free catalyst for the activation of PMS, thus, the cobalt leaching can be avoided. It was found the added tetrabromobisphenol A (TBBPA,10mg L-1) was almost completely removed (with a removal of99%) in30min by using0.1g L CuFe2O4and0.2mmol L-1PMS. With higher addition of PMS (1.5mmol L-1), the degradation yielded a TOC removal of56%and a TBBPA debromination ratio of67%. Radical quenching tests proved that SO4-radicals were the main reactive species. XPS characterization results of the fresh and used CuFe2O4indicated the highly catalytic activity could be attributed to a catalytic mechanism involving both Cu(Ⅱ) and Fe(Ⅲ) in CuFe2O4.Based on the HPLC and LC-MS analysis of the degradation intermediates in the CuFe2O4/PMS system, a detail mechanism for SO4-induced TBBPA degradation was proposed.
     (3) To further improve the catalytic ability of Cu-Fe compounds, Cu+-bearing CuFeO2microparticles were synthesized and characterized as a new activator of PMS for degradation of organic pollutants. It was found CuFeO2exhibited much higher catalytic activity towards degradation of TBBPA in the presence of PMS in comparison with Fe2O3, Cu2O and CuFe2O4as catalysts. The addition of CuFeO2microparticles (0.5g L-1) induced a TBBPA degradation removal of100%in30min in the presence of0.2mmol L-1PMS, higher than that (25%and66%in30min) by using Fe2O3and Cu2O particles as catalysts under the similar conditions. Furthermore, CuFeO2nanoparticles showed better performances in the TBBPA degradation, TOC removal and debromination than CuFe2O4nanoparticles. By adding1.5mmol L-1PMS,62%TOC removal and74%debromination of TBBPA were observed in the case of0.5g L-1CuFe2O4nanoparticles in60min, which were increased to75%(TOC removal) and81%(debromination ratio) in the case of0.5g L-1CuFeO2nanoparticles. Moreover, CuFeO2microparticles also exihibited excellent catalytic stability and easy recyclability, thus, the method based on the catalytic activation of PMS by CuFeO2microparticles has promising potentials in the application in the field of pollution control as a green oxidation process.
     Finally, on the basis of the above research results, new possible application and the related investigation of the three innovative catalysts are prospected. The introduction of visible light, the construction of Fenton-like system and phenolic compounds modified Fenton-like system is anticipated to further enhance catalytic activity of these catalysts and extend their application in the field of environmental catalysis.
引文
[1]Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and untraviolet radiation. Ozone Sci. Eng.1987,9:335-352.
    [2]Kitis M, Adams C D, Daigger G T. The effects of Fenton's reagent pretreatment on the biodegradability of non-ionic surfactants, Wat. Res.1999,33:2561-2568.
    [3]Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of 2,6-dimethylaniline in the Fenton process. Environ. Sci. Technol.2009,43:8269-8634.
    [4]Linsebigler A, Lu G, Yates J. Photocatalysis on TiO2 surface:Principles, mechanisms, and selected results. Chem. Rev.1995,95:735-758.
    [5]Wang N, Chen Z F, Zhu L, et al. Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol. J. Photochem. Photobiol. A:Chem.2007,191:193-200.
    [6]Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes-A review. Sci. Total Environ.2009,407:2474-2492.
    [7]Qiang Z M, Liu C, Dong B Z, et al. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere 2010,78:517-526.
    [8]Behrman E J, Dean D H. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. J. Chromatogr. B.1999,723:325-326.
    [9]Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol.2007,41:613-619.
    [10]DaWalle F B, Light W G, Chain E S. Organic Carbon Removal by Advanced Waste Water Treatment Processes. Environ. Sci. Technol.1982,16,741-746.
    [11]Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate:Kinetics and products. Environ. Sci. Technol.2007,41:1010-1015.
    [12]Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate. Environ. Sci. Technol.2010,44:6423-6428.
    [13]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol.2003,37:4790-4797.
    [14]Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.2004,38:3705-3712.
    [15]Liang C J, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20℃.Sci. Total Environ.2006,370:271-277.
    [16]Yang S Y, Chen Y Y, Xu H Z, et al. A novel advanced oxidation technology based on activated persulfate. Progress in Chemistry 2008,20:1433-1438.
    [17]Fenton H J H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc.1894,65:899-906.
    [18]Sun Z C, Geng Y, Li J, et al. Catalytic oxidization polymerization of aniline in an H2O2-Fe2+ system. J. Appl. Polym. Sci.1999,72:1077-1084.
    [19]Bremner D H, Burgess A E, Li F B. A sonoelectrochemical Fenton process for efficient synthesis of tetramethyladipic acid from pivalic acid. Green Chem.2001,3,126-130.
    [20]Charloux C, Paul M, Loisance D, et al. Inhibition of hydroxyl radical production by lactobionate, adenine, and tempol. Free Radical Bio. Med.1995,19:699-704.
    [21]Henle E S, Luo Y Z, Linn S. Fe2+, Fe3+, and oxygen react with DNA-derived radicals formed during iron-mediated Fenton reactions. Biochemistry 1996,35:12212-12219.
    [22]Huang W T, Xie W Y, Shi Y, et al. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+. J. Mater. Chem. 2012,22:1477-1481.
    [23]Eisenhauer H R. Oxidation of phenolic wastes. Water Pollut. Control Fed.1964,36: 1116-1128.
    [24]Barbeni M, Minero C, Pelizzetti E, et al. Chemical degradation of chlorophenols with Fenton's reagent. Chemosphere 1987,16:2225-2237.
