用户名: 密码: 验证码:
土水界面五氯酚的消减行为及其受电子供体/受体影响的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氯酚(Pentachlorophenol,PCP)是环境中普遍存在的一类持久性有机污染物,在我国曾被大量用于杀灭钉螺以控制血吸虫病传播。由于其性质稳定、难以降解,严重危害着土壤的生产力、生态功能、农产品质量和人类健康。因此,有关PCP在土壤中的环境行为及其修复技术已经成为土壤学、环境科学等相关学科领域的热点。水稻田是世界上最大的人工湿地。由于稻田管理的需求,水稻土中氧化还原波动控制了微生物群落结构的功能以及短期的生物地球化学过程。本文以PCP为目标污染物,研究其在不同土壤、特别是水稻土土-水界面的特异消减行为,主要包括土壤类型(包括旱地土壤、水稻土)、氧化还原状态(含水量差异)、淹水水稻土剖面(毫米级微域),外源电子供体与受体对土壤剖面PCP消减及微生物群落结构的影响。主要研究结果如下:
     (1)好氧、厌氧条件下PCP在土壤中的消减动态变化。选择黄斑田、红壤、潮土和黑土4种性质差异较大的土壤进行60%最大田间持水量(WHC)和淹水培养,研究两种培养条件下PCP消减的差异。结果表明在3种旱地土壤中PCP的消减为60%WHC高于淹水培养,而水稻土黄斑田则相反。通过一级动力学方程对两种条件下PCP消减进行拟合发现,在两种条件下,黄斑田与黑土中PCP的消减均符合一级动力学方程。虽然黄斑田与黑土的理化性质较其它两种土壤更为相近,并且两种土壤培养终点PCP消减率相似,但过程却明显不同。最后,采用[C1-]/△[PCP]摩尔比表示PCP脱氯效率,结果显示,淹水条件下,[Cl-]/△[PCP]为黄斑田(4.86)>黑土(2.68)>潮土(0.29)≈红壤(0.22);好氧条件下则为黄斑田(4.93)>潮土(4.87)>黑土(4.60)>红壤(1.53)。
     (2)电子受体对淹水土壤PCP消减行为的影响。土壤在淹水处理下分别添力口FeCl3.NaN03和Na2SO4,研究Fe(Ⅳ)、N03-、SO42等电子受体对黄斑田、红壤、潮土和黑土4种土壤中PCP消减的影响。发现外源电子受体明显抑制了黄斑田和黑土中PCP消减以及脱氯作用,且Fe(Ⅲ)和S042-对黄斑田,Fe(Ⅲ)和N03-对黑土中PCP消减的抑制达到了显著水平(p<0.05)。在120d培养时间内,黄斑田的氧化还原电位从220mV降低到-4mV,而黑土的氧化还原电位从180mV降低到-50mV,可见仅黄斑田与黑土中形成强还原环境,电子受体对PCP消减的抑制作用仅发生在PCP还原脱氯环境中。这种抑制作用可能由两方面造成,一是外源氧化剂与PCP同作为电子受体的竞争作用,二是其氧化性提高了环境初始Eh及减缓了Eh下降速度。此外,四种土壤之间的PCP消减存在较大差异,说明土壤自身理化性质决定其能否在15mm土层内形成强还原环境。
     (3)PCP在土壤剖面中毫米级深度梯度尺度下的消减规律。根据PCP在三种受试水稻土剖面上不同深度土层(毫米级)的消减状况差异,可将土壤剖面分为上、下两个层次,PCP消减在上层中随土壤深度的增加而递减,而在下层中随土壤深度的增加则变异不大。然而,不同类型的土壤,其上层深度存在差异,黄斑田、红壤性水稻土和砖红壤性水稻土分别为0-15mm、0-25mm和0-30mm, PCP消减分别为40-93%、42-88%及16-100%。在下层土壤中仅红壤中PCP发生显著消减(p<0.05),黄斑田中较为微弱,而砖红壤中基本保持不变。下层土壤中PCP消减与电子供体/受体(DOC、Fe(Ⅱ)、Fe(Ⅲ)和8042-)呈显著相关关系(p<0.05),而上层土壤则不然。说明上层土壤氧化还原环境较为复杂,包括好氧环境和兼氧环境,而下层土壤则为严格厌氧环境,电子受体(Fe(Ⅲ)和8O42-)的还原会与PCP还原存在对电子供体的竞争作用。总之,从毫米级深度尺度研究土壤环境的生物地球化学过程,可以更清楚了解有机污染物的迁移转化机制。
     (4)基于外源添加不同作物秸秆(水稻、小麦、油菜和紫云英)的形式研究了外源电子供体对土壤剖面中PCP消减行为的影响作用。研究0-10mm、10-20mm、20-30mm和30-50mm土壤剖面内PCP消减的动态变化。添加秸秆可有效促进PCP在土壤剖面中的消减。研究表明所有添加秸秆处理土壤中PCP基本在60d内降解完全,而对照处理中仍有大量PCP残留。在黄斑田和红壤中均检测到PCP的代谢产物3,4,5-TCP和2,3,4,6-TeCP,而砖红壤中仅在培养早期的一些处理中检出微量中间产物。两种土壤中3,4,5-TCP的转化随着培养时间延长表现出极大差异,在黄斑田小麦添加处理以及红壤的水稻、小麦和紫云英添加处理中,3,4,5-TCP被进一步降解。以上结果说明秸秆分解释放的外源有机碳作为电子供体对PCP消减的促进作用因土壤性质及秸秆类型不同存在差异。
     (5)基于PLFAs技术,研究了PCP胁迫、电子受体和电子供体的添加对黄斑田土壤剖面中微生物量和微生物群落结构的影响及其与PCP消减的相关关系。PLFA主成分分析结果表明,在培养试验中,土层深度是影响微生物群落结构变异的首要因子,而外源电子供体和受体添加占次要位置。PLFA总量在0-10mm土层最高并随土层深度的增加有降低的趋势。真菌、好氧菌、蓝细菌、环丙烷脂肪酸前体脂肪酸、革兰氏阴性菌、饱和脂酸和单不饱和脂肪酸均在0-10mm土层最高,但随土层深度增加而降低,而细菌、放线菌、厌氧菌、革兰氏阳性菌、硫酸盐还原菌、异构和反异构则相反。土壤中添加秸秆可使这些特征脂肪酸剖面梯度差异变小甚至消失。然而,与其它任一处理相比,添加秸秆处理S/M值随土层深度增加而递增。PCP残留量与代表革兰氏阳性菌的i14:0呈极显著负相关(p<0.01),3,4,5-TCP含量与代表硫酸盐还原菌、放线菌的16:0(10Me)和17:0(10Me)、以及代表厌氧菌的cy17:0和cy19:0均呈极显著负相关(p<0.01)。
Pentachlorophenol (PCP) is a ubiquitous, and highly persistent organic environmental pollutant. In China, the primary purpose for using PCP and its sodium salt (Na-PCP) is to kill the schistosome intermediate of host snails. PCP tends to accumulate in soils because of its slow rate of degradation. Soil contamination with PCP poses a great threat to the productivity and ecological functioning of soil, of food quality and human health. Therefore the behavior of PCP in the environment and remediation technologies have received increasing investigation. Paddy soils comprise the largest anthropogenic wetlands on earth. Redox potential fluctuations due to paddy soil management controls microbial community structure and function and thus short-term biogeochemical processes.
