用户名: 密码: 验证码:
一些金属离子和阴离子光学传感器的构建及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光探针的研究在光学传感器的发展中一直占据重要地位。在过去的十几年中,有关光学探针的研究得到了飞速发展,各种有机染料、共轭聚合物、半导体量子点和贵金属纳米微粒作为荧光探针已大量用于各种分析之中,这些探针具有快速、灵敏、荧光效率高等优点,但是仍然存在一些不足,比如,有机染料和共轭聚合物的光稳定性有待提高,而且多数都涉及到复杂的化学合成;半导体量子点的毒性大。近年来,介于分子和纳米材料之间的金属纳米簇受到广泛关注,主要原因是其尺寸接近于费米波长,具有类似于分子的荧光特性,并且合成方法简单、良好的生物相容性等。因此,金属纳米簇作为荧光探针有诱人的发展前景,目前的研究主要集中在贵金属纳米簇,尤其是金及银纳米簇,尽管它们在分析化学中的应用已有大量报道,但是如何制备高稳定性及高量子产率的纳米簇仍然是一个瓶颈,而且有关铜纳米簇的研究较少。因此,研究合成高稳定性及高量子产率铜纳米簇的方法,并探索其作为荧光探针识别金属离子和阴离子的工作具有重要意义。为此,本论文以铜纳米簇荧光探针为重点,开展了:1)、基于小分子的荧光探针识别Cu2+的研究;2)、基于功能化银纳米的光散射探针同时测定Pb2+和半胱氨酸的研究;3)、利用简单方法合成了荧光铜纳米簇,探索了其作为荧光探针的可行性。根据以上结果,构建了新的测定金属离子和阴离子的光学传感器,并成功将其用于环境分析和生化分析之中。全文共六章,主要内容如下:
     第一章:文献综述和选题依据。简要介绍了1)近年来基于金属纳米材料的光学传感器的构建及其分析应用;2)金属纳米簇的合成、荧光性质、分析应用及其存在的问题。根据文献分析结果,提出本论文的选题依据。
     第二章:开展了基于小分子荧光性质的方法识别Cu2+的研究,实验发现在碱性条件下,Cu2+对过氧化氢氧化对甲基苯酚具有高效的催化能力,甲基苯酚的氧化产物2,2'-二羟基-5,5'-二甲基联苯具有强的荧光。通过甲基苯酚-过氧化氢体系的荧光光谱表明Cu2+具有催化能力。据此,建立了一种简单、灵敏和选择性好的测定Cu2+的荧光分析方法。在优化条件下,测定Cu2+的线性范围为0.3μM-50μM,检出限为10nM。对7μM的Cu2+重复测定15次,其相对标准偏差为2.1%。将上述方法应用于湖水,江水和游泳池水中微量Cu2+的测定,并获得了满意结果,并且测定结果与原子吸收方法测定结果很吻合。
     第三章:开展了基于功能化银纳米的光散射探针同时测定pb2+和半胱氨酸的研究,其基本原理是:二硫代氨基甲酸盐有强的金属亲和力,当pb2+与二硫代氨基甲酸盐功能化的Ag NPs作用时,促使DTC-Ag NPs团聚,从而使Ag NPs的共振光散射信号增强,可用于识别pb2+。加入半胱氨酸时,由于半胱氨酸与pb2+形成更强的Pb-S键,使得pb2+从DTC-Ag NPs表面脱离下来,导致DTC-Ag NPs重新分散在水溶液中,致使Ag NPs的共振光散射信号降低,可用于识别半胱氨酸。通过直接将二硫化碳和二乙醇胺作为前体分子在超声条件下充分混合即可原位合成二硫代氨基甲酸盐。研究了溶液的pH.DTC-Ag NPs的浓度和离子强度对共振光散射体系的影响。在优化条件下,功能化银纳米探针测定pb2+的线性范围为O.01μM-60μM,检出限可达4nM。本方法具有选择性好、线性响应范围宽、灵敏度高等特点。用于河水和自来水中pb2+的测定,获得满意结果。同时研究了基于功能化银纳米光散射探针用于检测半胱氨酸的可行性。
     第四章:提出了室温下一步法简单、方便制备酒石酸稳定的水溶性荧光铜纳米簇(Cu NCs)的合成新方法,并且用UV-Vis吸收光谱、高分辨透射电镜、动力学光散射及FT-IR等对其进行了表征,其荧光量子产率为2.2%。加入酒石酸作为稳定剂是为了防止Cu NCs的聚集和氧化,并且增加其水溶性和稳定性,研究表明即使在1M NaCl的高离子强度溶液中,Cu NCs的荧光强度也保持不变。进一步研究表明,经过简单的酒石酸表面修饰的铜纳米簇能够高选择性识别A13+,其它常见的金属共存离子对Al3+的识别影响很小。其机理可能是A13+与Cu NCs表面的羧基和羟基作用,导致铜纳米簇的荧光增强并且波长发生蓝移;详细研究了各因素对Cu NCs识别Al3+的影响,获得了优化条件,在此条件下,本法对A13+的检出限可达12.5nM。另外,由于F-与Al3+具有更强的亲和力,当有F-存在时,使得Al3+脱离酒石酸稳定的Cu NCs表面,释放Cu NCs,伴随着荧光强度的降低和波长的红移。详细研究了各因素对Cu NCs识别F-的影响,并且探讨了本法用于传感检测F-的可行性。以上结果表明,本文合成的酒石酸-Cu NCs可作为荧光探针用于同时测定A13+和F-本方法具有简单、快速、灵敏高、选择性好。
     第五章:为得到高荧光量子产率的铜纳米簇,提出了一步法合成单宁酸(TA)功能化的铜纳米簇(TA-Cu NCs),通过紫外可见光谱、红外光谱(FT-IR)、荧光光谱、TEM和XPS等手段对其进行一系列表征。TA-Cu NCs在激发波长为360nm,发射波长430nm处具有强的荧光,其量子产量为14%。TA-Cu NCs在0.3M的NaCl水溶液中仍然稳定存在,并且其荧光强度不受pH影响。通过电子传递的作用,Fe3+能使TA-Cu NCs的荧光发生猝灭,然而其他金属离子并没有这种效果。换言之,Fe2+或是H202单独加入都不能改变TA-Cu NCs的荧光,但是如果二者混合就能导致TA-Cu NCs的荧光猝灭。基于此,TA-Cu NCs能够用于构建区分Fe3+、Fe2+以及它们的混合物的分子逻辑门系统。这个简单的化学传感器能够快速、灵敏地和选择性地用于测定Fe3+,测定Fe3+的线性范围为10nM-10μM,检出下限低至10nM。同时,将本法用于实际水样中Fe3+和Fe2+的测定,获得满意结果。为进
     一步探索高荧光量子产率的TA-Cu NCs在活体细胞成像中的应用潜力,用CCK-8方法评价了TA-Cu NCs对A549细胞的毒性,结果表明,即使使用10μM TA-Cu NCs,对A549细胞的成活率(100%)几乎无影响,表明其细胞毒性低,有良好的生物相容性,可用于活细胞成像,检测细胞中的Fe3+。
     第六章:开展了利用TA-Cu NCs作为荧光开关探针识别磷酸根的研究。其基本原理是:磷酸根与TA-Cu NCs竞争性结合Eu3+。Eu3+存在下,Eu3+能够通过与相邻TA-Cu NCs表面的羧基和羟基结合导致其发生团聚,使TA-Cu NCs的荧光猝灭;当加入磷酸根时,由于Eu3+与磷酸根的亲和力大于与TA-Cu NCs羧基的结合力,磷酸根能将Eu3+从TA-Cu NCs的表面拉下来,使得TA-Cu NCs的荧光恢复。因此,借助Eu3+, TA-Cu NCs可作为荧光开关探针识别磷酸根。通过优化各种实验条件后,得出TA-Cu NCs荧光探针检测磷酸根的线性范围为0.07~80μM,检出限可达9.6nM。基于TA-Cu NCs与Eu3+联合建立了选择性好,灵敏度高的测定磷酸根的荧光法,并成功用于实际水样中磷酸根的测定。
The fluorescent probes continue to retain an important position in the development of optical sensor. In the past decades, it has been a rapid development for the research on optical probe. Various fluorescent probes, such as organic dyes, conjugated polymers, semiconductor quantum dots, and noble metal nanoparticles, have been extensively used for various analyzes. They promise advantages of rapidity, sensitivity, high quantum yield, and so on. However, these fluorescent probes still suffers from one or more major deficiencies, such as, poor light stability of organic dyes and conjugated polymers, complex chemical synthesis, high environmental toxicity of semiconductor quantum dots. Recently metal nanoclusters, which provide the missing link between atomic and nanoparticle behavior in metals, have drawn the most attention, because of their molecule-like fluorescence properties due to their sizes compared to the Fermi wavelength of electrons, simple synthesis methods, and good biocompatibility. To date, most of previous work concentrated on the noble mental nanoclusters, especially Au NCs and Ag NCs. Although various synthetic methods have been proposed for the preparation of noble metal NCs, the obtained fluorescent Au NCs and Ag NCs have some drawbacks including low quantum yield and stability. Also, compared to extensive studies on Au NCs and Ag NCs, Cu NCs were much less studied. Hence, it remains a great significance for the development of a simple and facile strategy for the synthesis of water soluble, extremely stable, and highly quantum efficient fluorescent Cu NCs and the application of the resulted Cu NCs in the detection of mental ions and anions. Thus, this thesis focused on the fluorescent probes of copper nanoclusters, and carry out the following work:1) The research of small molecule as fluorescent probes for sensing of Cu2+;2) The research of functional Ag nanoparticles (NPs) as resonance light scattering (RLS) probes for simultaneous sensing of Pb2+and cysteine;3) Facile preparation of fluorescent Cu nanoclusters (NCs) and the research of the suitability of Cu NCs as fluorescent probes.