    [25]Gun B, Dong K, Lee S, et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Wat. Res.1999,33:2110-2118.
    [26]Kruger R L, Dallago R M, Luccio M D. Degradation of dimethyl disulfide using homogeneous Fenton's reaction. J. Hazard. Mater.2009,169:443-447.
    [27]Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London, Ser. A 1934,147:332-351.
    [28]Sharma V K, Bielski B H. Reactivity of ferrate(Ⅵ) and ferrate(Ⅴ) with amino acids. Inorg. Chem.1991,30:4306-4310.
    [29]Hug S J, Leupin O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol.2003,37: 2734-2742.
    [30]Katsoyiannis I A, Ruettimann T, Hug S J. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol.2008,42:7424-7430.
    [31]艾军勇,张道勇,牟书勇等.超声波/紫外线Fenton反应联用去除克拉玛依土壤中石油类污染物.环境工程学报.2012,6:983-988.
    [32]Kang Y W, Hwang K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Wat. Res.2000,34:2786-2790.
    [33]Chen R Z, Pignatello J J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ. Sci. Technol.1997,31: 2399-2406.
    [34]Luciano C, Daniela N, Juan M. T, et al. Nitration of nitrobenzene in Fenton's processes. Chemosphere 2010,80:340-345.
    [35]杨春维,王栋,李金英等.Fenton高级氧化工艺中苯酚对亚甲基蓝退色反应的影响.环境科学学报.2006,26:193-196.
    [36]Ramin N, Mahmood A, Hasan A, et al. Comparative study of Fenton's reagent performance in disinfection of raw wastewater and activated sludge effluent. Desalin. Water. Treat.2012,37: 108-113.
    [37]Burbano A A, Dionysou D D, Suidan M T. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent. Wat. Res.2008,42:3225-3239.
    [38]Zepp R G,. Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(Ⅱ) with hydrogen peroxide:the photo-Fenton reaction. Environ. Sci. Technol.1992,26: 313-319.
    [39]Huston P L, Pignatello J J. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Wat. Res.1999,33: 1238-1246.
    [40]Perez M, Torrades F, Garcia-Hortal J A. Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Appl. Catal. B:Environ.2002, 36:63-74.
    [41]Chou S S, Huang Y H, Lee S N, et al. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Wat. Res.1999,33:751-759.
    [42]Pimentel M, Oturana N, Dezotti M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode Appl. Catal. B:Environ.2008, 83:140-149.
    [43]Engelmann M D, Bobier R T, Hiatt T, et al. Variability of the Fenton reaction characteristics of the EDTA, DTPA, and citrate complexes of iron. Bio Metals.2003,16:519-527.
    [44]Li Y C, Bachas L G, Bhattacharyya D. Kinetics studies of trichlorophenol Destruction by chelate-based Fenton reaction. Envoron. Eng. Sci.2005,22:756-771.
    [45]Malik P K. Oxidation of safranine T in aqueous solution using Fenton's reagent:Involvement of an Fe(Ⅲ) chelate in the catalytic hydrogen peroxide oxidation of safranine T. J. Phys. Chem. A,2004,108:675-2681.
    [46]Shemer H, Kunukcu Y K, Linden K G. Degradation of the pharmaceutical Metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 2006,63:269-276.
    [47]Safarzadeh-Amiri A, Bolton J R, Cater S R. Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Wat. Res.1997,31:787-798.
    [48]Monteagudo J M, Duran A, Martin I. S, Aguirre M. Catalytic degradation of Orange Ⅱ in a ferrioxalate-assisted photo-Fenton process using a combined UV-A/C-solar pilot-plant system. Appl. Catal. B:Environ.2010,95:120-129.
    [49]Kwan W P, Voelker B M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol.2003,37: 1150-1158.
    [50]Huang H H, Lu M C, Chen J N. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Wat. Res.2001,35:2291-2299.
    [51]Matta R, Hanna K, Chiron S. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci. Total Environ.2007,385:242-251.
    [52]Zhang J B, Zhuang J, Gao L Z, et al. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 2008,73:1524-1528.
    [53]Zhang S X, Zhao X L, Niu H Y, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J. Hazard. Mater.2009,167: 560-566.
    [54]Huang R X, Fang Z Q, Yan X M, et al. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem. Eng. J.2012, 197:242-249.
    [55]Hu X B, Deng Y H, Gao Z Q, et al. Transformation and reduction of androgenic activity of 17a-methyltestosterone in Fe3O4/MWCNTs-H2O2 system. Appl. Catal. B:Environ.2012,127: 167-174.
    [56]Hu X B, Liu B Z, Deng Y H, et al. Adsorption and heterogeneous Fenton degradation of 17a-methyltestosterone on nano FeaO4/MWCNTs in aqueous solution. Appl. Catal. B: Environ.2011,107:274-283.
    [57]Xu L J, Wang J L. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-Like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol.2012,46: 10145-10153.
    [58]Deng J H, Jiang J Y, Zhang Y Y, et al. FeVO4 as ahighly active heterogenous Fenton-like catalyst towards the degradation of orange Ⅱ. Appl. Catal. B:Environ.2008,84:468-473.
    [59]Pham A L, Lee C, Doyle F M, et al. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol.2009 43: 8930-8935.
    [60]Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem.2010,17:526-533.
    [61]Wang N, Zhu L H, Wang M Q, et al. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic. Ultrason. Sonochem.2010,17:78-83.
    [62]Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol., 2010,44:1786-1791.