     PCP was selected as the target compound in this study. The behavior of PCP dissipation at the water-soil interface, the influence of redox potential, electron donors, electron acceptors, the aerobic-anaerobic gradient in soil profiles, and the response of microbes were studied. The main experiments and results were as follows:
     (1) The potential for dissipation of pentachlorophenol (PCP) was investigated in soils from four different sites in China. These were a silt clay Umbraqualf (Soil1), a silt clay Plinthudult (Soil2), a silt loam Haplustalf (Soil3) and a silt clay loam Argiustoll (Soil4) which were either flooded, to produce anaerobic conditions, or incubated aerobically at60%water-holding capacity (WHC). The molar ratio of [Cl-]/△[PCP] for PCP is5. Changes in the molar ratio indicated that the dissipation of PCP in different soils was caused by other processes (e.g. irreversible sorption by soil particles) in addition to dechlorination. The molar ratio [Cl-]/△[PCP] was:Soil1(4.86)> Soil4(2.68)> Soil3(0.29)=Soil2(0.22) under flooded conditions, and Soil1(4.93)> Soil3(4.87)> Soil4(4.60)> Soil2(1.53) at60%WHC.
     (2) Ionic oxidants (Fe(III), sulphate and nitrate) were applied to study their effects on the fate of PCP under flooded conditions. Dissipation of PCP was significantly inhibited by addition of Fe(III)(as FeCl313.5g kg-1), while addition of sulphate (as Na2SO4,2.8g kg-1) and nitrate (as NaNO3,1.7g kg-1) had different effects, depending upon the soil type. Extractable Fe(Ⅱ), sulfate and nitrate concentrations were determined to investigate interactions of redox reactions involved in the PCP dissipation. Sulfate reduction occurred in Soil1and Soil4under flooded conditions. Similarly, the redox potential decreased significantly in Soil1and Soil4, and the dissipation of PCP in the two soils was statistically significant (about96%and98%, respectively) at the end of the flooded incubation (120days). By120days of incubation, the redox potential decreased from220mV to-4mV and180mV to-50mV in soils1and4respectively. The added oxidants inhibited the dechlorination process of PCP.
     (3) A soil microcosm was designed to mimic the soil-water interface of three typical Chinese paddy soils, Umbraqualf (Soil1), Plinthudult (Soil2), Tropudult (Soil3). Vertical variations in the dissipation potential of pentachlorophenol (PCP) were investigated at the mm-scale in an unplanted, flooded, paddy soil. The depth of soil profiles where PCP dissipation occurred was different due to different soil characteristics. They were0to15mm,0to25mm and0to30mm with the PCP dissipation of40-93%,42-88%and16-100%for Soil1, Soil2and Soil3respectively. The dissipation rate of PCP decreased with increasing soil depth. Pentachlorophenol was significantly (p<0.05) dissipated within the10to50mm depth in Soil2, while dissipation in Soil1was weak, and did not occur in Soil3, where the PCP concentration remained constant until the end of the120day incubation. The PCP dissipation in the surface layer may have been caused by leaching, photolysis, diffusion and biodegradation, and controlled by complex factors including both soil chemical properties and environmental conditions (e.g. temperature and moisture). The vertical profiles of Fe(II) and SO42-indicated that the high SO42-concentration inhibited the dissipation of PCP and the reduction of Fe(III), and the reduction of Fe (III) also competed for electron donors with PCP. The PCP significantly inhibited the reduction of Fe(III) and SO42-and the production of NH4+. In addition, the anions in flooded soils were highly mobile in the soil profiles.
     (4) The effect of different crop residue additions, wheat(Triticum aestivum), rice (Oryza sativa), rape (Brassica campestris L.) and Chinese milk vetch(Astragalus sinicus) on PCP dissipation under greenhouse incubation conditions were investigated in three typical Chinese paddy soils. These were an Umbraqualf (Soil1), a Plinthudult (Soil2) and a Tropudult (Soil3). Crop residue addition rapidly increased PCP dissipation in soil profiles. PCP was dissipated completely in all crop residues addition treatments at60days incubation. The distribution of electron donors and acceptors in soil profiles was also influenced by crop residues. The distribution of electron donors and acceptors clearly differed, as indicated by Principle Component Analysis (PCA) of their concentrations in the soil profiles. The metabolites3,4,5-trichlorophenol (3,4,5-TCP) and2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) were produced during PCP dissipation in soils1and2.