     On this basis, the development of some metal ions and anions optical sensors were successfully used for environmental analysis and biochemical analysis. The thesis is divided into six chapters:
     Chapter1:It introduces literature review and the reasons why to select this subject. In brief,1) The development of the optical sensors based on metal nanomaterials and analytical applications in recent years;2) Synthesis of metal nanoclusters, fluorescence properties, analytical applications and some problems. According to the results of literature analysis, we presented in the reasons why to select this subject on this thesis.
     Chapter2:The research about small molecule as fluorescent probes for sensing of Cu2+is developed. It was found that Cu2+shows great catalytic effect on p-cresol oxidation by hydrogen peroxide under alkaline condition, leading to an intense fluorescence signal due to fast formation of2,2'-dihydroxy-5,5'-dimethylbiphenyl, an oxidation product of p-cresol. Investigation on the fluorescence spectra of the p-cresol-hydrogen peroxide system demonstrated the catalytic behavior of Cu2+. On this basis, a very simple, sensitive, and selective fluorescent method was established for the determination of trace copper in this study. Under the optimal conditions, the proposed system could respond down to1.0x10-8mol L-1of Cu2+with a linear calibration range from3.0×l0-7mol L-1to5.0×5mol L-1. The relative standard deviation (RSD) is2.1%for7.0x10-6mol L-1Cu2+(n=15). The proposed method was successfully applied to determine trace Cu2+in lake, river and swimming pool water samples with satisfactory results. The results given by the proposed method are in good agreement with those given by atomic absorption spectroscopy method.
     Chapter3:We investigated the suitability of functional Ag nanoparticles (NPs) as resonance light scattering (RLS) probes for simultaneous sensing of Pb2+and cysteine. This strategy was based on the fact that Pb2+could induce the aggregation of DTC-Ag NPs due to strong metal affinity of DTC along with the enhanced RLS signal. Meanwhile, due to the strong binding preference of cysteine toward Pb2+by forming Pb2+-S bond, Pb2+was removed from the surface of the DTC-Ag NPs, leading to redispersion of DTC-Ag NPs, along with the decreased RLS signal. The DTC capping ligands are generated by a very simple in situ method through reaction of carbon disulfide with diethanolamine as primary precursor molecules under ultrasonic irradation. After optimizing some experimental conditions (including pH value of solution, concentration of DTC-Ag NPs, and ion strength), a very simple and facile sensing system has been developed for detection of Pb2+in water based on RLS technology. The proposed system promises excellent selectivity, wide linear response range and high sensitivity for Pb2+. The linear response ranges for Pb2+was from0.01μM to60μM. The limit of detection (S/N=3?) for Pb2+was as low as4nM. The proposed method was successfully used to detect Pb2+in river and tap water samples, indicating the potential of this new, sensitive and selective method in water quality monitoring. The possibility of the proposed system for sensing of cysteine was also investigated.
     Chapter4:Facile preparation of water soluble and fluorescent Cu nanoclusters (NCs) stabilized by tartaric acid at room temperature is described and characterized using UV-Vis absorption spectrum, high-resolution transmission electron microscopy, dynamic light scattering and Fourier transform infrared spectroscopy (FT-IR), giving a quantum yield (QY)2.2%against the reference of quinine sulfate. The tartaric acid layer was introduced to prevent the Cu NCs from aggregation or oxidation, increase their water solubility and was found to be highly stable even in1M NaCl. Additionally, this simple surface optimization resulted in surprisingly high efficiency of selective Al3+sensing and other coexistence ions have no obvious effects on the sensing of Al3+. The sensing mechanism to be hypothesized is the interaction between Al3+and carboxyl and hydroxyl groups on the Cu surface along with the enhanced fluorescence signal and blue shift wavelength. Under optical condition, the limit of detection (LOD) for Al3+was as low as12.5nM. Meanwhile, due to the strong binding preference of fluoride toward Al3+, Al3+was removed from the surface of the tartaric acid-Cu NCs, resulting in the disconnection of the interaction between Al3+ions and tartaric acid-Cu NCs, along with the decreased fluorescence signal of tartaric acid-Cu NCs and red shift wavelength. The possibility of the proposed system for sensing of fluoride was also investigated. This result revealed a simple and practical strategy for Al3+and fluoride detection using fluorescent Cu NCs as sensor probe. The method is simple, rapid, sensitive and selective.
     Chapter5:To obtain Cu nanoclusters (NCs) with high quantum yield, a simple, one-step facile route for preparation of water soluble and fluorescent Cu NCs stabilized by tannic acid (TA) as a model of small molecule is described. The as-prepared TA capped Cu NCs (TA-CuNCs) are characterized by UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, luminescence, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Cu NCs show luminescence properties having excitation and emission maxima at360nm and430nm, respectively, with a quantum yield of about14%. The TA-Cu NCs are very stable even in0.3M NaCl, and their luminescent properties show pH independent. The fluorescence (FL) of the TA-Cu NCs is quenched by Fe3+through an electron transfer mechanism, but not by other metal ions. Furthermore, the FL of the TA-Cu NCs shows no changes with the addition of Fe2+or H2O2individually, but it is quenched significantly by their mixture. On this basis, TA-Cu NCs have been demonstrated to build the combination logic gate system to discriminate Fe3+, Fe2+and their mixture. This facile chemosensor can offer a rapid, reliable, sensitive, and selective sensing of Fe3+ions with detection limit as low as10nM and a dynamic range from10nM to10μM. The detection results for ferrous ions in water samples obtained by this method agreed well with that by atomic absorbance spectrometry, suggesting the potential application of this sensing system. Moreover, to demonstrate the potential application of the prepared TA-Cu NCs fluorescent probe with high QY for in cell imaging, the cytotoxicity of TA-Cu NCs was evaluated by CCK-8assays, in which no significant cytotoxic effects have been observed in the presence of TA-Cu NCs, and almost100%of A549cells are alive even in the presence of10μM TA-Cu NCs, indicating it is low toxicity for cell, good biocompatibility and suitable for imaging studies. We demonstrate the feasibility of using TA-Cu NCs for determination of Fe3+in living cells.
     Chapter6:We have employed tannic acid stabilized copper clusters (TA-Cu NCs) as a novel swithable fluorescence sensor for the detection of the phosphate (Pi) in solution, which was based on the competition between Pi and TA—Cu NCs for the interaction with the Europium ions (Eu+). First, Eu+could induce the aggregation of TA-Cu NCs due to coordination to the oxygen-donor atoms of the carboxylate groups and hydroxyl on the Cu NCs surfaces along with the decrease in the FL intensity of the Cu NCs. Because Eu3+displays a higher affinity for the oxygen-donor atoms in Pi than for the carboxylate groups and hydroxyl on the TA-Cu NCs surface, there is a competition for Eu3+between the oxygen-donor atoms from Pi and those from the carboxylate groups on the Cu NCs surface, which effectively diminishing its quenching efficiency, and the FL intensity of Cu NCs is recovered. Under optical condition, a linear relationship (R2=0.9963) was observed with Pi concentrations from0.07to80μM and the detection limit at an S/N ratio of3for Pi was9.6nM. Because fluorescence quenching of the TA-Cu NCs by Eu3+is inhibited by Pi selectivity, we have obtained a highly sensitive and selective assay for Pi. Herein, a novel switchable phosphate sensing system with highly sensitivity and selectivity is designed using stable and fluorescent Cu NCs that bear surface groups of carboxy groups, combined with Eu3+Moreover, we demonstrate the feasibility of using TA-Cu NCs for determination of Pi in environmental smples.
引文
[1]Schmid, G.; Baumle, M.; Geerkens, M.; Helm, I.; Osemann, C.; Sawitowski, T., Current and future applications of nanoclusters. Chem. Soc. Rev.1999,28 (3):179-185.
    [2]Roucoux, A.; Schulz, J.; Patin, H., Reduced transition metal colloids: A novel family of reusable catalysts? Chem. Rev.2002,102 (10):3757-3778.
    [3]Barigelletti, F.; Flamigni, L., Photoactive molecular wires based on metal complexes. Chem. Soc. Rev.2000,29 (1):1-12.
    [4]Daniel, M. C.; Astruc, D., Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104 (1):293-346.
    [5]Lee, Y.-E. K.; Kopelman, R., Optical nanoparticle sensors for quantitative intracellular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009,1 (1):98-110.
    [6]Shi, J. J.; Zhu, Y. F.; Zhang, X. R.; Baeyens, W. R. G.; Garcia-Campana, A. M., Recent developments in nanomaterial optical sensors. Trac-TrendAnal Chem 2004,23 (5):351-360.
    [7]McDonagh, C.; Burke, C. S.; MacCraith, B. D., Optical chemical sensors. Chem. Rev.2008, 108 (2):400-422.
    [8]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003,107 (3):668-677.
    [9]E1-Sayed, M. A., Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res.2001,34 (4):257-264.
    [10]Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.2006,35 (3):209-217.
    [11]Jain, P. K.; Huang, X. H.; E1-Sayed, I. H.; E1-Sayed, M. A., Noble metals on the manoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res.2008,41 (12):1578-1586.
    [12]Gauglitz, G.; Proll, G., Strategies for label-free optical detection. In Biosensing for the 21st Century, Springer:2008; pp 395-432.
    [13]Li, D.; Wieckowska, A.; Willner, I., Optical analysis of Hg2+ions by oligonucleotide-Gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed.2008,120 (21):3991-3995.
    [14]Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Chandra Ray, P., Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc.2008, 130 (25):8038-8043.
    [15]Henglein, A., Colloidal silver nanoparticles:photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater.1998,10 (1):444-450.
    [16]Slocik, J. M.; Zabinski, J. S.; Phillips, D. M.; Naik, R. R., Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 2008,4 (5):548-551.
    [17]Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors. Anal. Chem.2006,78 (12): 3859-3874.
    [18]Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P., A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004,108 (1):109-116.