    [63]Hori H, Yamamoto A, Hayakawa E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol.2005,39:2383-2388.
    [64]Hori H, Yamamoto A, Kutsuna S. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environ. Sci. Technol.2005,39:7692-7697.
    [65]Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate:Kinetics and products. Environ. Sci. Technol.2007,41:1010-1015.
    [66]Liang S H, Kao C M, Kuo Y C, et al. Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. J. Hazard. Mater.2011,185:1162-1168.
    [67]Flanagan J, Griffith W P, Skapski A C. The active principle of caro's acid, HSO5-:k-ray crystal structure of KHSO5·H2O,J. Chem. Soc., Chem. Commun.1984,23:1574-1579.
    [68]Kolthoff I M, Miller I K, The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium, J. Am. Chem. Soc.1951,73: 3055-3059.
    [69]Reints W, Pratt D A, Korth H G, et al. O-O bond dissociation enthalpy in di(trifluoromethyl) peroxide (CF3OOCF3) as determined by very low Pressure pyrolysis. Density functional theory computations on O-O and O-H bonds in (fluorinated) derivatives, J. Phys. Chem. A 2000,104:10713-10720.
    [70]Anipsitakis GP, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B:Environ.2004,54:155-163.
    [71]Yang S Y, Wang P, Yang X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants:Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater.2010,179:552-558.
    [72]Lee Y C, Lo S L, Chiueh P T, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Wat. Res.2009,43:2811-2816.
    [73]Gao Y Q, Gao N Y, Deng Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J.2012,195-196:248-253.
    [74]Marchesi M, Aravena R, Sra K S, et al. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate. Sci. Total Environ.2012,433:318-322.
    [75]Rastogi A, Al-Abed S R, Dionysiou D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B: Environ.2009,85:171-179.
    [76]Wang Y R, Chu W. Degradation of a xanthene dye by Fe(Ⅱ)-mediated activation of Oxone process.J. Hazard. Mater.2011,186:1455-1461.
    [77]Wang Y R, Chu W. Degradation of 2,4,5-trichlorophenoxyacetic acid by a novel Electro-Fe(Ⅱ)/Oxone process using iron sheet as the sacrificial anode. Wat. Res.2011,45: 3883-3889.
    [78]Do S H, Jo J H, Jo Y H, et al. Application of a peroxymonosulfate/cobalt (PMS/Co(Ⅱ)) system to treat diesel-contaminated soil. Chemosphere 2009,77:1127-1131.
    [79]Chan K H, Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Wat. Res.2009,43:2513-2521.
    [80]Chen X Y, Qiao X L, Wang D G, et al. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+ -catalyzed peroxymonosulfate system. Chemosphere 2007,67:802-808.
    [81]Fang G D, Dionysiou D D, Yu Wang, et al. Sulfate radical-based degradation of polychlorinated biphenyls:Effects of chloride ion and reaction kinetics. J. Hazard. Mater. 2012,227-228:394-401.
    [82]Neta P, Madhaven V, Zemel H, et al. Rate constants and mechanism of reaction of SO4- with aromatic compounds, J. Am. Chem. Soc.1977,99:163-164.
    [83]储高升,张淑娟,姚思德等.SO4·-自由基氧化苯丙氨酸反应机理的图谱表征.中国科学(B辑).32:248-254.
    [84]Padmaja S, Alfassi Z B, Neta P, et al. Rate constants for reactions of SO4- radicals in acetonitrile. Int. J. Chem. Kinet.1993,25:193-198.
    [85]Huang K C, Zhao Z Q, Hoag G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 2005,61:551-560.
    [86]Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 2004,55:1213-1223.
    [87]Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. Ⅱ. Activated by chelated ferrous ion. Chemosphere 2004,55:1225-1233.
    [88]Oh S Y, Kang S G, Chiu P C. Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci. Total. Environ.2010,408:3464-3468.
    [89]Yan J C, Lei M, Zhu L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Harzard. Mater.2011,186: 1398-1404.
    [90]Yan J C, Zhu L H, Luo Z H, et al. Oxidative decomposition of organic pollutants by using persulfate with ferrous hydroxide colloids as efficient heterogeneous activator. Sep. Purif. Technol.2013,106:8-14.
    [91]郑炎松,江岸.2,4-二经基四氢毗咯衍生物的合成及对烯烃环氧化反应的诱导.有机化学2003,23:1114-1119.
    [92]Campaci F, Capestrini S. Catalytic olefin epoxidations with KHSO5:The firstr report on manganese hemi porphyrazines as catalysts in oxygenation reactions. J. Mol. Catal. A:Chem. 1999,140:121-130.
    [93]陶晓春,曹雄杰,余伟等.Oxone/CaCl2/TEMPO体系在温和条件下对醇的氧化反应.有机化学.2010,30:250-253.
    [94]户安军,吕春绪,霍婷等.苄醇类化合物的选择性氧化.化学通报.2006,69:1-8.
    [95]Lee K J, Cho H K, Song C E. Bromination of activated arenas by Oxone and sodium bromide. Bull. Korean. Chem. Soc.2002,23:773-775.
    [96]Wozniak L A, Koziolkiewicz M, Kobylanska A, et al. Potassium peroxymonosulfate (oxone)-An efficient oxidizing agent for phosphothio compounds. Biloorg. Med. Chem.Lett. 1998,8:2641-2646.
    [97]Nikje M M A, Mozaffari Z. Chemoselective epoxidation of hydroxyl terminated polybutadiene (HTPB) using in-situ generated dimethyl dioxirane (DMD). Des. Monomers. Polym.2007,10:67-77.