     (5)The changes in microbial community structure were investigated in crop residues (wheat, rice, rape and Chinese milk vetch) and electron acceptors (NO3-, SO42-), in amended soils under greenhouse conditions.In all treatments, the highest concentration of total PLFAs was in the0-10mm depth. Compared with the control treatment, there were significant changes between the PLFA patterns in soils amended with crop residues and electron acceptors as indicated by Principal Component Analysis (PCA) of the PLFA signatures. The i14:0, which can represent gram-positive bacteria, had remarkable relationships with PCP dissipation (p<0.01).3,4,5-TCP was negatively related (p<0.01) to16:0(10Me),17:0(10Me), cyl7:0and cyl9:0, which represent actinomyces and anaerobic bacteria respectively. In addition,16:0(10Me) is also the signature PLFA of sulfate-reducing bacteria.
引文
Achtnich, C., Bak, F., Conrad, R.,1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 19,65-72.
    Aeppli, C., Tysklind, M., Holmstrand, H., Gustafsson, O.,2013. Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols:mechanistic study and field application. Environmental Science & Technology 47,790-797.
    Aller, R.C.,1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Marine Chemistry 61,143-155.
    Alletto, L., Benoit, P., Bergheaud, V., Coquet, Y.,2008. Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems. Environmental Pollution 156,678-688.
    Alletto, L., Coquet, Y., Benoit, P., Bergheaud, V,2006. Effects of temperature and water content on degradation of isoproturon in three soil profiles. Chemosphere 64,1053-1061.
    Alletto, L., Coquet, Y., Bergheaud, V., Benoit, P.,2012. Water pressure head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management. Chemosphere 88,1043-1050.
    Arcand, Y., Hawari, J., Guiot, S.R.,1995. Solubility of pentachlorophenol in aqueous solutions: The pH effect. Water Research 29,131-136.
    Azandegbe, A., Poly, F., Andrieux-Loyer, F., Kerouel, R., Philippon, X., Nicolas, J.L.,2012. Influence of oyster culture on biogeochemistry and bacterial community structure at the sediment-water interface. FEMS Microbiology Ecology 82,102-117.
    Bae, H.S., Yamagishi, T., Suwa, Y.,2004. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors. Chemosphere 55,93-100.
    Bagramyan, K., Galstyan, A., Trchounian, A.,2000. Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival:effects of impermeable oxidant. Bioelectrochemistry 51,151-156.
    Baraldi, E.A., Damianovic, M.H.R.Z., Manfio, G.P., Foresti, E., Vazoller, R.F.,2008. Performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor and dynamics of the microbial community during degradation of pentachlorophenol (PCP). Anaerobe 14, 268-274.
    Bardgett, R.D., Leemans, D.K., Cook, R., Hobbs, P.J.,1997. Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biology and Biochemistry 29,1285-1294.
    Bastviken, D., Svensson, T., Karlsson, S., Sanden, P., Oberg, G.,2009. Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic. Environmental Science & Technology 43,3569-3573.
    Bastviken, D., Thomsen, F., Svensson, T., Karlsson, S., Sand E N, P., Shaw, G, Matucha, M., O Berg, G,2007. Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochimica et Cosmochimica Acta 71,3182-3192.
    Beck, H.A., Bozoki, Z., Niessner, R.,2000. Screening of pentachlorophenol-contaminated wood by thermodesorption sampling and photoacoustic detection. Analytical Chemistry 72, 2171-2176.
    Becker, J.G., Stahl, D.A., Rittmann, B.E.,1999. Reductive dehalogenation and conversion of 2-chlorophenol to 3-chlorobenzoate in a methanogenic sediment community:implications for predicting the environmental fate of chlorinated pollutants. Applied and Environmental Microbiology 65,5169-5172.
    Bending, G.D., Rodriguez-Cruz, M.S.,2007. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Chemosphere 66,664-671.
    Bergauer, P., Fonteyne, P.A., Nolard, N., Schinner, F., Margesin, R.,2005. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59,909-918.
    Black, A.S., Waring, S.A.,1979. Adsorption of nitrate, chloride and sulfate by some highly weathered soils from south-east Queensland. Australian Journal of Soil Research 17, 271-282.
    Bolan, N.S., Baskaran, S.,1996. Biodegradation of 2,4-D herbicide as affected by its adsorption-desorption behaviour and microbial activity of soils. Australian Journal of Soil Research 34,1041-1053.
    Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P.V., Ginder-Vogel, M., Voegelin, A., Campbell, K.,2010. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environmental Science & Technology 44,15-23.
    Bouchard, B., Beaudet, R., Villemur, R., McSween, G, Lepine, F., Bisaillon, J.G.,1996. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. International Journal of Systematic and Evolutionary Microbiology 46,1010-1015.
    Bouras, O., Bollinger, J.C., Baudu, M.,2010. Effect of humic acids on pentachlorophenol sorption to cetyltrimethylammonium-modified, Fe-and Al-pillared montmorillonites. Applied Clay Science 50,58-63.
    Boutwell, R.K., Bosch, D.K.,1959. The tumor-promoting action of phenol and related compounds for mouse skin. Cancer Research 19,413-424.
    Boyd, S.A., Mortland, M.M.,1985. Dioxin radical formation and polymerization on Cu-smectite. Nature 316,532-535.
    Boyd, S.A., Mortland, M.M.,1986. Radical formation and polymerization of chlorophenols and chloroanisole on copper(II)-smectite. Environmental Science & Technology 20,1056-1058.
    Burke, D.J., Smemo, K.A., Lopez-Gutierrez, J.C., DeForest, J.L.,2012. Soil fungi influence the distribution of microbial functional groups that mediate forest greenhouse gas emissions. Soil Biology and Biochemistry 53,112-119.
    Cahill, A.T., Parlange, M.B.,1998. On water vapor transport in field soils. Water Resources Research 34,731-739.
    Carswell, T.S., Nason, H.K.,1938. Properties and uses of pentachlorophenol. Industrial and Engineering Chemistry 30,622-626.
    Cea, M., Seaman, J.C., Jara, A., Mora, M.L., Diez, M.C.,2010. Kinetic and thermodynamic study of chlorophenol sorption in an allophanic soil. Chemosphere 78,86-91.
    Chang, B.V., Chang, I.T., Yuan, S.Y.,2008. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bulletin of Environmental Contamination and Toxicology 80,145-149.