    [19]Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 2006,110 (14):7238-7248.
    [20]Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C., Gold nanoparticles in biology:beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41(12):1721-1730.
    [21]Gao, X.; Chan, W. C.; Nie, S., Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. JBiomed Opt 2002,7 (4):532-537.
    [22]Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K., Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem.2005,77(8):2381-2385.
    [23]Salata, O. V., Applications of nanoparticles in biology and medicine. J Nanobiotecg 2004,2 (1): 3.
    [24]Kvenvolden, K. A., Methane hydrate in the global organic carbon cycle. Terra Nova 2002,14 (5):302-306.
    [25]Busetti, F.; Badoer, S.; Cuomo, M.; Rubino, B.; Traverso, P., Occurrence and removal of potentially toxic metals and heavy metals in the wastewater treatment plant of Fusina (Venice, Italy). lnd. Eng. Chem. Res 2005,44 (24):9264-9272.
    [26]Duan, G.; Zhang, Z.; Zhang, J.; Zhou, Y.; Yu. L.; Yuan, Q.. Evaluation of crude toxin and metabolite produced by Helminthosporium gramineum Rabenh for the control of rice sheath blight in paddy fields. Crop protection 2007,26 (7):1036-1041.
    [27]Wang, L.; Ma, W.; Xu, L.; Chen, W.; Zhu, Y.; Xu, C.; Kotov, N. A., Nanoparticle-based environmental sensors. Mater. Sci. Eng., R 2010,70 (3):265-274.
    [28]Du, J.; Zhu, B.; Peng, X.; Chen, X., Optical Reading of contaminants in aqueous media based on gold nanoparticles. Small 2014, DOI:10.1002/sm11.201303256.
    [29]Yang, W.; Gooding, J. J.; He, Z.; Li, Q.; Chen, G., Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles. J Nanosci Nanotechnol.2007,7 (2):712-716.
    [30]Xue, X.; Wang, F.; Liu, X., One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc.2008,130 (11):3244-3245.
    [31]Chen, J.; Zheng, A.; Chen, A.; Gao, Y.; He, C.; Kai, X.; Wu, G.; Chen, Y., A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury (II) in environmental water samples. Anal. Chim. Acta 2007,599 (1):134-142.
    [32]Fan, Y.; Long, Y. F.; Li, Y. F., A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles. Anal. Chim. Acta 2009,653 (2):207-211.
    [33]He, X.; Liu, H.; Li, Y.; Wang, S.; Wang, N.; Xiao, J.; Xu, X.; Zhu, D., Gold nanoparticle-based fluorometric and colorimetric sensing of copper (Ⅱ) ions. Adv. Mater.2005,17 (23): 2811-2815.
    [34]Li, T.; Dong, S.; Wang, E., Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem.2009,81 (6):2144-2149.
    [35]Zhang, M.; Liu, Y.-Q.; Ye, B.-C., Colorimetric assay for sulfate using positively-charged gold nanoparticles and its application for real-time monitoring of redox process. Analyst 2011,136 (21): 4558-4562.
    [36]Zhang, J.; Yuan, Y.; Wang, X.; Yang, X., Sulfite recognition and sensing using Au nanoparticles as colorimetric probe: a judicious combination between anionic binding sites and plasmonic nanoparticles. Anal. Methods 2012,4 (6):1616-1618.
    [37]Zhang, J.; Xu, X.; Yang, X., Role of Tris on the colorimetric recognition of anions with melamine-modified gold nanoparticle probe and the visual detection of sulfite and hypochlorite. Analyst 2012,737(15):3437-3440.
    [38]Kim, S.; Eom, M. S.; Kim, S. K.; Seo, S. H.; Han, M. S., A highly sensitive gold nanoparticle-based colorimetric probe for pyrophosphate using a competition assay approach. Chem. Commun.2013,49(2):152-154.
    [39]Zhang, J.; Xu, X.; Yang, X., Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. Analyst 2012,137 (7):1556-1558.
    [40]Daniel, W. L.; Han, M. S.; Lee, J.-S.; Mirkin, C. A., Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc.2009,131 (18):6362-6363.
    [41]Dasary, S. S.; Singh, A. K.; Senapati, D.; Yu, H.; Ray, P. C., Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J, Am. Chem. Soc.2009,131 (38):13806-13812.
    [42]Singh, A. K.; Senapati, D.; Wang, S.; Griffin, J.; Neely, A.; Candice, P.; Naylor, K. M.; Varisli, B.; Kalluri, J. R.; Ray, P. C, Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 2009,3 (7):1906-1912.
    [43]Lee, J. S.; Han, M, S.; Mirkin, C. A., Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed.2007,119 (22):4171-4174.
    [44]Kanayama, N.; Takarada, T.; Maeda, M., Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles. Chem. Commun. 2011,47 (7):2077-2079.
    [45]Freeman, R.; Finder, T.; Willner, I., Multiplexed analysis of Hg2+and Ag+ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed. 2009,48 (42):7818-7821.
    [46]Wang, Y.; Yang, F.; Yang, X., Colorimetric biosensing of mercury (Ⅱ) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens. Bioelectron.2010,25 (8): 1994-1998.
    [47]Liu, C.-W.; Hsieh, Y.-T.; Huang, C.-C.; Lin, Z.-H.; Chang, H.-T., Detection of mercury (Ⅱ) based on Hg-+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 2008, (19):2242-2244.
    [48]Li, L.; Li, B.; Qi, Y.; Jin, Y., Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanalytical Chem.2009,393 (8):2051-2057.
    [49]Lou, T.; Chen, L.; Zhang, C; Kang, Q.; You, H.; Shen, D.; Chen, L., A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles. Anal. Methods 2012,4 (2):488-491.
    [50]Chai, F.; Wang, C.; Wang, T.; Li, L.; Su, Z., Colorimetridetection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Inter.2010,2 (5):1466-1470.
    [51]Kim, Y.; Johnson, R. C.; Hupp, J. T., Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions. Nano Lett.2001,1 (4):165-167.
    [52]Huang, C.-C; Chang, H.-T., Parameters for selective colorimetric sensing of mercury (Ⅱ) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem. Commun.2007, (12):1215-1217.
    [53]Du, J.; Zhu, B.; Chen, X., Urine for Plasmonic nanoparticle-based colorimetric detection of mercury ion. Small 2013,9 (24):4104-4111.
    [54]Kim, M. H.; Kim, S.; Jang, H. H.; Yi, S.; Seo, S. H.; Han, M. S., A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Lett 2010,51 (36):4712-4716.
    [55]Jung, E.; Kim, S.; Kim, Y.; Seo, S. H.; Lee, S. S.; Han, M. S.; Lee, S., A Colorimetric high-throughput screening method for palladium-catalyzed coupling reactions of aryl iodides using a gold nanoparticle-based iodide-selective probe. Angew. Chem. Int. Ed.2011,123 (19): 4478-4481.
    [56]Wen, G.; Lin, C.; Tang, M.; Liu, G.; Liang, A.; Jiang, Z., A highly sensitive aptamer method for Ag+sensing using resonance Rayleigh scattering as the detection technique and a modified nanogold probe. RSC Advances 2013,3 (6):1941-1946.
    [57]He, L.; Zhi, W.; Wu, Y.; Zhan, S.; Wang, F.; Xing, H.; Zhou, P., A highly sensitive resonance scattering based sensor using unmodified gold nanoparticles for daunomycin detection in aqueous solution. Anal. Methods 2012,4 (8):2266-2271.
    [58]Kalluri, J. R.; Arbneshi, T.; Afrin Khan, S.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S., Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew. Chem. Int. Ed.2009,121 (51):9848-9851.
    [59]Kreibig, U.; Genzel, L., Optical absorption of small metallic particles. Surf. Sci.1985,156: 678-700.
    [60]Yang, W. H.; Schatz, G. C.; Van Duyne, R. P., Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys.1995,103 (3):869-875.
    [61]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997,277 (5329):1078-1081.
    [62]Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc.1998,120 (9):1959-1964.
    [63]Taton, T. A.; Mirkin, C. A.; Letsinger, R. L., Scanometric DNA array detection with nanoparticle probes. Science 2000,289 (5485):1757-1760.
    [64]Reynolds, R. A.; Mirkin, C. A.; Letsinger, R. L., Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc.2000,122 (15):3795-3796.
    [65]Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C., What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 2000,122 (19):4640-4650.
    [66]Nath, N.; Chilkoti, A., A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem.2002,74 (3):504-509.
    [67]Reynolds, R. A.; Mirkin, C. A.; Letsinger, R. L., A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure Appl. Chem.2000,72 (1):229-235.
    [68]Thanh, N. T. K.; Rosenzweig, Z., Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem.2002,74 (7):1624-1628.
    [69]Cao, Y. C.; Jin, R.; Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc.2003,125 (48):14676-14677.
    [70]MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000,289 (5485):1760-1763.
    [71]Grubisha, D. S.; Lipert, R. J.; Park, H.-Y.; Driskell, J.; Porter, M. D., Femtomolar detection of prostate-specific antigen:an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem.2003,75 (21):5936-5943.
    [72]Haes, A. J.; Van Duyne, R. P., A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc.2002,124 (35):10596-10604.
    [73]Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Ranjit Yonzon, C.; Van Duyne, R. P., A nanoscale optical biosensor:real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem. B 2003,107 (8):1772-1780.
    [74]Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P., A localized surface plasmon resonance biosensor:First steps toward an assay for Alzheimer's disease. Nano Lett.2004, 4(6):1029-1034.
    [75]Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R.. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc, Chem. Commun.1994, (7): 801-802.
    [76]Mooradian, A., Photoluminescence of metals. Phys. Rev. Lett.1969,22:185-187.
    [77]Wu, Z.; Jin, R., On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett.2010, 10 (7):2568-2573.
    [78]Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L., Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 1998,102 (52):10643-10646.