    [98]徐淑莺,邱玉桂.过渡金属离子在过氧酸漂白中的作用及控制.广东造纸.2000,6:12-15.
    [99]王丽娟,杨汝男,张运展.一种新型的无氯漂剂.中国造纸.2004,8:69-70.
    [100]张巍,俞建勇,吴丽莉.竹纤维的DMD漂白工艺条件.纺织学报.2005,26:100-106.
    [101]Negri A R, Jimenez G, Hill R T, et al. Caroate delignification catalyzed by cobalt and copper cations. Cell. Chem. Technol.2000,34:139-150.
    [102]Chen X Y, Wang W P, Qiao X L, et al. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem Eng. J.2012, 193-194:290-295.
    [103]Labat G, Meunier B. Factors Controlling the reactivity of a ligninase model based on the association of potassium monopersulfate to manganese and iron porphyrin complexes. J. Org. Chem.1989,54:5008-5011.
    [104]Fukushima M, Tatsumi K. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(Ⅲ) and hydroxypropyl-β-cyclodextrin. J. Hazard. Mater.2007,144:222-228.
    [105]Ball D L, Edwards J O. The kinetics and mechanism of the decomposition of caro's acid. J. Phys. Chem.1958,62:343-345.
    [106]Antoniou M G, de la Cruz A A, Dionysiou D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e-transfer mechanisms. Appl. Catal. B:Environ.2010,96:290-298.
    [107]Madhavan J, Maruthamuthu P, Murugesan S, et al. Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent. Appl. Catal. A:Gen.2009,368: 35-39.
    [108]Ling S K, Wang S B, Peng Y L. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfat. J. Hazard. Mater.2010,178:385-389.
    [109]Huang Y H, Huang Y F, Huang C I, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with appb level dosage of Co2+-catalyst. J. Hazard. Mater.2009,170:1110-1118.
    [110]Fernandez J, Maruthamuthu P, Renken A, et al. Bleaching and photobleaching of Orange Ⅱ within seconds by the oxone/Co2+ reagent in Fenton-like processes. Appl. Catal. B:Environ. 2004,49:207-215.
    [111]Yu Z Y, Lioubov K M, Albert R, et al. Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes. J. Mol. Catal. A: Chem.2006,252:113-119.
    [112]Fernandez J, Nadtochenko V, Kiwi J. Photobleaching of Orange Ⅱ within seconds using the oxone/Co2+ reagent through Fenton-like chemistry. Chem. Commun.2003,18:2382-2383.
    [113]Huang Y F, Huang Y H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process. J. Hazard. Mater.2009,167:418-428.
    [114]Tay K S, Rahman N A, Bin Abas M R. Chemical oxidation of N,N-diethyl-m-toluamide by sulfate radical-based oxidation:Kinetics and mechanism of degradation. Int. J. Environ. Sci. Technol.2013,10:103-112.
    [115]Nfodzo P, Choi H. Triclosan decomposition by sulfate radicals:Effects of oxidant and metal doses. Chem. Eng. J.2011,174:629-634.
    [116]Nfodzo P, Choi H. Sulfate radicals destroy pharmaceuticals and personal care products. Environ. Eng. Sci.2011,28:605-608.
    [117]Pagano M, Volpe A, Mascolo G, et al. Peroxymonosulfate-Co(II) oxidation system for the removal of the non-ionic surfactant Brij 35 from aqueous solution. Chemosphere 2012,86: 329-334.
    [118]Do S H, Jo J H, Jo Y H, et al. Application of a peroxymonosulfate/cobalt (PMS/Co(Ⅱ)) system to treat diesel-contaminated soil. Chemosphere 2009,8:1127-1131.
    [119]Anipsitakis G P, Tufano T P, Dionysiou D D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Wat. Res.2008,42:2899-2910.
    [120]Wang Y R, Chu W. Photo-assisted degradation of 2,4,5-trichlorophenol by Electro-Fe(Ⅱ)/Oxone process using a sacrificial iron anode:Performance optimization and reaction mechanism. Chem. Eng. J.2013,215-216:643-650.
    [121]Wang Y R, Chu W. Photo-assisted degradation of 2,4,5-trichlorophenoxyacetic acid by Fe(Ⅱ)-catalyzed activation of Oxone process:The role of UV irradiation, reaction mechanism and mineralization. Appl. Catal. B:Environ.2012,123-124: 151-161.
    [122]Guan Y H, Ma J, Li X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol.2011,45:9308-9314.
    [123]Madhavan J, Maruthamuthu P, Murugesan S, et al. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl. Catal. B:Environ.2008,83:8-14.
    [124]Anipsitakis G P, Stathatos E, Dionysiou D D. Heterogeneous activation of Oxone using Co3O4. J. Phys. Chem. B 2005,109:13052-13055.
    [125]Guo W L, Su S N, Yi C L, et al. Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system. Environ. Prog. Sustain. Energy.2013,32: 193-197.
    [126]Chen X Y, Chen J W, Qiao X L, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B:Environ.2008,80:116-121.
    [127]Yang Q J, Choi H, Dionysiou D D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B:Environ.2007,74:170-178.
    [128]Yang Q J, Choi H, Chen Y J, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B:Environ.2008,77:300-307.
    [129]Zhu Y Q, Chen S, Quan X, et al. Cobalt implanted TiO2 nanocatalyst for heterogeneous activation of peroxymonosulfate. RSCAdv.2013,3:520-525.