    Chang, B.V., Zheng, J.X., Yuan, S.Y.,1996. Effects of alternative electron donors, acceptors and inhibitors on pentachlorophenol dechlorination in soil. Chemosphere 33,313-320.
    Chang, J.W., Chen, H.L., Su, H.J., Liao, P.C., Lee, C.C.,2012. Biochemical study of retired pentachlorophenol workers with and without following dietary exposure to PCDD/Fs. Chemosphere 88,813-819.
    Chen, M., Shih, K., Hu, M., Li, F., Liu, C., Wu, W., Tong, H.,2012. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. Journal of Agricultural and Food Chemistry 60,2967-2975.
    Chen, Y.X., Chen, H.L., Xu, Y.T., Shen, M.W.,2004. Irreversible sorption of pentachlorophenol to sediments:experimental observations. Environment International 30,31-37.
    Chow, A.T., Kenneth, K.T., Suduan, G., Randy, A.D.,2006. Temperature, water content and wetet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and Biochemistry 38,477-488.
    Christoforidis, K.C., Louloudi, M., Deligiannakis, Y.,2010. Complete dechlorination of pentachlorophenol by a heterogeneous SiO2-Fe-porphyrin catalyst. Applied Catalysis B: Environmental 95,297-302.
    Cline, R.E., Hill, R.H., Phillips, D.L., Needham, L.L.,1989. Pentachlorophenol measurements in body-fluids of people in log homes and workplaces. Archives of Environmental Contamination and Toxicology 18,475-481.
    Collins, J.J., Bodner, K., Haidar, S., Wilken, M., Burns, C.J., Lamparski, L.L., Budinsky, R.A., Martin, G.D., Carson, M.L.,2008. Chlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyl profiles of workers with trichlorophenol and pentachlorophenol exposures. Chemosphere 73, S284-S289.
    Conrad, R., Klose, M., Lu, Y., Chidthaisong, A.,2012. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw. Frontiers in Microbiology 3,1-12.
    Conrad, R., Rothfuss, F.,1991. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biology and Fertility of Soils 12,28-32.
    Cord-Ruwisch, R., James, D.L., Charles, W.,2009. The use of redox potential to monitor biochemical HCBD dechlorination. Journal of Biotechnology 142,151-156.
    Czaplicka, M.,2004. Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment 322,21-39.
    Czaplicka, M.,2006. Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials 134,45-59.
    D'Angelo, E.M., Reddy, K.R.,2000. Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Science Society of America Journal 64,933.
    Danis, T.G., Albanis, T.A.,1996. Analysis of Phenolic residues in soil as free and acetylated derivatives by capillary gas chromatography equipped with fid, ECD and MSD. Toxicological and Environmental Chemistry 53,9-18.
    Ding, N., Guo, H., Hayat, T., Wu, Y., Xu, J.,2009. Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiflorum L.). FEMS Microbiology Ecology 70,149-158.
    Donald, D.B., Cessna, A.J., Sverko, E., Glozier, N.E.,2007. Pesticides in surface drinking-water supplies of the northern Great Plains. Environmental Health Perspectives 115,1183-1191.
    Dowideit, K., Scholz-Muramatsu, H., Miethling-Graff, R., Vigelahn, L., Freygang, M., Dohrmann, A.B., Tebbe, C.C.,2010. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiology Ecology 71,444-459.
    Elsner, M., Schwarzenbach, R.P., Haderlein, S.B.,2004. Reactivity of Fe(Ⅱ)-Bearing Minerals toward Reductive Transformation of Organic Contaminants. Environmental Science & Technology 38,799-807.
    Fahimi, I.J., Keppler, F., Scholer, H.F.,2003. Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52,513-520.
    Frankenberg, C., Meirink, J.F., van Weele, M., Platt, U., Wagner, T.,2005. Assessing methane emissions from global space-borne observations. Science 308,1010-1014.
    Frenzel, P., Bosse, U., Janssen, P.H.,1999. Rice roots and methanogenesis in a paddy soil:ferric iron as an alternative electron acceptor in the rooted soil. Soil Biology and Biochemistry 31, 421-430.
    Fukushima, M.,2001. och Tatsumi K (2001) Degradation Pathways of Pentachlorophenol by Photo-Fenton Systems in the Presence of Iron (Ⅲ), Humic Acid, and Hydrogen Peroxide. Environmental Science & Technology 35,1771-1778.
    Galhaup, C., Wagner, H., Hinterstoisser, B., Haltrich, D.,2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology 30,529-536.
    Gao, J., Liu, L., Liu, X., Zhou, H., Huang, S., Wang, Z.,2008. Levels and spatial distribution of chlorophenols-2,4-dichlorophenol,2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere 71,1181-1187.
    Garcia-Valcarcel, A.I., Tadeo, J.L.,1999. Influence of soil moisture on sorption and degradation of hexazinone and simazine in soil. Journal of Agricultural and Food Chemistry 47,3895-3900.
    Ge, J., Pan, J., Fei, Z., Wu, G., Giesy, J.P.,2007. Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China. Chemosphere 69,164-169.
    Genthner, B.R., Price, W.A., Pritchard, P.H.,1989. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions. Applied and Environmental Microbiology 55,1466-1471.
    Ghafoor, A., Moeys, J., Stenstrom, J., Tranter, G., Jarvis, N.J.,2011. Modeling spatial variation in microbial degradation of pesticides in soil. Environmental Science & Technology 45, 6411-6419.
    Gimeno, O., Carbajo, M., Lpez, M.J., Melero, J.A., Beltra, E, Rivas, F.J.,2007. Photocatalytic promoted oxidation of phenolic mixtures:An insight into the operating and mechanistic aspects. Water Research 41,4672-4684.
    Gotz, R., Bauer, O.H., Friesel, P., Herrmann, T., Jantzen, E., Kutzke, M., Lauer, R., Paepke, O., Roch, K., Rohweder, U., Schwartz, R., Sievers, S., Stachel, B.,2007. Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the river Elbe, Germany. Chemosphere 67,592-603.