    [79]Schaaff, T. G.; Whetten, R. L., Controlled etching of Au:SR cluster compounds. J. Phys. Chem. B 1999,103 (44):9394-9396.
    [80]Alvarez, M.; Khoury, J.; Schaaff, T.; Shafigullin, M.; Vezmar, I.; Whetten, R., Critical sizes in the growth of Au clusters. Chem. Phys. Lett.1997,266 (1):91-98.
    [81]Schaaff, T. G.; Whetten, R. L., Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions. J. Phys. Chem. B 2000,104 (12):2630-2641.
    [82]Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W., The story of a monodisperse gold nanoparticle:Au25L18.Acc. Chem. Res.2010,43 (9):1289-1296.
    [83]Donkers, R. L.; Lee, D.; Murray, R. W., Synthesis and isolation of the molecule-like cluster Au38 (PhCH2CH2S)24. Langmuir 2004,20 (5):1945-1952.
    [84]Chen, S.; Murray, R. W., Arenethiolate monolayer-protected gold clusters. Langmuir 1999,75 (3):682-689.
    [85]Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T., Magic-numbered aun clusters protected by glutathione monolayers (n=18,21,25,28,32,39): Isolation and spectroscopic characterization. J. Am. Chem. Soc.2004,126 (21):6518-6519.
    [86]Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc.2005,727(14):5261-5270.
    [87]Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T., Kinetic Stabilization of growing gold clusters by passivation with thiolates. J. Phys. Chem. B 2006,110 (25):12218-12221.
    [88]Wu, Z.; Lanni, E.; Chen, W.; Bier, M. E.; Ly, D.; Jin, R., High yield, large scale synthesis of thiolate-protected Ag7 clusters. J. Am. Chem. Soc.2009,131 (46):16672-16674.
    [89]Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett.2010,1 (19): 2903-2910.
    [90]Qian, H.; Zhu, M.; Wu, Z.; Jin, R., Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res.2012,45 (9):1470-1479.
    [91]Levi-Kalisman, Y.; Jadzinsky, P. D.; Kalisman, N.; Tsunoyama, H.; Tsukuda, T.; Bushnell, D. A.; Kornberg, R. D., Synthesis and characterization of Auio2(p-MBA)44 Nanoparticles. J. Am. Chem. Soc.2011,133 (9):2976-2982.
    [92]Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T., Ubiquitous 8 and 29 kDa gold: alkanethiolate cluster compounds:mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc.2008,130 (27):8608-8610.
    [93]Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T., Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc.2005, 127(39):13464-13465.
    [94]Negishi, Y.; Kamimura, U.; Ide, M.; Hirayama, M., A photoresponsive Au25 nanocluster protected by azobenzene derivative thiolates. Nanoscale 2012,4 (14):4263-4268.
    [95]Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T., Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 2007,3 (5): 835-839.
    [96]Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, R. L.; Tsukuda, T., Origin of magic stability of thiolated gold clusters:A case study on Au25(SC6,H13)18. J. Am. Chem. Soc.2007,129 (37): 11322-11323.
    [97]Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T., Bright, NIR-Emitting Au23 from Au25:Characterization and applications including biolabeling. Chem. Eur. J.2009,15(39):10110-10120.
    [98]Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T., Ag7Au6:A 13-Atom Alloy Quantum Cluster. Angew. Chem. Int. Ed.2012,57 (9):2155-2159.
    [99]Rao, T. U. B.; Nataraju, B.; Pradeep, T., Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc.2010,132 (46):16304-16307.
    [100]Yuan, X.; Yu, Y.; Yao, Q.; Zhang, Q.; Xie, J., Fast synthesis of thiolated Au25 nanoclusters via protection-deprotection method. J. Phys. Chem. Lett.2012,3 (17):2310-2314.
    [101]Yu, Y.; Luo, Z.; Yu, Y.; Lee, J. Y.; Xie, J., Observation of cluster size growth in CO-directed synthesis of Au25(SR),8 nanoclusters. ACSNano 2012,6 (9):7920-7927.
    [102]Harkness, K. M.; Tang, Y.; Dass, A.; Pan, J.; Kothalawala, N.; Reddy, V. J.; Cliffel, D. E.; Demeler, B.; Stellacci, F.; Bakr, O. M.; McLean, J. A., Ag44(SR)304" a silver-thiolate superatom complex. Nanoscale 2012,4(14):4269-4274.
    [103]Bakr, O. M; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; DalNegro, L.; Schatz, G. C.; Stellacci, F., Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. Int. Ed.2009,121 (32):6035-6040.
    [104]Jin, R., Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010,2 (3):343-362.
    [105]Udaya Bhaskara Rao, T.; Pradeep, T., Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed.2010,49 (23):3925-3929.
    [106]Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T., Synthesis of highly fluorescent gold nanoparticles for sensing mercury (Ⅱ). Angew. Chem. Int. Ed.2007,119 (36):6948-6952.
    [107]Dhanalakshmi, L.; Udayabhaskararao, T.; Pradeep, T., Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem. Commun.2012,48 (6):859-861.
    [108]Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J., Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Neno 2011,5 (11):8800-8808.
    [109]Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J., Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Materials 2013, 5 (2):e39.
    [110]Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J., From Aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)—thiolate core-shell nanoclusters. J. Am. Chem. Soc.2012,134 (40):16662-16670.
    [111]Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J., Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010,114 (17):7727-7732.
    [112]Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T., High temperature nucleation and growth of glutathione protected Ag75 clusters. Chem. Commun.2012,48(54):6788-6790.
    [113]Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Asian J. Chem.2013,8:858-871.
    [114]Xie, J.; Tan, Y. N.; Lee, J. Y., Biological and biomimetic synthesis of metal nanomaterials. In Nanotechnologiesfor the Life Sciences, Wiley-VCH Verlag GmbH & Co. KGaA:2007.
    [115]Xie, J.; Lee, J. Y.; Wang; Ting, Y. P., High-yield synthesis of complex gold nanostructures in a fungal system. J. Phys. Chem. C 2007,111 (45):16858-16865.
    [116]Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P., Silver nanoplates:From biological to biomimetic synthesis. ACS Nano 2007,1 (5):429-439.
    [117]Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc.2009,131 (3):888-889.
    [118]Lin, Y.-H.; Tseng, W.-L., Ultrasensitive sensing of Hg2+and CH3Hg+based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal. Chem.2010,82 (22): 9194-9200.
    [119]Chen, W.-Y.; Lin, J.-Y.; Chen, W.-J.; Luo, L.; Wei-Guang Diau, E.; Chen, Y.-C., Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 2010,5 (5): 755-764.
    [120]Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R., Trypsin-stabilized fluorescent gold nanocluster for sensitive and selective Hg2+detection. Anal. Sci.2011,27 (6):591-596.
    [121]Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011,21 (18):3508-3515.
    [122]Le Guevel, X.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011,22 (27):275103.
    [123]Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010,2 (12): 2769-2776.
    [124]Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem.2011,83 (4):1193-1196.
    [125]Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T., Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience. Nano reviews 2012,3: 147671-147676.
    [126]Chevrier, D. M.; Chatt, A.; Zhang, P., Properties and applications of protein-stabilized fluorescent gold nanoclusters:short review. J. Nanophoton.2012,6 (1):064504.
    [127]Zhang, J.; Xu, S.; Kumacheva, E., Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater.2005,77(19):2336-2340.
    [128]Duan, H.; Nie, S., Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:a new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc.2007,129 (9):2412-2413.
    [129]Shang, L.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters:synthesis and biological applications. Nano Today 2011,6 (4):401-418.
    [130]Zhao, M.; Sun, L.; Crooks, R. M., Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc.1998,120 (19):4877-4878.
    [131]Balogh, L.; Tomalia, D. A., Poly (amidoamine) dendrimer-templated nanocomposites.1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc.1998,120 (29):7355-7356.
    [132]Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J., Dendrimer templates for the formation of gold nanoclusters. Macromolecules 2000,33 (16):6042-6050.
    [133]Zheng, J.; Dickson, R. M., Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc.2002,124 (47):13982-13983.
    [134]Sun, X.; Dong, S.; Wang, E., One-step preparation and characterization of poly (propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004,37 (19): 7105-7108.
    [135]Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M., DNA-templated Ag nanocluster formation. J. Am. Chem. Soc.2004,726(16):5207-5212.
    [136]Kreibig, U.; Vollmer, M., Optical properties of metal clusters. J Mater Sci 1995,25:535.
    [137]Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R., Well-defined nanoclusters as fluorescent nanosensors: A case study on Au25(SG)18. Small 2012,8 (13):2028-2035.
    [138]Zheng, J.; Zhang, C.; Dickson, R. M., Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett.2004,93 (7):077402.
    [139]Diez, I.; Pusa, M.; Kulmala, S.; Jiang, H.; Walther, A.; Goldmann, A. S.; Muller, A. H.; Ikkala, O.; Ras, R. H., Color tunability and electrochemiluminescence of silver nanoclusters. Angew. Chem. Int. Ed.2009,48 (12):2122-2125.
    [140]Adhikari, B.; Banerjee, A., Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(II) sensing. Chem. Mater.2010,22 (15):4364-4371.
    [141]Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+based on fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions. Chem. Commun.2010,46 (6): 961-963.
    [142]Guo, W.; Yuan, J.; Wang, E., Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ion. Chem. Commun. 2009, (23):3395-3397.
    [143]Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun.2009, (13):1736-1738.
    [144]Lan, G.-Y.; Huang, C.-C.; Chang, H.-T., Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun.2010,46 (8):1257-1259.
    [145]Su, Y.-T.; Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T., Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal. Chem.2010,82 (20):8566-8572.
    [146]Goswami, N.; Giri, A.; Bootharaju, M.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper quantum clusters in protein matrix: potential sensor of Pb2+ion. Anal. Chem.2011,83 (24):9676-9680.
    [147]Chen, J.; Liu, J.; Fang, Z.; Zeng, L., Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun.2012, 48(7):1057-1059.