    [130]Zhang W, Tay H L, Lim S S, et al. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B:Environ.2010,95: 93-99.
    [131]Shukla P R, Wang S B, Sun H Q, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B:Environ. 2010,100:529-534.
    [132]Sun H Q, Tian H Y, Hardjono Y, et al. Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol. Catal. Today 2012,186:63-68.
    [133]Hardjono Y, Sun H Q, Tian H Y, et al. Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng. J.2011,174:376-382.
    [134]Shukla P, Wang S B, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B:Environ. 2010,99:163-169.
    [135]Shukla P R, Sun H Q, Wang S B, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today 2011,175:380-385.
    [136]Hu L X, Yang X P, Dang S T. An easily recyclable Co/SBA-15 catalyst:Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B: Environ.2011,102:19-26.
    [137]Hu L X, Yang F, Lu W C, et al. Heterogeneous activation of oxone with CoMg/SBA-15 for the degradation of dye Rhodamine B in aqueous solution. Appl. Catal. B:Environ.2013, 134-135:7-18.
    [138]Muhammad S, Saputra E, Sun H Q, et al. Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSCAdv.2012,2:5645-5650.
    [139]Saputra E, Muhammad S, Sun H Q, et al. Red mud and fly ash supported Co catalysts for phenol oxidation. Catal. Today 2012,190:68-72.
    [140]Muhammad S, Saputra E, Sun H Q, et al. Heterogeneous catalytic oxidation of aqueous phenol on red mud-supported cobalt catalysts. Ind. Eng. Chem. Res.2012,51:15351-15359.
    [141]Liang H W, Ting Y Y, Sun H Q, et al. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. J. Colloid. Interf. Sci.2012,372:58-62.
    [142]Sun H Q, Liang H W, Zhou G L, et al. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation. J. Colloid. Interf. Sci.2013,394: 394-400.
    [143]Shi P H, Su R J, Wan F Z, et al. CO3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B:Environ.2012,123-124:265-272.
    [144]Shi P H, Su R J, Zhu S B, et al. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange Ⅱ from water. J. Hazard. Mater.2012,229-230: 331-339.
    [145]Yao Y J, Yang Z H, Sun H Q, et al. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol, Ind. Eng. Chem. Res.2012,51:14958-14965.
    [146]Zhang H L, Jin D, Zhao X J. Synthesis of Co3O4/RGO as catalyst for degradation of Orange Ⅱ in water by advanced oxidation processes based on sulfate radicals.Adv. Mater. Res. 2012,534:269-272.
    [147]Liang H W, Sun H Q, Patel A, et al. Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions.Appl. Catal. B:Environ.2012,127:330-335.
    [148]Muhammad S, Shukla P R, Tade M O, et al. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. J. Hazard. Mater.2012,215-216:183-190.
    [149]Saputra E, Muhammad S, Sun H Q, et al. a-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions. Catal. Commun.2012,26:144-148.
    [150]Yao Y J, Xu C, Yu S M, et al. Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind. Eng. Chem. Res.2013,52:3637-3645.
    [151]Yang Q J, Choi H, Al-Abed S R, et al. Iron-cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B:Environ.2009,88:462-469.
    [152]Yao Y J, Yang Z H, Zhang D W, et al. Magnetic CoFe2O4-graphene hybrids:Facile synthesis, characterization, and catalytic properties. Ind. Eng. Chem. Res.2012,51: 6044-6051.
    [153]Ji F, Li C L, Deng L. Performance of CuO/Oxone system:Heterogeneous catalytic oxidation of phenol at ambient conditions. Chem. Eng. J.2011,178:239-243.
    [154]Sun H Q, Liu S Z, Zhou G L, et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interfaces 2012,4:5466-5471.
    [155]Peng W C, Liu S Z, Sun H Q, et al. Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J. Mater. Chem. A 2013,DOI:10.1039/c3ta10592j.
    [1]Esplugas S, Gimenez J, Contreras S, et al. Comparison of dil lerent advanced oxidation processes for phenol degradation. Water Res.2002,36:1034-1042.
    [2]Liotta L F, Gruttadauria M, Carlo G D. Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. J. Hazard. Mater.2009,162:588-606.
    [3]Melero J A, Calleja G, Martinez F, et al. Nanocomposite Fe2O3/SBA-15:An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem. Eng. J.2007,131: 245-256.
    [4]Safarzadeh-Amiri A, Bolton J R, Cater S R. The use of iron in advanced oxidation processes. J. Adv. Oxid. Technol.1996,1:18-26.
    [5]Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol.2006,40:1000-1007.
    [6]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 2003,37:4790-4797.
    [7]Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.2004,38:3705-3712.
    [8]Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988,17:1027-1284.
    [9]Kim J, Edwards J O. A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen peroxide and peroxomonosulfate ion. Inorg. Chim. Acta.1995,235: 9-13.
    [10]Chen X, Qiao X, Wang D, et al. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system. Chemosphere 2007,67:802-808.
    [11]Huang Y H, Huang Y F, Huang C I, et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater.2009,170:1110-1118.
    [12]Ling S K, Wang S, Peng Y. Oxidative degradation of dyes in water using Co2+/H202 and Co2+/peroxymonosulfate. J. Hazard. Mater.2010,178:385-389.
    [13]Huang Y F, Huang Y H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process. J. Hazard. Mater. 2009,167:418-426.
    [14]Nfodzo P, Choi H. Triclosan decomposition by sulfate radicals:Effects of oxidant and metal doses. Chem. Eng. J.2011,174:629-634.