    Gotz, R., Lauer, R.,2003. Analysis of sources of dioxin contamination in sediments and soils using multivariate statistical methods and neural networks. Environmental Science & Technology 37,5559-5565.
    Gschwendtner, S., Esperschutz, J., Buegger, F., Reichmann, M., Muller, M., Munch, J.C., Schloter, M.,2011. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiology Ecology 76,564-575.
    Gu, C., Li, H., Teppen, B.J., Boyd, S.A.,2008. Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay. Environmental Science & Technology 42,4758-4763.
    Gu, C, Liu, C., Johnston, C.T., Teppen,. B.J., Li, H., Boyd, S.A.,2011. Pentachlorophenol Radical Cations Generated on Fe(III)-Montmorillonite Initiate Octachlorodibenzo-p-dioxin Formation in Clays:Density Functional Theory and Fourier Transform Infrared Studies. Environmental Science & Technology 45,1399-1406.
    Gupta, S., Gajbhiye, V.T.,2002. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 47,901-906.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., Saenger, W.,2009. Cyanobacterial photosystem Ⅱ at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology 16,334-342.
    Hambrick, GA., Delaune, R.D., Patrick, W.H.,1980. Effect of Estuarine Sediment pH and Oxidation-Reduction Potential on Microbial Hydrocarbon Degradation. Applied and Environmental Microbiology 40,365-369.
    Harbottle, M.J., Lear, G, Sills, GC, Thompson, I.P.,2009. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics. Journal of Environmental Management 90,1893-1900.
    Hayat, T., Ding, N., Ma, B., He, Y., Shi, J.C., Xu, J.M.,2011. Dissipation of Pentachlorophenol in the Aerobic-Anaerobic Interfaces Established by the Rhizosphere of Rice (Oryza sativa L.) Root. Journal of Environmental Quality 40,1722-1729.
    He, Y., Xu, J., Lv, X., Ma, Z., Wu, J., Shi, J.,2009. Does the depletion of pentachlorophenol in root-soil interface follow a simple linear dependence on the distance to root surfaces? Soil Biology and Biochemistry 41,1807-1813.
    He, Y., Xu, J., Ma, Z., Wang, H., Wu, Y.,2007. Profiling of PLFA:Implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots. Soil Biology and Biochemistry 39,1121-1129.
    He, Y., Xu, J., Wang, H., Ma, Z., Chen, J.,2006. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environmental Research 101,362-372.
    He, Y, Xu, J., Wang, H., Wu, Y.,2007. Generalized models for prediction of pentachlorophenol dissipation dynamics in soils. Environmental Pollution 147,343-349.
    He, Y., Xu, J., Wang, H., Zhang, Q., Muhammad, A.,2006. Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soils. Chemosphere 65, 497-505.
    Hedrick, D.B., Peacock, A.D., Lovley, D.R., Woodard, T.L., Nevin, K.P., Long, P.E., White, D.C., 2009. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor. Journal of Industrial Microbiology and Biotechnology 36,205-209.
    Herbel, M.J., Suarez, D.L., Goldberg, S., Gao, S.,2007. Evaluation of chemical amendments for pH and redox stabilization in aqueous suspensions of three California soils. Soil Science Society of America Journal 71,927-939.
    Hirooka, T., Akiyama, Y., Tsuji, N., Nakamura, T., Nagase, H., Hirata, K., Miyamoto, K.,2003. Removal of hazardous phenols by microalgae under photoautotrophic conditions. Journal of Bioscience and Bioengineering 95,200-203.
    Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.,1995. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 95,69-96.
    Hou, A.X., Chen, G.X., Wang, Z.P., Van Cleemput, O., Patrick, W.H.,2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal 64,2180-2186.
    Hyun, S., Lee, L.S., Rao, P.S.,2003. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils. Journal of Environmental Quality 32,966-976.
    Jabusch, T.W., Swackhamer, D.L.,2004. Subcellular accumulation of polychlorinated biphenyls in the green alga Chlamydomonas reinhardtii. Environmental Toxicology and Chemistry 23, 2823-2830.
    Johnsen, A.R., Winding, A., Karlson, U., Roslev, P.,2002. Linking of microorganisms to phenanthrene metabolism in soil by analysis of (13)C-labeled cell lipids. Applied and Environmental Microbiology 68,6106-6113.
    Johnson-Beebout, S.E., Angeles, O.R., Alberto, M.C.R., Buresh, R.J.,2009. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149,45-53.
    Kah, M., Brown, C.D.,2006. Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology 188,149-217.
    Kaiser, C., Frank, A., Wild, B., Koranda, M., Richter, A.,2010. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biology and chemistry 42,1650-1652.
    Kang, Q., Yang, L., Chen, Y., Luo, S., Wen, L., Cai, Q.C., Yao, S.,2010. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTel-x TiO2 Nanotube Structure-Based Label-Free Immunosensor. Analytical Chemistry 82,9749-9754.
    Kastanek, F, Maleterova, Y, Kastanek, P., Rott, J., Jiricny, V., Jiratova, K.,2007. Complex treatment of wastewater and groundwater contaminated by halogenated organic compounds. Desalination 211,261-271.
    Keum, Y.S., Li, Q.X.,2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology 39,2280-2286.
    Kluber H. D., C.R.,1998. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMScrobiology Ecology 25,301-318.
    Kniemeyer, O., Musat, F., Sievert, S.M., Knittel, K., Wilkes, H., Blumenberg, M., Michaelis, W., Classen, A., Bolm, C., Joye, S.B., Widdel, F.,2007. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449,898-901.
    Kogel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kolbl, A., Schloter, M.,2010. Biogeochemistry of paddy soils. Geoderma 157,1-14.
    Koschorreck, M., Kleeberg, A., Herzsprung, P., Wendt-Potthoff, K.,2007. Effects of benthic filamentous algae on the sediment-water interface in an acidic mining lake. Hydrobiologia 592,387-397.
    Kostka, J.E., Luther, G.W.,1995. Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry 29,159-181.