    [148]Annie Ho, J.-a.; Chang, H.-C.; Su, W.-T., DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem.2012, 84 (7):3246-3253.
    [149]Zhou, T.-y.; Lin, L.-p.; Rong, M.-c.; Jiang, Y.-q.; Chen, X., Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem.2013,85 (20):9839-9844.
    [150]Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium(III) and chromium(VI) in environmental water samples. Anal. Chim. Acta 2013,770:140-146.
    [151]Yue, Y.; Liu, T.-Y.; Li, H.-W.; Liu, Z.; Wu, Y., Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(i) ions. Nanoscale 2012,4 (7):2251-2254.
    [152]Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Fund. Mater.2010,20 (6): 951-956.
    [153]Zhou, T.; Rong, M.; Cai, Z.; Yang, C. J.; Chen, X., Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012,4 (14): 4103-4106.
    [154]Wang, X.; Wu, P.; Lv, Y.; Hou, X., Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchem J2011,99 (2):327-331.
    [155]Hussain, A.; Sarangi, S.; Kesarwani, J.; Sahu, S., Au-nanocluster emission based glucose sensing. Biosens. Bioelectron.2011,29 (1):60-65.
    [156]Chen, T. H.; Tseng, W. L., (Lysozyme type VI)-Stabilized Au8 clusters:Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012,8 (12): 1912-1919.
    [157]Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J., Sensors for the optical detection of cyanide ion. Chem. Soc. Rev.2010,39(1):127-137.
    [158]Huang, C.-C.; Hung, Y.-L.; Shiang, Y.-C.; Lin, T.-Y.; Lin, Y.-S.; Chen, C.-T.; Chang, H.-T., Photoassisted synthesis of luminescent mannose-Au nanodots for the detection of thyroglobulin in serum. Asian J. Chem.2010,5 (2):334.
    [159]Pyykko, P., Theoretical Chemistry of Gold. Angew. Chem. Int. Ed.2004,43 (34):4412-4456.
    [160]Zhang, Q.; Xie, J.; Yu, Y.; Lee, J. Y., Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles. Nanoscale 2010,2 (10):1962-1975.
    [161]Hilson, G.; Monhemius, A., Alternatives to cyanide in the gold mining industry:what prospects for the future? J Clean Prod 2006,14 (12):1158-1167.
    [162]Wang, Y.; Wang, Y.; Zhou, F.; Kim, P.; Xia, Y., Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 2012,8 (24): 3769-3773.
    [163]Zwart, J.; van Wolput, J. H. M. C; van der Cammen, J. C. J. M.; Koningsberger, D. C., Accumulation and reactions of H2O2 during the copper ion catalysed autoxidation of cysteine in alkaline medium. J. Mol. Catal.1981,11 (1):69-82.
    [164]Que, E. L.; Domaille, D. W.; Chang, C. J., Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev.2008,108 (5):1517-1549.
    [165]Vulpe, C.; Levinson, B.; Whitney, S.; Packman, S.; Gitschier, J., Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet.1993,3 (1):7-13.
    [166]Hamza, I.; Schaefer, M.; Klomp, L. W.; Gitlin, J. D., Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. P Natl Acad Sci USA 1999,96 (23):13363-13368.
    [167]Barranguet, C.; van den Ende, F. P.; Rutgers, M.; Breure, A. M.; Greijdanus, M.; Sinke, J. J.; Admiraal, W., Copper-induced modifications of the trophic relations in riverine algal bacterial biofilms. Environ. Toxicol. Chem.2003,22 (6):1340-1349.
    [168]Pizarro, F.; Olivares, M.; Gidi, V.; Araya, M., The gastrointestinal tract and acute effects of copper in drinking water and beverages. Reviews on environmental health 1999,14 (4):231-238.
    [169]Yang, Y., Highly selective detection of Cu2+utilizing specific binding between Cu-demetallated superoxide dismutase and the Cu2+ion via surface plasmon resonance spectroscopy. Chem. Commun.2009, (41):6171-6173.
    [170]Kang, T.; Hong, S.; Moon, J.; Oh, S.; Yi, J., Fabrication of reusable sensor for detection of Cu2+in an aqueous solution using a self-assembled monolayer with surface plasmon resonance spectroscopy. Chem. Commun.2005, (29):3721-3723.
    [171]Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M., Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 2003,125 (9):2680-2686.
    [172]Mu, L.; Shi, W.; Chang, J. C.; Lee, S.-T., Silicon nanowires-based fluorescence sensor for Cu (II). Nano Lett.2008,8 (1):104-109.
    [173]Tang, B.; Niu, J.; Yu, C.; Zhuo, L.; Ge, J., Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper (II). Chem. Commun.2005, (33):4184-4186.
    [174]Zhou, Y.; Wang, S.; Zhang, K.; Jiang, X., Visual detection of copper (II) by azide-and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed.2008,120 (39): 7564-7566.
    [175]Liu, J.; Lu, Y., Colorimetric Cu2+detection with a ligation DNAzyme and nanoparticles. Chem. Commun.2007, (46):4872-4874.
    [176]Song, Y.; Qu, K.; Xu, C.; Ren, J.; Qu, X., Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem. Commun.2010, 46 (35):6572-6574.
    [177]Yantasee, W.; Charnhattakorn, B.; Fryxell, G. E.; Lin, Y.; Timchalk, C; Addleman, R. S., Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes. Anal. Chim. Acta 2008,620(1):55-63.
    [178]Sayen, S.; Gerardin, C.; Rodehuser, L.; Walcarius, A., Electrochemical detection of copper (II) at an electrode modified by a carnosine-silica hybrid material. Electroanalysis 2003,75 (5-6): 422-430.
    [179]Huang, J.-F.; Lin, B.-T., Application of a nanoporous gold electrode for the sensitive detection of copper via mercury-free anodic stripping voltammetry. Analyst 2009,134 (11):2306-2313.
    [180]Chen, X.-W.; Huang, L.-L.; He, R.-H., Silk fibroin as a sorbent for on-line extraction and preconcentration of copper with detection by electrothermal atomic absorption spectrometry. Talanta 2009,78(1):71-75.
    [181]Llobat-Estelles, M.; Mauri-Aucejo, A.; Marin-Saez, R., Detection of bias errors in ETAAS: determination of copper in beer and wine samples. Talanta 2006,68 (5):1640-1647.
    [182]Cassella, R. J.; Magalhaes, O.1.; Couto, M. T.; Lima, E. L. S.; Neves, M. A. F.; Coutinho, F. M. B., Synthesis and application of a functionalized resin for flow injection/FAAS copper determination in waters. Talanta 2005,67 (1):121-128.
    [183]Zhao, Y.; Zhang, X.-B.; Han, Z.-X.; Qiao, L.; Li, C.-Y.; Jian, L.-X.; Shen, G.-L.; Yu, R.-Q., Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+in aqueous solution and living cells. Anal. Chem.2009,81 (16):7022-7030.
    [184]Wen, Z.-C.; Yang, R.; He, H.; Jiang, Y.-B., A highly selective charge transfer fluoroionophore for Cu2+. Chem. Commun.2006, (1):106-108.
    [185]Xu, Z.; Yoon, J.; Spring, D. R., A selective and ratiometric Cu2+fluorescent probe based on naphthalimide excimer-monomer switching. Chem. Commun.2010,46 (15):2563-2565.
    [186]Lai, S.; Chang, X.; Fu, C., Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchimica Acta 2009,165 (1-2):39-44.
    [187]Xu, X.; Daniel, W. L.; Wei, W.; Mirkin, C. A., Colorimetric Cu2+detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 2010,6 (5):623-626.
    [188]Lin, W.; Yuan, L.; Tan, W.; Feng, J.; Long, L., Construction of fluorescent probes via protection/deprotection of functional groups:a ratiometric fluorescent probe for Cu2+. Chem. Eur. J. 2009,15(4):1030-1035.
    [189]KyungaKwon, S.; NaaLee, H., Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chem. Commun.2008, (45):5915-5917.
    [190]Esteves da Silva, J. C.; Machado, A. A.; Oliveira, C. J.; Pinto, M. S., Fluorescence quenching of anthropogenic fulvic acids by Cu (II), Fe (III) and UO2+. Talanta 1998,45 (6):1155-1165.
    [191]Zhang X.-B.; Peng, J.; He, C.-L.; Shen, G.-L.; Yu, R.-Q., A highly selective fluorescent sensor for Cu2+based on 2-(2'-hydroxyphenyl) benzoxazole in a poly(vinyl chloride) matrix. Anal. Chim. Acta 2006,567 (2):189-195.
    [192]Kim, H.-S.; Choi, H.-S., Spectrofluorimetric determination of copper (II) by its static quenching effect on the fluorescence of 4,5-dihydroxy-1,3-benzenedisulfonic acid. Talanta 2001, 55(1):163-169.
    [193]White, B. R.; Holcombe, J. A., Fluorescent peptide sensor for the selective detection of Cu2+. Talanta 2007,71 (5):2015-2020.
    [194]Zhang, X.; Shiraishi, Y.; Hirai, T., Cu (II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Org. Lett.2007,9 (24):5039-5042.
    [195]Yu, F.; Zhang, W.; Li, P.; Xing, Y.; Tong, L.; Ma, J.; Tang, B., Cu2+-selective naked-eye and fluorescent probe:its crystal structure and application in bioimaging. Analyst 2009,134 (9): 1826-1833.
    [196]Wang, Q.-L.; Zhang, H.; Jiang, Y.-B., A highly selective and sensitive turn-on catalytic chemodosimeter for Cu2+in aqueous solution. Tetrahedron Lett.2009,50 (1):29-31.
    [197]Martinez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.; Molina, P.,2-Aza-1, 3-butadiene derivatives featuring an anthracene or pyrene unit:highly selective colorimetric and fluorescent signaling of Cu2+cation. Org. Lett.2006,8 (15):3235-3238.