    [15]Do S H, Jo J H, Jo Y H, et al. Application of a peroxymonosulfate/cobalt (PMS/Co(Ⅱ)) system to treat diesel-contaminated soil. Chemosphere 2009,77:1127-1131.
    [16]Anipsitakis G P, Tufano T P, Dionysiou D D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Res.2008,42:2899-2910.
    [17]Lison D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). CRC Criti. Rev. Toxicol.1996,26:585-616.
    [18]Anipsitakis G P, Stathatos E, Dionysiou D D. Heterogeneous activation of oxone using Co3O4. J. Phys. Chem. B.2005,109:13052-13055.
    [19]Chen X, Chen J, Qiao X, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound, Appl. Catal. B-environ.2008, 80:116-121.
    [20]Yang Q, Choi H, Dionysiou D D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B-environ. 2007,4:170-178.
    [21]Yang Q, Choi H, Chen Y, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B-environ.2008,77:300-307.
    [22]Zhang W, Tay H, Lim S, et al. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B-environ.2010,95:93-99.
    [23]Shukla P, Sun H, Wang S B, et al. Nanosized Co304/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Separ. Sci. Technol.2011,77:230-236.
    [24]Liang H W, Sun H Q, Patel A, et al. Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl. Catal. B-environ.2012,127:330-335
    [25]Shukla P, Wang S B, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B-environ.2010,99: 163-169.
    [26]Hu L, Yang X, Dang S. An easily recyclable Co/SBA-15 catalyst:Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B-environ.2011,102: 19-26.
    [27]Shukla P, Wang S B, Sun H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B-environ.2010,100: 529-534.
    [28]Hardjono Y, Sun H, Tian H, et al. Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng. J.2011,174:376-382.
    [29]Shi P H, Su R J, Zhu S B, et al. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange Ⅱ from water. J. Hazard. Mater.2012,229-230:331-339.
    [30]Shi P H, Su R J, Wan F Z, et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B-environ.2012,123-124:265-272.
    [31]Muhammad S, Saputra E, Sun H Q, et al. Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSC Advances.2012,2:5645-5650.
    [32]Yang Q J, Choi H, Al-Abed S R, et al. Iron-cobalt mixed oxide nanocatalysts:Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B-environ.2009,88:462-469.
    [33]Luo W, Zhu L, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol.2010,44: 1786-1791.
    [34]Imamura S, Hlrano A, Kawabata N. Wet oxidation of acetic acid catalyzed by Co-Bi complex oxides.Ind. Eng. Chem. Prod. Res. Dev.1982,21:570-575.
    [35]Cheng H F, Huang B B, Lu J B, et al. Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Phys. Chem. Chem. Phys. 2010,12:15468-15475.
    [36]Sun S J, Gao Q M, Wang H L, et al. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Appl. Catal. B-environ.2010,97:284-291.
    [37]Belik A A, Iikubo S, Kodama K, et al. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater.2006,18:798-803.
    [38]Wu C L, Shen L, Huang Q L, et al. Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett.2011,65:1134-1136.
    [39]Binni V, Teo C H, Zhu Y W, et al. Co3O4 Nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater.2007,17:1932-1939.
    [40]Fu L, Liu Z, Liu Y, et al. Beaded cobalt oxide nanoparticles along carbon nanotube:Towards Higher integrated electronic devices. Adv. Mater.2005,17:217-221.
    [41]Yang J, Liu H W, Martens, W N, rt al. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. C 2010,114:111-119.
    [42]Xiong S L, Yuan C Z, Zhang X G, et al. Controllable synthesis of mesoporous Co304 nanostructures with tunable morphology for application in supercapacitors. Chem. Eur. J.2009, 15:5320-5326.
    [43]Shukla P, Sun H, Wang S B, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today 2011,175:380-385.
    [1]de Wit CA, An overview of brominated flame retardants in the environment. Chemosphere 2002, 46:583-624.
    [2]Sellstrom U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere 1995,31:3085-3092.
    [3]Oberg K, Warman K, Oberg T. Distribution and levels of brominated flame retardants in sewage sludge. Chemosphere 2002,48:805-809.
    [4]Makiene Maija S E, Makiene Milja R A, Koistinen Jaana T B, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ. Sci. Technol.2009,43:941-947.
    [5]Voordeckers J W, Fennell D E, Jones K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. Environ. Sci. Technol.2002,36: 696-701.
    [6]Eriksson J, Rahm S, Green Ni, et al. Photochemical transformations of tetrabromobisphenol A and related phenols in water. Chemosphere 2004,54:117-126.
    [7]Terakado O, Ohhashi R, Hirasawa M. Thermal degradation study of tetrabromobisphenol A under the presence metal oxide:Comparison of bromine fixation ability. J. Anal. Appl. Pyrol.2011,91: 303-309.
    [8]Luo S, Yang S G, Wang X D, et al. Reductive degradation of tetrabromobisphenol A over iron silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010,79:672-678.
    [9]Luo S, Yang S G, Sun C, et al. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions. Water Res.2011,45:1519-1528.
    [10]Lin K D, Liu W P, Gan J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: Kinetics, products, and pathways. Environ. Sci. Technol.2009,43:4480-4486.
    [11]Xu J, Meng W, Zhang Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway. Appl. Catal. B:Environ.2011,107:355-362.
    [12]Bruchajzer E, Szymanska J A, Piotrowski J K. Acute and subacute nephrotoxicity of 2-bromophenol in rats. Toxicol. Lett.2002,134:245-252.
    [13]Hori H, Yamamoto A, Hayakawa E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005,39:2383-2388.