    Krylova, N.I., Janssen, P.H., Conrad, R.,1997. Turnover of propionate in methanogenic paddy soil. FEMS Microbiology Ecology 23,107-117.
    Kuritz, T., Bocanera, L.V., Rivera, N.S.,1997. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. Journal of Bacteriology 179,3368-3370.
    Kwok, C., Loh, K.,2003. Effects of Singapore soil type on bioavailability of nutrients in soil bioremediation. Advances in Environmental Research 7,889-900.
    Lanthier, M., Villemur, R., Lepine, F., Bisaillon, J.G., Beaudet, R.,2000. Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. Environmental Microbiology 2,703-708.
    Le Guillou, C., Angers, D.A., Maron, P.A., Leterme, P., Menasseri-Aubry, S.,2012. Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry 50,126-133.
    Lee, W., Batchelor, B.,2002. Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals.1. Pyrite and Magnetite. Environmental Science & Technology 36,5147-5154.
    Li, C., Zheng, M., Zhang, B., Gao, L., Liu, L., Zhou, X., Ma, X., Xiao, K.,2012. Long-term persistence of polychlorinated dibenzo-p-dioxins and dibenzofurans in air, soil and sediment around an abandoned pentachlorophenol factory in China. Environmental Pollution 162, 138-143.
    Li, F., Wang, X., Li, Y., Liu, C., Zeng, F., Zhang, L., Hao, M., Ruan, H.,2008. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface. Journal of Colloid and Interface Science 321,332-341.
    Liesack, W., Schnell, S., Revsbech, N.P.,2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews 24,625-645.
    Lika, K., Papadakis, I.A.,2009. Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research 62,135-146.
    Lima, S.A., Raposo, M.F., Castro, P.M., Morais, R.M.,2004. Biodegradation of p-chlorophenol by a microalgae consortium. Water Research 38,97-102.
    Lin, J., He, Y., Xu, J.,2012. Changing redox potential by controlling soil moisture and addition of inorganic oxidants to dissipate pentachlorophenol in different soils. Environmental Pollution 170,260-267.
    Liu, D., Thomson, K., Kaiser, K.L.,1982. Quantitative structure-toxicity relationship of halogenated phenols on bacteria. Bulletin of Environmental Contamination and Toxicology 29,130-136.
    Loux, M.M., Liebl, R.A., Slife, F.W.,1989. Availability and persistence of imazaquin, imazethapyr, and clomazone in soil. Weed Science,259-267.
    Lovley, D.R., Fraga, J.L., Coates, J.D., Blunt-Harris, E.L.,1999. Humics as an electron donor for anaerobic respiration. Environmental Microbiology 1,89-98.
    Lovley, D.R., Phillips, E.J.,1988. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology 54,1472-1480.
    Lundstrom, M., Aromaa, J., Forsen, O.,2009. Redox potential characteristics of cupric chloride solutions. Hydrometallurgy 95,285-289.
    Luo, Y., Spurlock, F., Gill, S., Goh, K.S.,2012. Modeling complexity in simulating pesticide fate in a rice paddy. Water Research 46,6300-6308.
    Marti, E., Sierra, J., Caliz, J., Montserrat, G., Vila, X., Garau, M.A., Cruanas, R.,2011. Ecotoxicity of chlorophenolic compounds depending on soil characteristics. Science of the Total Environment 409,2707-2716.
    Mata-Sandoval, J.C., Karns, J., Torrents, A.,2001. Influence of rhamnolipids and triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. Journal of Agricultural and Food Chemistry 49,3296-3303.
    Mathialagan, T, Viraraghavan, T,2009. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technology 100,549-558.
    McAllister, K.A., Lee, H., Trevors, J.T.,1996. Microbial degradation of pentachlorophenol. Biodegradation 7,1-40.
    Meade, T., D'Angelo, E.M.,2005. [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61,48-55.
    Middag, R., De Baar, H., Laan, P., Cai, P.H., Van Ooijen, J.C.,2011. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography 58,2661-2677.
    Middeldorp, P., DeWolf, J., Zehnder, A., Schraa, G.,1997. Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic microbial consortium. Applied and Environmental Microbiology 63,1225-1229.
    Mihelcic, J.R., Lueking, D.R., Mitzell, R.J., Stapleton, J.M.,1993. Bioavailability of sorbed-and separate-phase chemicals. Biodegradation 4,141-153.
    Mikesell, M.D., Boyd, S.A.,1986. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Applied and Environmental Microbiology 52,861-865.
    Mills, C.T., Amano, Y., Slater, G.F., Dias, R.F., Iwatsuki, T., Mandernack, K.W.,2010. Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from 813C and △14C values of in situ phospholipid fatty acids and carbon sources. Geochimica et Cosmochimica Acta 74,3785-3805.
    Mitra, J., Raghu, K..,1988. Influence of green manuring on the persistence of DDT in soil. Environmental Technology Letters 9,847-852.
    Mun, C.H., He, J., Ng, W.J.,2008. Pentachlorophenol dechlorination by an acidogenic sludge. Water Research 42,3789-3798.
    Nada Assaf-Anld, K.F.H.A.,1994. Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol mechanistic study, effect of redox potential and pH. Environmental Science & Technology 28,246-252.
    Nicolardot, B., Bouziri, L., Bastian, F., Ranjard, L.,2007. A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biology and Biochemistry 39,1631-1644.
    Noll, M., Matthies, D., Frenzel, P., Derakshani, M., Liesack, W.,2005. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environmental Microbiology 7,382-395.
    Olaniran, A.O., Igbinosa, E.O.,2011. Chlorophenols and other related derivatives of environmental concern:properties, distribution and microbial degradation processes. Chemosphere 83,1297-1306.
    Olesen, K., Andreasson, L.E.,2003. The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42,2025-2035.
    Olivas, Y., Dolfing, J., Smith, G.B.,2002. The influence of redox potential on the degradation of halogenated methanes. Environmental Toxicology and Chemistry 21,493-499.