    [198]Lin, W.; Long, L.; Chen, B.; Tan, W.; Gao, W., Fluorescence turn-on detection of Cu2+in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction. Chem. Commun.2010,46 (8):1311-1313.
    [199]Li, N.; Xiang, Y.; Tong, A., Highly sensitive and selective "turn-on" fluorescent chemodosimeter for Cu2+in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin. Chem. Commun.2010,45(19):3363-3365.
    [200]Shao, N.; Jin, J. Y.; Wang, H.; Zhang, Y.; Yang, R. H.; Chan, W. H., Tunable photochromism of spirobenzopyran via selective metal ion coordination: an efficient visual and ratioing fluorescent probe for divalent copper ion. Anal. Chem.2008,80 (9):3466-3475.
    [201]Li, G.-K.; Xu, Z.-X.; Chen, C.-F.; Huang, Z.-T., A highly efficient and selective turn-on fluorescent sensor for Cu2+ion based on calix [4] arene bearing four iminoquinoline subunits on the upper rim. Chem. Commun.2008, (15):1774-1776.
    [202]Liu, J.; Lu, Y., A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc.2007,129 (32):9838-9839.
    [203]Liu, Z.; Cai, R.; Mao, L.; Huang, H.; Ma, W., Highly sensitive spectrofluorimetric determination of hydrogen peroxide with β-cyclodextrin-hemin as catalyst. Analyst 1999,124 (2): 173-176.
    [204]Higashimura, H.; Fujisawa, K.; Moro-oka, Y.; Namekawa, S.; Kubota, M.; Shiga, A.; Uyama, H.; Kobayashi, S., "Radical-controlled" oxidative polymerization of phenols. Substituent effect of phenol monomers on the reaction rate. Polym. Adv. Technol.2000,11(8-12):733-738.
    [205]Li, X.; Yang, J.; Kozlowski, M. C., Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org. Lett.2001,3 (8):1137-1140.
    [206]Lazrus, A. L.; Kok, G. L.; Gitlin, S. N.; Lind, J. A.; McLaren, S. E., Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation. Anal. Chem.1985,57 (4):917-922.
    [207]Zhang, Y.; Wang, W.; Li, L.; Huang, Y.; Cao, J., Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta 2010,80 (5):1907-1912.
    [208]Davis, J. R.; Andelman, S. L., Urinary delta-aminolevulinic acid levels in lead poisoning modified method for rapid determination of urinary delta-aminolevulinic acid using disposable ion-exchange chromatography columns. Arch Environ Health.1967,15 (1):53-&.
    [209]Zuch, C. L.; O'Mara, D. J.; Cory-Slechta, D. A., Low-level lead exposure selectively enhances dopamine overflow in nucleus accumbens:An in vivo electrochemistry time course assessment. Toxicol. Appl. Pharmacol.1998,150 (1):174-185.
    [210]Claire B, E., A critical review of low-level prenatal lead exposure in the human:2. Effects on the developing child. Reprod Toxicol.1992, 6(1):21-40.
    [211]Bellinger, D.; Leviton, A.; Waternaux, C.; Allred, E., Methodological issues in modeling the relationship between low-level lead exposure and infant development:Examples from the Boston lead study. Environ. Res.1985,38 (1):119-129.
    [212]Jedrychowski, W.; Perera, F.; Jankowski, J.; Rauh, V.; Flak, E.; Caldwell, K. L.; Jones, R. L. Pac, A.; Lisowska-Miszczyk, I., Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study). Int JHyg Environ Health 2008,211 (3-4):345-351.
    [213]Ghering, A. B.; Jenkins, L. M. M.; Schenck, B. L.; Deo, S.; Mayer, R. A.; Pikaart, M. J.; Omichinski, J. G.; Godwin, H. A., Spectroscopic and functional determination of the interaction of Pb2+with GATA proteins. J. Am. Chem. Soc.2005,127 (11):3751-3759.
    [214]Wen, Y.; Peng, C.; Li, D.; Zhuo, L.; He, S.; Wang, L.; Huang, Q.; Xu, Q.-H.; Fan, C., Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(11) ions with high sensitivity, selectivity and tunable dynamic range. Chem. Commun.2011,47 (22):6278-6280.
    [215]Liu, J.; Lu, Y., Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+detection. J. Am. Chem. Soc.2004,126 (39):12298-12305.
    [216]Liu, J.; Lu, Y., A Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc.2003,125 (22):6642-6643.
    [217]Wang, Z. X.; Li, X. K., Gold nanoparticle-based colorimetric assay for determination of 1Lead(II) in aqueous media. Chem Res Chinese U2010,26 (2):194-197.
    [218]Yang, W. S.; Guan, J.; Jiang, L.; Zhao, L. L.; Li, J., pH-dependent response of citrate capped Au nanoparticle to Pb2+ion. Colloid Surface A 2008,325 (3):194-197.
    [219]Ding, N.; Cao, Q.; Zhao, H.; Yang, Y.; Zeng, L.; He, Y.; Xiang, K.; Wang, G., Colorimetric assay for determination of lead (II) based on its incorporation into gold nanoparticles during their synthesis. Sensors-Basel 2010,10 (12):11144-11155.
    [220]Yuan, Z. Q.; Peng, M. H.; He, Y.; Yeung, E. S., Functionalized fluorescent gold nanodots: synthesis and application for Pb2+sensing. Chem. Commun.2011,47(43):11981-11983.
    [221]Li, H.; Zheng, Q.; Han, C., Click synthesis of podand triazole-linked gold nanoparticles as highly selective and sensitive colorimetric probes for lead(ii) ions. Analyst 2010,135 (6): 1360-1364.
    [222]Thomas, K. G.; Yoosaf, K.; Ipe, B. I.; Suresh, C. H., In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 2007,111 (34): 12839-12847.
    [223]Zhang, H.; Jiang, B.; Xiang, Y.; Su, J.; Chai, Y.; Yuan, R., DNAzyme-based highly sensitive electronic detection of lead via quantum dot-assembled amplification labels. Biosens. Bioelectron. 2011,25(1):135-138.
    [224]Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper quantum clusters in protein matrix:Potential sensor of Pb2+ion. Anal. Chem.2011,83 (24): 9676-9680.
    [225]Chen, J.; Liu, J.; Fang, Z.; Zeng, L., Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun.2012, 48 (7):1057-1059.
    [226]Wu, H. M.; Liang, J. G.; Han, H. Y., A novel method for the determination of Pb2+based on the quenching of the fluorescence of CdTe quantum dots. Microchim. Acta 2008,161 (1-2):81-86.
    [227]Aksuner, N., Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead(II) ions. Sens. Actuators, B 2011,757(1):162-168.
    [228]Brand, M.; Eshkenazi, I.; KirovaEisner, E., The silver electrode in square-wave anodic stripping voltammetry. Determination of Pb2+without removal of oxygen. Anal. Chem.1997,69 (22):4660-4664.
    [229]Zen, J. M.; Yang, C. C.; Kumar, A. S., Voltammetric behavior and trace determination of Pb2 at a mercury-free screen-printed silver electrode. Anal. Chim. Acta 2002,464 (2):229-235.
    [230]Chow, E.; Ebrahimi, D.; Gooding, J. J.; Hibbert, D. B., Application of N-PLS calibration to the simultaneous determination of Cu2+, Cd2+and Pb2+ using peptide modified electrochemical sensors. Analyst 2006,131 (9):1051-1057.
    [231]Ganjali, M. R.; Motakef-Kazami, "N.; Faridbod, F.; Khoee, S.; Norouzi, P., Determination of Pb2+ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater.2010,173 (1-3):415-419.
    [232]Moens, L.; DeSmaele, T.; Dams, R.; VandenBroeck, P.; Sandra, P., Sensitive, simultaneous determination of organomercury,-lead, and-tin compounds with headspace solid phase microextraction capillary gas chromatography combined with inductively coupled plasma mass spectrometry. Anal. Chem.1997,69(8):1604-1611.
    [233]Michalska, A.; Wojciechowski, M.; Wagner, B.; Bulska, E.; Maksymiuk, K., Laser ablation inductively coupled plasma mass spectrometry assisted insight into ion-selective membranes. Anal. Chem.2006,78(15):5584-5589.
    [234]Willis, J. B., Determination of lead and other heavy metals in urine by atomic absorption spectroscopy. Anal. Chem.1962,34 (6):614-&.
    [235]Miller, D. T.; Paschal, D. C.; Gunter, E. W.; Stroud, P. E.; Dangelo, J., Determination of lead in blood using electrothermal atomization atomic-absorption spectrometry with a lvov platform and matrix modifier. Analyst 1987,772(12):1701-1704.
    [236]Soylak, M.; Kars, A.; Narin, I., Coprecipitation of Ni2+, Cd2+and Pb2+for preconcentration in environmental samples prior to flame atomic absorption spectrometric determinations. J. Hazard. Mater.2008,159 (2-3):435-439.
    [237]Teixeira Tarley, C. R.; Andrade, F. N.; de Oliveira, F. M.; Corazza, M. Z.; Mendes de Azevedo, L. F.; Segatelli, M. G., Synthesis and application of imprinted polyvinylimidazole-silica hybrid copolymer for Pb2+deterrnination by flow-injection thermospray flame furnace atomic absorption spectrometry. Anal. Chim. Acta 2011,703 (2):145-151.
    [238]Ghosh, S. K.; Pal, T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications. Chem. Rev.2007,107 (11):4797-4862.
    [239]Song, S.; Qin, Y.; He, Y.; Huang, Q.; Fan, C.; Chen, H.-Y., Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev.2010,39 (11):4234-4243.
    [240]Liu, D.; Wang, Z.; Jiang, X., Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011,3 (4):1421-1433.