    [14]Yang S Y, Wang P, Yang X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants:Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater.2010,179:552-558.
    [15]Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.2004,38:3705-3712.
    [16]Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 2003,37:4790-4797.
    [17]Lison D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). CRC Criti. Rev. Toxicol.1996,26:585-616.
    [18]Anipsitakis G P, Stathatos E, Dionysiou D D. Heterogeneous activation of oxone using Co3O4. J. Phys. Chem. C 2005,109:13052-13055.
    [19]Chen X, Chen J, Qiao X, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B:Environ.2008, 80:116-121.
    [20]Yang Q J, Choi H, Dionysiou D D. Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl. Catal. B:Environ.2007, 74:170-178.
    [21]Hu L, Yang X, Dang S. An easily recyclable Co/SBA-15 catalyst:Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B:Environ.2011,102: 19-26.
    [22]Zhang W, Tay H, Lim S, et al. Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl. Catal. B:Environ.2010,95:93-99.
    [23]Shukla P, Wang S, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B:Environ.2010,99:163-169.
    [24]Shukla P, Wang S, Sun H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B:Environ.2010,100: 529-534.
    [25]Hardjono Y, Sun H, Tian H, et al. Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng. J.2011,174: 376-382.
    [26]Shi P H, Su R J, Zhu S B, et al. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange Ⅱ from water. J. Hazard. Mater.2012,229-230:331-339.
    [27]Shi P H, Su R J, Wan F Z, et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals. Appl. Catal. B:Environ.2012,123-124:265-272.
    [28]Muhammad S, Saputra E, Sun H Q, et al. Coal fly ash supported Co3O4 catalysts for phenol degradation using peroxymonosulfate. RSCAdv.2012,2:5645-5650.
    [29]Ding Y B, Zhu L H, Huang A Z, et al. Heterogeneous Co3O4/Bi2O3 Composite Catalyst for Oxidative Degradation of Organic Pollutants in the Presence of Peroxymonosulfate. Catal. Sci. Technol.2012,2:1977-1984.
    [30]Yang Q J, Choi H, Al-Abed S R, et al. Iron-cobalt mixed oxide nanocatalysts:heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications.Appl. Catal. B:Environ.2009,88:462-469.
    [31]Yao Y J, Yang Z H, Zhang D W, et al. Magnetic CoFe2O4-Graphene Hybrids:Facile Synthesis, Characterization, and Catalytic Properties. Ind. Eng. Chem. Res.2012,51:6044-6051.
    [32]Rastogi A, Ai-Abed S R, Dionysiou D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B:Environ. 2009,85:171-179.
    [33]Wang Y R, Chu W. Degradation of a xanthene dye by Fe (Ⅱ)-mediated activation of Oxone process. J. Hazard. Mater.2011,186:1455-1461.
    [34]Wang Y R, Chu W. Photo-assisted degradation of 2,4,5-trichlorophenoxyacetic acid by Fe(Ⅱ)-catalyzed activation of Oxone process:The role of UV irradiation, reaction mechanism and mineralization. Appl. Catal. B:Environ.2012,123-124:151-161.
    [35]Madhavan J, Maruthamuthu P, Murugesan S, et al. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl. Catal. B: Environ.2008,83:8-14.
    [36]Nfodzo P, Choi H. Triclosan decomposition by sulfate radicals:Effects of oxidant and metal doses. Chem. Eng. J.2011,174:629-634.
    [37]Zhang R Z, Liu J M, Wang S F, et al. Magnetic CuFe2O4 Nanoparticles as an Efficient Catalyst for C=O Cross-Coupling of Phenols with Aryl Halides. ChemCatChem 2011,3:146-149.
    [38]Xu J H, Ke H, Jia D C, et al. Low-temperature synthesis of BiFeO3 nanopowders via a sol-gel method. J. Alloy. Compd.2009,472:473-477.
    [39]Laokul P, Amornkitbamrung V, Seraphin S, et al. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr. Appl. Phys.2011,11:101-108.
    [40]Ayyappan S, Philip J, Raj B. Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J. Phys. Chem. C 2009,113:590-596.
    [41]Chou S S, Huang C. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 1999,38:2719-2731.
    [42]Deng J H, Jiang J Y, Zhang Y Y, et al. FeVO4 as ahighly active heterogenous Fenton-like catalyst towards the degradation of orange Ⅱ. Appl. Catal. B:Environ.2008,84:468-473.
    [43]Tasca J E, Quincoces CE, Lavat A, et al. Preparation and characterization of CuFe2O4 bulk catalysts. Ceram. Int.2011,37:803-812.
    [44]Shukla P, Sun H, Wang S, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today 2011,175:380-385.
    [45]Sun H Q, Liu S Z, Zhou G L, et al. Wang S B. Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants. ACS Appl. Mater. Interfaces.2012,4:5466-5471.
    [46]Sun H Q, Tian H Y, Hardjonoa Y, et al. Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol. Catal. Today 2012,186:63-68.
    [47]Shukla P, Sun H, Wang S B, et al. Nanosized Co3O4/Si02 for heterogeneous oxidation of phenolic contaminants in waste water. Separ. Sci. Technol.2011,77:230-236.
    [48]Muhammad S, Shukla P, Tade M O, et al. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. J. Hazard. Mater.2012,215-216: 183-190.
    [49]Saputra E, Muhammad S, Sun H Q, et al. Red mud and fly ash supported Co catalysts for phenol oxidation. Catal. Today 2012,190:68-72.