    Orton, F., Lutz, I., Kloas, W., Routledge, E.J.,2009. Endocrine Disrupting Effects of Herbicides and Pentachlorophenol:In Vitro and in Vivo Evidence. Environmental Science & Technology 43,2144-2150.
    Papazi, A., Kotzabasis, K.,2007. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds:exogenously supplied energy and carbon sources adjust the level of biodegradation. Journal of Biotechnology 129,706-716.
    Pardue, J.H., Delaune, R.D., Patrick, W.H.,1988. Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water Air and Soil Pollution 37,439-447.
    Park, H.J., Kim, E.S.,2003. An inducible Streptomyces gene cluster involved in aromatic compound metabolism. FEMS Microbiology Letters 226,151-157.
    Park, J.H., Feng, Y, Cho, S.Y., Voice, T.C., Boyd, S.A.,2004. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging. Water Research 38,3881-3892.
    Park, J.H., Feng, Y, Ji, P., Voice, T.C., Boyd, S.A.,2003. Assessment of bioavailability of soil-sorbed atrazine. Applied and Environmental Microbiology 69,3288-3298.
    Parlange, M.B., Cahill, A.T., Nielsen, D.R., Hopmans, J.W., Wendroth, O.,1998. Review of heat and water movement in field soils. Soil and Tillage Research 47,5-10.
    Patrick, W.H., Reddy, K.R.,1976. Nitrification-denitrification reactions in flooded soils and water bottoms-dependence on oxygen-supply and ammonium diffusion. Journal of Environmental Quality 5,469-472.
    Petrie, R.A., Grossl, P.R., Sims, R.C.,2002. Oxidation of pentachlorophenol in manganese oxide suspensions under controlled Eh and pH environments. Environmental Science & Technology36,3744-3748,
    Poerschmann, J., Koschorreck, M., Gorecki, T.,2012. Organic matter in sediments of an acidic mining lake as assessed by lipid analysis. Part I:fatty acids. Science of the Total Environment 414,614-623.
    Ponnamperuma, F.N.,1972. The Chemistry of Submerged Soils. Academic Press.
    Pratt, B., Riesen, R., Johnston, C.G.,2012. PLFA Analyses of Microbial Communities Associated with PAH-Contaminated Riverbank Sediment. Microbial Ecology 64,680-691.
    Pratt, C., Shilton, A., Pratt, S., Haverkamp, R.G., Elmetri, I.,2007. Effects of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater. Environmental Science & Technology 41,6585-6590.
    Puglisi, E., Vernile, P., Bari, G., Spagnuolo, M., Trevisan, M., Lillo, E., Ruggiero, P.,2009. Bioaccessibility, bioavailability and ecotoxicity of pentachlorophenol in compost amended soils. Chemosphere 77,80-86.
    Ratering, S., Schnell, S.,2000. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48,341-365.
    Ratering, S., Schnell, S.,2001. Nitrate-dependent iron(II) oxidation in paddy soil. Environmental Microbiology 3,100-109.
    Reddy, G.V., Gelpke, M.D., Gold, M.H.,1998. Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium:involvement of reductive dechlorination. Journal of Bacteriology 180,5159-5164.
    Reddy, K.R., Patrick, W.H., Lindau, C.W.,1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography. Limnology and Oceanography 34,1004-1013.
    Rodriguez-Cruz, M.S., Jones, J.E., Bending, G.D.,2006. Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics. Soil Biology and Biochemistry 38,2910-2918.
    Rosenbrock, P., Martens, R., Buscot, F., Munch, J.C.,1997. Initiation of hexachlorobenzene dechlorination in three different soils under artificially induced anaerobic conditions. Applied Microbiology and Biotechnology 48,115-120.
    Rothfuss, F., Conrad, R.,1992. Vertical profiles of CH 4 concentrations, dissolved substrates and processes involved in CH 4 production in a flooded Italian rice field. Biogeochemistry 18, 137-152.
    Ruckdeschel, G., Renner, G.,1986. Effects of pentachlorophenol and some of its known and possible metabolites on fungi. Applied and Environmental Microbiology 51,1370-1372.
    Ruckdeschel, G., Renner, G., Schwarz, K.,1987. Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria. Applied and Environmental Microbiology 53,2689-2692.
    Ruder, A.M., Yiin, J.H.,2011. Mortality of US pentachlorophenol production workers through 2005. Chemosphere 83,851-861.
    Rysavy, J.P., Yan, T., Novak, P.J.,2005. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Research 39,569-578.
    Sahm, H., Brunner, M., Schoberth, S.M.,1986. Anaerobic degradation of halogenated aromatic-compounds. Microbial Ecology 12,147-153.
    Sanford, T.S.A.R.,2005. Reductive Dechlorination of Tetrachloroethene in a Sand Reactor using a potentilstat. Journal of Environmental Quality 34,1435-1438.
    Shih, Y., Chen, M., Su, Y,2011. Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: Effects of copper, nickel, and ferric cations. Applied Catalysis B:Environmental 105,24-29.
    Smalla, K., Oros-Sichler, M., Milling, A., Heuer, H., Baumgarte, S., Becker, R., Neuber, G, Kropf, S., Ulrich, A., Tebbe, C.C.,2007. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments:do the different methods provide similar results? Journal of Microbiological Methods 69,470-479.
    Stanlake, GJ., Finn, R.K.,1982. Isolation and characterization of a pentachlorophenol-degrading bacterium. Applied and Environmental Microbiology 44,1421-1427.
    Stuart, S.L., Woods, S.L., Lemmon, T.L., Ingle, J.J.,1999. The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed, methanogenic culture. Biotechnology and Bioengineering 63,69-78.
    Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R.,2013. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International 51,59-72.
    Sundh, I., Nilsson, M., Borga, P.,1997. Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid Fatty Acid profiles. Applied and Environmental Microbiology 163,1476-1482.
    Swallow, M., Quideau, S.A.,2013. Moisture effects on microbial communities in boreal forest floors are stand-dependent. Applied Soil Ecology 63,120-126.
    Thepsithar, P., Roberts, E.,2006. Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation. Environmental Science & Technology 40,6098-6103.