    [241]Zheng, Q.; Han, C.; Li, H., Selective and efficient magnetic separation of Pb2+via gold nanoparticle-based visual binding enrichment. Chem. Commun.2010,46 (39):7337-7339.
    [242]Morf, P.; Raimondi, F.; Nothofer, H. G.; Schnyder, B.; Yasuda, A.; Wessels, J. M.; Jung, T. A., Dithiocarbamates: Functional and versatile linkers for the formation of self-assembled monolayers. Langmuir 2006,22 (2):658-663.
    [243]Zhang, Y. J.; Schnoes, A. M.; Clapp, A. R., Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl Mater Inter.2010,2(11):3384-3395.
    [244]Tong, M. C.; Chen, W.; Sun, J.; Ghosh, D.; Chen, S. W., Dithiocarbamate-capped silver nanoparticles. J. Phys. Chem. B 2006,110 (39):19238-19242.
    [245]Kim, Y. J.; Johnson, R. C.; Hupp, J. T., Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions. Nano Lett.2001,1 (4):165-167.
    [246]Shindo, H.; Brown, T. L., Infrared spectra of complexes of 1-cysteine and related compounds with zinc(2) cadmium(2) mercury(2) and lead(2). J. Am. Chem. Soc.1965,87 (9):1904-&.
    [247]Shahrokhian, S., Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem.2001,73 (24):5972-5978.
    [248]Song, Y. J.; Wei, W. L.; Qu, X. G., Colorimetric biosensing using smart materials. Adv. Mater. 2011,23 (37):4215-4236.
    [249]Ge, C. C.; Fang, Z. Y.; Chen, J. H.; Liu, J.; Lu, X. W.; Zeng, L. W., A simple colorimetric detection of DNA methylation. Analyst 2012,137 (9):2032-2035.
    [250]Huy, G. D.; Zhang, M.; Zuo, P.; Ye, B. C., Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Analyst 2011,136 (16):3289-3294.
    [251]Kim, J. H.; Chung, C. H.; Chung, B. H., Colorimetric detection of UV light-induced single-strand DNA breaks using gold nanoparticles. Analyst 2013,138 (3):783-786.
    [252]Yuan, Z.; Peng, M.; He, Y.; Yeung, E. S., Functionalized fluorescent gold nanodots: synthesis and application for Pb2+sensing. Chem. Commun.2011.
    [253 Lee, K. M.; Chen, X.; Fang, W.; Kim, J.-M.; Yoon, J., A Dual Colorimetric and Fluorometric Sensor for Lead Ion Based on Conjugated Polydiacetylenes. Macromol. Rapid Commun.2011,32 (6):497-500.
    [254]Cui, Y.; Cui, F.; Wang, L.; Zhang, Q.; Xue, W.; Jing, F.; Sun, J., Determination of lead in Yellow River using ammonium molybdate as a molecular probe by resonance light scattering technique. J. Lumin.2008,128 (10):1719-1724.
    [255]Tan, K. J.; Huang, C. Z.; Huang, Y. M., Determination of lead in environmental water by a backward light scattering technique. Talanta 2006,70 (1):116-121.
    [256]Gensemer, R. W.; Playle, R. C., The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Env. Sci. Technol.1999,29 (4):315-450.
    [257]Matsumoto, H., Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 2000,200:1-46.
    [258]Delhaize, E.; Ryan, P. R., Aluminum Toxicity and Tolerance in Plants. Plant Physiol 1995, 707(2):315-321.
    [259]Perl, D. P.; Gajdusek, D. C; Garruto, R. M.; Yanagihara, R. T.; Gibbs, C. J., Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 1982,277(4564):1053-1055.
    [260]Perl, D. P.; Brody, A. R., Alzheimer's disease:X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 1980,208 (4441):297-299.
    [261]Nagaoka, M. H.; Maitani, T., Binding patterns of co-existing aluminium and iron to human serum transferrin studied by HPLC-high resolution ICP-MS. Analyst 2000,125 (11):1962-1965.
    [262]Sapkota, A.; Krachler, M.; Scholz, C.; Cheburkin, A. K.; Shotyk, W., Analytical procedures for the determination of selected major (Al, Ca, Fe, K, Mg, Na, and Ti) and trace (Li, Mn, Sr, and Zn) elements in peat and plant samples using inductively coupled plasma-optical emission spectrometry. Analytica chimica acta 2005,540 (2):247-256.
    [263]Mashhadizadeh, M. H.; Amoli-Diva, M., Atomic absorption spectrometric determination of Al3+and Cr3+after preconcentration and separation on 3-mercaptopropionic acid modified silica coated-Fe3O4 nanoparticles. J. Anal. At. Spectrom.2013,28 (2):251-258.
    [264]Guha, S.; Lohar, S.; Sahana, A.; Banerjee, A.; Safin, D. A.; Babashkina, M. G.; Mitoraj, M. P.; Bolte, M.; Garcia, Y.; Mukhopadhyay, S. K.., A coumarin-based "turn-on" fluorescent sensor for the determination of Al3+:single crystal X-ray structure and cell staining properties. Dalton Trans 2013, 42(28):10198-10207.
    [265]Maity, D.; Govindaraju, T., Conformationally Constrained (Coumarin-Triazolyl-Bipyridyl) Click Fluoroionophore as a Selective Al3+Sensor. Inorg. Chem.2010,49 (16):7229-7231.
    [266]Gittins, D.I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J., A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000,408 (6808):67-69.
    [267]Ma, L.; Pyo, S.; Ouyang, J.; Xu, Q.; Yang, Y., Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett.2003,82 (9):1419-1421.
    [268]Aiken III, J. D.; Finke, R. G., A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A:Chem.1999,145 (1): 1-44.
    [269]Adams, R. D.; Cotton, F. A., Catalysis by di-and polynuclear metal cluster complexes. Appl. Organomet. Chem.1998,2(14):129-130.
    [270]Roucoux, A.; Schulz, J.; Patin, H., Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts? Chem. Rev.2002,102 (10):3757-3778.
    [271]Corain, B.; Schmid, G.; Toshima, N., Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control: The Issue of Size Control. Elsevier:2011.
    [272]Fedlheim, D. L.; Foss, C. A., Metal nanoparticles:synthesis, characterization, and applications. CRC Press:2001.
    [273]Shang, L.; D ong, S. J.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011,6 (4):401-418.
    [274]Wilcoxon, J.; Abrams, B!, Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev.2006,35 (11):1162-1194.
    [275]Le Guevel, X.; Hotzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011,115 (22):10955-10963.
    [276]Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I., Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS nano 2009,3 (2):395-401.
    [277]Jin, L.; Shang, L.; Guo, S.; Fang, Y.; Wen, D.; Wang, L.; Yin, J.; Dong, S., Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron.2011,26(5):1965-1969.
    [278]Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper quantum clusters in protein matrix: potential sensor of Pb2+ion. Anal. Chem.2011,83 (24): 9676-9680.
    [279]Jones, T.; Baddeley, C., A RAIRS, STM and TPD study of the Ni{111}/R, R-tartaric acid system:Modelling the chiral modification of Ni nanoparticles. Surf. Sci.2002,513 (3):453-467.
    [280]Sun, Q.; Luo, J.; Xie, Z.; Wang, J.; Su, X., Synthesis of monodisperse WO3-2H2O nanospheres by microwave hydrothermal process with tartaric acid as a protective agent. Mater. Lett. 2008,62 (17):2992-2994.
    [281]Yan, J.; Mo, S.; Nie, J.; Chen, W.; Shen, X.; Hu, J.; Hao, G.; Tong, H., Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid. Colloid Surf. A-Physicochem. Eng. Asp.2009,340 (1):109-114.
    [282]Lawton, T. J.; Pushkarev, V.; Wei, D.; Lucci, F. R.; Sholl, D. S.; Gellman, A. J.; Sykes, E. C. H., Long Range Chiral Imprinting of Cu (110) by Tartaric Acid. J. Phys. Chem. C 2013,117 (43): 22290-22297.
    [283]Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawa, T.; Arakawa, R., Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun.2011,47(27):7740-7742.
    [284]Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W., One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc.2011,133 (7): 2060-2063.
    [285]Jin, R. C.; Jureller, J. E.; Kim, H. Y.; Scherer, N. F., Correlating second harmonic optical responses of single Ag nanoparticles with morphology. J. Am. Chem. Soc.2005,127 (36): 12482-12483.
    [286]Rao, T. U. B.; Pradeep, T., Luminescent ag7 and agg clusters by interfacial synthesis. Angew. Chem. Int. Edit.2010,49 (23):3925-3929.
    [287]Lu, Y. Z.; Chen, W., Sub-nanometre sized metal clusters:from synthetic challenges to the unique property discoveries. Chem. Soc. Rev.2012,41 (9):3594-3623.
    [288]Vilar-Vidal, N.; Blanco, M. C.; Lopez-Quintela, M. A.; Rivas, J.; Serra, C., Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010,114 (38): 15924-15930.
    [289]Mott, D.; Galkowski, J.; Wang, L.; Luo, J.; Zhong, C. J., Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 2007,23 (10):5740-5745.
    [290]Lisiecki, I.; Pileni, M. P., Copper metallic particles synthesized "in situ" in reverse micelles: influence of various parameters on the size of the particles. J. Chem. Phys.1995,99 (14): 5077-5082.
    [291]Organization, W. H., Guidelines for drinking-water quality (2011). WHO web site (http://www. who. int). Accessed 2012,20.
    [292]Omara, F. O.; Blakley, B. R., Vitamin-E is protective against iron toxicity and iron-induced hepatic vitamin-E depletion in mice. JNutr 1993,123 (10):1649-1655.
    [293]Allen, L. H., Iron supplements:Scientific issues concerning efficacy and implications for research and programs. JNutr 2002,132 (4):813s-819s.
    [294]Ajlec, R.; Stupar, J., Determination of iron species in wine by ion-exchange chromatography-flame atomic absorption spectrometry. Analyst 1989,114 (2):137-142.