    [50]Huang C P, Wang Y J, Chen C Y. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotox. Environ. Safe.2007,67 (3):439-446.
    [51]Reineke N, Biselli S, Franke S, et al. Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects. Arch. Environ. Cotam. Tox.2006,51 (2):186-196.
    [52]Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. London A 1934,147:332-351.
    [53]Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics, mechanism, and implications. Environ. Sci. Technol.1998,32:1417-1423.
    [54]Pagano M, Volpe A, Mascolo G, et al. Peroxymonosulfate-Co(Ⅱ) oxidation system for the removal of the non-ionic surfactant Brij 35 from aqueous solution. Chemosphere 2012,86:329-334.
    [55]Liang C J, Su H W, Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res.2009,48:5558-5562.
    [56]He Y H, Li D Z, Xiao, G G, et al. A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation.J. Phys. Chem. C 2009,113:5254-5262.
    [57]Ji F, Li C, Deng L. Performance of CuO/Oxone system:Heterogeneous catalytic oxidation of phenol at ambient conditions. Chem. Eng. J.2011,178:239-243.
    [58]Nedkov I, Vandenberghe R E, Marinova T, Thailhades P, Merodiiska T, Avramova I. Magnetic structure and collective Jahn-Teller distortions in nanostructured particles of CuFe2O4. Appl. Surf. Sci.2006,253:2589-2596.
    [59]Nie Y L, Hu C, Qu J H, et al. Photoassisted degradation of endocrine disrupters over CuOx-FeOOH with H2O2 at neutral pH. Appl. Catal. B:Environ.2009,87:0-36.
    [60]Sahoo B, Sahu S K, Nayak S, et al. Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol.2012,2: 1367-1374.
    [61]Kabiersch G, Rajasarkka J, Ullrich R, et al. Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla. Chemosphere 2011, 83:226-232.
    [62]Tang T T, Fan H, Ai S Y, et al. Hemoglobin (Hb) immobilized on amino-modified magnetic nanoparticles for the catalytic removal of bisphenol A. Chemosphere 2011,83:255-264
    [63]Ju P, Fan H, Guo D D, et al. Electrocatalytic degradation of bisphenol A in water on a Ti-based Pb02-ionic liquids (ILs) electrode. Chem. Eng. J.2012,179:99-106.
    [64]Qiu Y F, Wang L, Leung C F, et al. Preparation of nitrogen doped K2Nb4O11 with high photocatalytic activity for degradation of organic pollutants. Appl. Catal. A:Gen.2011,402: 23-30.
    [1]Qiu X Q, Liu M, Sunada K, et al. A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property. Chem. Commun.2012,48:7365-7367.
    [2]Huang L, Peng F, Ohuchi F S. "In situ" XPS study of band structures at Cu2O/TiO2 heteroj unctions interface. Surf. Sci.2009,603:2825-2834.
    [3]Lee S Y, Mettlach N, Nguyen, et al. Copper oxide reduction through vacuum annealing. Appl. Surf. Sci.2003,206:102-109.
    [4]Shukla P, Sun H, Wang S, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today 2011,175:380-385.
    [5]Sun H Q, Liu S Z, Zhou G L, et al. Wang S B. Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants. ACS Appl. Mater. Interfaces.2012,4:5466-5471.
    [6]Shukla P, Sun H, Wang S, et al. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Separ. Sci. Technol.2011,77:230-236.
    [7]Shukla P, Wang S, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B:Environ.2010,99:163-169.
    [8]Shukla P, Wang S, Sun H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B:Environ.2010,100: 529-534.
    [9]Hardjono Y, Sun H, Tian H, et al. Synthesis of Co oxide doped carbon aerogel catalyst and catalytic performance in heterogeneous oxidation of phenol in water. Chem. Eng.J.2011,174:376-382.
    [10]Muhammad S, Shukla P, Tade M O, et al. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water. J. Hazard. Mater.2012,215-216: 183-190.
    [11]Huang C P, Wang Y J, Chen C Y. Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotox. Environ. Safe.2007,67:439-446.
    [12]Bruchajzer E, Szymanska J A, Piotrowski J K. Acute and subacute nephrotoxicity of 2-bromophenol in rats. Toxicol. Lett.2002,134:245-252.
    [13]Reineke N, Biselli S, Franke S, et al. Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects. Arch. Environ. Cotam. Tox.2006,51:186-196.
    [14]Fang J Y, Shang C. Bromate formation from bromide oxidation by the UV/persulfate process. Environ. Sci. Technol.2012,46:8976-8983.
    [15]Zhang T, Zhu H B, Croue J P. Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water:Efficiency, Stability, and Mechanism. Environ. Sci. Technol.2013,46:2784-2791.
    [16]Xu L J, Wang J L. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl. Catal. B:Environ.2010,99:163-169.
    [17]Pagano M, Volpe A, Mascolo G, et al. Peroxymonosulfate-Co(Ⅱ) oxidation system for the removal of the non-ionic surfactant Brij 35 from aqueous solution. Chemosphere 2012,86:329-334.
    [18]Liang C J, Su H W, Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res.2009,48:5558-5562.
    [19]He Y H, Li D Z, Xiao, G G, et al. A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation. J. Phys. Chem. C 2009,113:5254-5262.
    [20]Nie Y L, Hu C, Qu J H, et al. Photoassisted degradation of endocrine disrupters over CuOx-FeOOH with H2O2 at neutral pH. Appl. Catal. B:Environ.2009,87:0-36.
    [21]Sahoo B, Sahu S K, Nayak S, et al. Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol.2012, 2:1367-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700