    Tsuji, N., Hirooka, T., Nagase, H., Hirata, K., Miyamoto, K.,2003. Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata. Biotechnology Letters 25, 241-244.
    Uotila, J.S., Kitunen, V.H., Coote, T., Saastamoinen, T., Salkinoja-Salonen, M., Apajalahti, J.H., 1995. Metabolism of halohydroquinones in Rhodococcus chlorophenolicus PCP-1. Biodegradation 6,119-126.
    Usui, Y, Kasubuchi, T,2011. Effects of herbicide application on carbon dioxide, dissolved oxygen, pH, and RpH in paddy-field ponded water. Soil Science and Plant Nutrition 57,1-6.
    Van der Zee, F.P., Cervantes, F.J.,2009. Impact and application of electron shuttles on the redox (bio)transformation of contaminants:a review. Biotechnology Advances 27,256-277.
    van Doesburg, W., van Eekert, M.H., Middeldorp, P.J., Balk, M., Schraa, G., Stams, A.J.,2005. Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiology Ecology 54,87-95.
    Villasenor, J., Reyes, P., Pecchi, G.,1998. Photodegradation of Pentachlorophenol on ZnO. Journal of Chemical Technology and Biotechnology 72,105-110.
    Vryzas, Z., Papadakis, E.N., Oriakli, K., Moysiadis, T.P., Papadopoulou-Mourkidou, E.,2012. Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities. Chemosphere 89,1330-1338.
    Wang, H., Liu, X., Wu, J., Huang, P., Xu, J., Tang, C.,2007. Impact of soil moisture on metsulfuron-methyl residues in Chinese paddy soils. Geoderma 142,325-333.
    Wang, H., Xu, J., Yates, S.R., Zhang, J., Gan, J., Ma, J., Wu, J., Xuan, R.,2010. Mineralization of metsulfuron-methyl in Chinese paddy soils. Chemosphere 78,335-341.
    Wang, H.Y., Ye, Q.F., Wu, L.C., Gan, J,2007. Biodegradation of CrylAb protein from Bt transgenic rice in aerobic and flooded paddy soils. Journal of Agricultural and Food Chemistry 55,1900-1904.
    Wang, P., Wang, H., Wu, L., Di H, He, Y., Xu, J.,2012. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil. Environmental Pollution 161,121-127.
    Wang, X., Guo, X., Yang, Y., Tao, S., Xing, B.,2011. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environmental Science & Technology 45,2124-2130.
    Wang, X., Piao, X., Chen, J., Hu, J., Xu, F., Tao, S.,2006. Organochlorine pesticides in soil profiles fromTianjin, China. Chemosphere 64,1514-1520.
    Wang, Z.P., Delaune, R.D., Masscheleyn, P.H., Patrick, W.H.,1993. Soil redox and ph effects on methane production in a flooded rice soil. Soil Science Society of America Journal 57, 382-385.
    Weber, K.A., Achenbach, L.A., Coates, J.D.,2006. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4,752-764.
    Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K.,2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37,4702-4708.
    White, A.F., Schulz, M.S., Stonestrom, D.A., Vivit, D.V., Fitzpatrick, J., Bullen, T.D., Maher, K., Blum, A.E.,2009. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part Ⅱ:Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochimica et Cosmochimica Acta 73,2769-2803.
    Wick, L.Y., Shi, L., Harms, H.,2007. Electro-bioremediation of hydrophobic organic soil-contaminants:A review of fundamental interactions. Electrochimica Acta 52,3441-3448.
    Wong, A.S., Crosby, D.G.,1981. Photodecomposition of Pentachlorophenol in Water. Journal of Agricultural and Food Chemistry 29,125-130.
    Wu, Y., Ma, B., Zhou, L., Wang, H., Xu, J., Kemmitt, S., Brookes, P.C.,2009. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology 43,234-240.
    Xing, B.S., Pignatello, J.J.,1997. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environmental Science & Technology 31, 792-799.
    Ji, X., Wu, J., Peng, H., Shi, L., Zhang, Z., Liu, Z., Tian, F., Huo, L., Zhu, J.,2012. The effect of rice straw incorporation into paddy soil on carbon sequestration and emissions in the double cropping rice system. Journal of the Science of Food and Agriculture 92,1038-1045.
    Yang, S., Shibata, A., Yoshida, N., Katayama, A.,2009. Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Biotechnology and Bioengineering 102,81-90.
    Yin, L., Niu, J., Shen, Z., Jing, C.,2010. Mechanism of Reductive Decomposition of Pentachlorophenol by Ti-Doped β-Bi2O3 under Visible Light Irradiation. Environmental Science & Technology 44,5581-5586.
    Yin, L., Shen, Z., Niu, J., Chen, J., Duan, Y,2010. Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Environmental Science & Technology 44,9117-9122.
    Yu, K., B O Hme, F., Rinklebe, J., Neue, H.U., DeLaune, R.D.,2007. Major biogeochemical processes in soils-A microcosm incubation from reducing to oxidizing conditions. Soil Science Society of America Journal 71,1406-1417.
    Yu, K., Faulkner, S.P., Patrick Jr., W.H.,2006. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest. Chemosphere 62,905-914.
    Yuan, S.Y., Chen, S.J., Chang, B.V.,2011. Anaerobic degradation of tetrachlorobisphenol-A in river sediment. International Biodeterioration & Biodegradation 65,185-190.
    Zablotowicz, R.M., Locke, M.A., Gaston, L.A., Bryson, C.T.,2000. Interactions of tillage and soil depth on fluometuron degradation in a Dundee silt loam soil. Soil & Tillage Research 57, 61-68.
    Zheng, W., Wang, X., Yu, H., Tao, X., Zhou, Y, Qu, W.,2011. Global trends and diversity in pentachlorophenol levels in the environment and in humans:a meta-analysis. Environmental Science & Technology 45,4668-4675.
    Zheng, W., Yu, H., Wang, X.,2012. Systematic review of pentachlorophenol occurrence in the environment and in humans in China not a negligible health risk due to the re-emergence of schistosomiasis. Environment International 42,105-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700