    [295]Luan, F. B.; Burgos, W. D., Sequential extraction method for determination of Fe(Ⅱ/Ⅲ) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium. Environ Sci Technol 2012,46 (21):11995-12002.
    [296]Bowie, A. R.; Achterberg, E. P.; Sedwick, P. N.; Ussher, S.; Worsfold, P. J., Real-time monitoring of picomolar concentrations of iron(Ⅱ) in marine waters using automated flow injection-chemiluminescence instrumentation. Environ Sci Technol 2002,36 (21):4600-4607.
    [297]Bricks, J. L.; Kovalchuk, A.; Trieflinger, C; Nofz, M.; Buschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K., On the development of sensor molecules that display Fe(III)-amplified fluorescence. J. Am. Chem. Soc.2005,727(39):13522-13529.
    [298]Dwivedi, A. K.; Saikia, G.; lyer, P. K., Aqueous polyfluorene probe for the detection and estimation of Fe3+and inorganic phosphate in blood serum. J. Mater. Chem,2011,21 (8): 2502-2507.
    [299]Mei, Q.; Jiang, C.; Guan, G.; Zhang, K.; Liu, B.; Liu, R.; Zhang, Z., Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging. Chem Commun (Camb) 2012,48 (60):7468-7470.
    [300]Schaeffer, N.; Tan, B.; Dickinson, C.; Rosseinsky, M. J.; Laromaine, A.; McComb, D. W.; Stevens, M. M.; Wang, Y.; Petit, L.; Barentin, C.; Spiller, D. G.; Cooper, A. I.; Levy, R., Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range. Chem. Commun.2008, (34):3986-3988.
    [301]Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A., Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed.2010,49 (33):5665-5667.
    [302]Zhou, Z.; Du, Y.; Dong, S., Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem.2011,83 (13):5122-5127.
    [303]Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper quantum clusters in protein matrix:potential sensor of Pb2+ion. Anal. Chem.2011,83 (24): 9676-9680.
    [304]Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P., Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011,5 (11):8800-8808.
    [305]Bao, Y.; Yeh, H.-C.; Zhong, C.; Ivanov, S. A.; Sharma, J. K.; Neidig, M. L.; Vu, D. M.; Shreve, A. P.; Dyer, R. B.; Werner, J. H.; Martinez, J. S., Formation and stabilization of fluorescent gold nanoclusters using small molecules?. J. Phys. Chem. C 2010,114 (38):15879-15882.
    [306]Salorinne, K.; Chen, X.; Troff, R. W.; Nissinen, M.; Hakkinen, H., One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters. Nanoscale 2012,4 (14):4095-4098.
    [307]Ernst, Z. L.; Menashi, J., Complex formation between the Fe3+-ion and some substituted phenols. Part 2.-Spectrophotometric determination of the stability constants of some ferric salicylates. Trans. Faraday Soc.1963,59:2838-2844.
    [308]Li, D.; Kaner, R. B., Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc.2006,128 (3):968-975.
    [309]Iijima, M.; Kamiya, H., Surface modification for improving the stability of nanoparticles in liquid media. Kona Powder and Particle Journal 2009, (27):119-129.
    [310]Huang, K. W.; Yu, C. J.; Tseng, W. L., Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles:Improving size distribution and minimizing interparticle repulsion. Biosens. Bioelectron.2010,25 (5):984-989.
    [311]Yi, Z.; Li, X. B.; Xu, X. B.; Luo, B. C; Luo, J. S.; Wu, W. D.; Yi, Y. G.; Tang, Y. J., Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloid Surf. A-Physicochem. Eng. Asp.2011,392 (1):131-136.
    [312]Tsai, C. Y.; Lee, D. S.; Tsai, Y. H.; Chan, B.; Luh, T. Y.; Chen, P. J.; Chen, P. H., Shrinking gold nanoparticles:dramatic effect of a cryogenic process on tannic acid/sodium citrate-generated gold nanoparticles. Mater. Lett.2004,58 (14):2023-2026.
    [313]Xiong, J.; Wang, Y.; Xue, Q. J.; Wu, X. D., Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 2011,13 (4):900-904.
    [314]Mott, D.; Galkowski, J.; Ng, D.; Luo, J.; Zhong, C. J., INOR 370-Synthesis of size-controlled and shaped copper nanoparticles. Absti: Am. Chem. Soc.2007,234.
    [315]Salzemann, C.; Lisiecki, I.; Brioude, A.; Urban, J.; Pileni, M. P., Collections of copper nanocrystals characterized by different sizes and shapes:Optical response of these nanoobjects. J. Phys. Chem. B 2004,108 (35):13242-13248.
    [316]Ma, J.; Zhu, Z. L.; Chen, B.; Yang, M. X.; Zhou, H. M.; Li, C.; Yu, F.; Chen, J. H., One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J. Mater. Chem. A 2013,7(15):4662-4666.
    [317]Brege, J. J.; Hamilton, C. E.; Crouse, C. A.; Barren, A. R., Ultrasmall Copper Nanoparticles from a Hydrophobically Immobilized Surfactant Template. Nano Lett.2009,9 (6):2239-2242.
    [318]Li, X. G.; Liao, Y. Z.; Huang, M. R.; Strong, V.; Kaner, R. B., Ultra-sensitive chemosensors for Fe(III) and explosives based on highly fluorescent oligofluoranthene. Chem Sci 2013,4 (5): 1970-1978.
    [319]Herney-Ramirez, J.; Lampinen, M.; Vicente, M. A.; Costa, C. A.; Madeira, L. M., Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind Eng Chem Res 2008,47 (2):284-294.
    [320]Ryther, J. H.; Dunstan, W. M., Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment. Science 1971,171 (3975):1008-1013.
    [321]Kugimiya, A.; Babe, F., Phosphate ion sensing using molecularly imprinted artificial polymer receptor. Polym. Bull.2011,67(9):2017-2024.
    [322]Han, M. S.; Kim, D. H., Naked-eye detection of phosphate ions in water at physiological pH: A remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angew. Chem. Int. Ed.2002,41 (20):3809-3811.
    [323]Meruva, R. K.; Meyerhoff, M. E., Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. Anal. Chem.1996,68 (13):2022-2026.
    [324]Cheng, W. L.; Sue, J. W.; Chen, W. C.; Chang, J. L.; Zen, J. M., Activated Nickel platform for electrochemical sensing of phosphate. Anal. Chem.2010,82 (3):1157-1161.
    [325]Mitra, A.; Hinge, V. K.; Mittal, A.; Bhakta, S.; Guionneau, P.; Rao, C. P., A zinc-sensing glucose-based naphthyl imino conjugate as a detecting agent for inorganic and organic phosphates, including DNA. Chem. Eur. J.2011,17(29):8044-8047.
    [326]Wang, G.-L.; Jiao, H.-J.; Zhu, X.-Y.; Dong, Y.-M.; Li, Z.-J., Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles. Analyst 2013,138 (7):2000-2006.
    [327]Bai, J.-M.; Zhang, L.; Liang, R.-P.; Qiu, J.-D., Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem. Eur. J.2013,19 (12): 3822-3826.
    [328]Nelissen, H. F. M.; Smith, D. K., Synthetically accessible, high-affinity phosphate anion receptors. Chem. Commun.2007, (29):3039-3041.
    [329]Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S., Imidazolium receptors for the recognition of anions. Chem. Soc. Rev.2006,35 (4):355-360.
    [330]Warwick, C.; Guerreiro, A.; Soares, A., Sensing and analysis of soluble phosphates in environmental samples:A review. Biosens. Bioelectron.2013,41 (0):1-11.
    [331]Schmidtchen, F. P.; Berger, M., Artificial organic host molecules for anions. Chem. Rev.1997, 97(5):1609-1646.
    [332]Liao, J. H.; Chen, C. T.; Fang, J. M., A novel phosphate chemosensor utilizing anion-induced fluorescence change. Org. Lett.2002,4 (4):561-564.
    [333]Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R., Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc.2012,134 (24):10237-10243.
    [334]Zhou, C.; Long, M.; Qin, Y. P.; Sun, X. K.; Zheng, J., Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Edit.2011,50 (14):3168-3172.
    [335]Schmid, G., The relevance of shape and size of Au55 clusters. Chem. Soc. Rev.2008,37 (9): 1909-1930.
    [336]Lee, H. M.; Ge, M.; Sahu, B. R.; Tarakeshwar, P.; Kim, K. S., Geometrical and electronic structures of gold, silver, and gold-silver binary clusters:Origins of ductility of gold and gold—silver alloy formation. J. Phys. Chem. B 2003,107 (37):9994-10005.
    [337]Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J., Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J.2013,8 (5):858-871,
    [338]Jia, X.; Li, J.; Wang, E., Cu nanoclusters with aggregation induced emission enhancement. Small 2013:9 (22):3873-3879.
    [339]Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhaoa, X. J.; Huang, C. Z., Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem. Commun.2011,47 (9):2604-2606.
    [340]Samy, R.; Faustino, P. J.; Adams, W.; Yu, L.; Khan, M. A.; Yang, Y. S., Development and validation of an ion chromatography method for the determination of phosphate-binding of lanthanum carbonate. JPharmaceut Biomed 2010,57 (5):1108-1112.
    [341]King, A. M. Y.; Young, G., Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc.1999,99 (2):213-218.
    [342]Cottancin, E.; Celep, G.; Lerme, J.; Pellarin, M.; Huntzinger, J. R.; Vialle, J. L.; Broyer, M., Optical properties of noble metal clusters as a function of the size:Comparison between experiments and a semi-quantal theory. Theor. Chem. Acc.2006,116 (4-5):514-523.
    [343]Ghodselahi, T.; Vesaghi, M. A.; Shafiekhani, A., Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory. J. Phys. D: Appl. Phys.2009,42 (1).
    [344]Ware, W. R., Oxygen quenching of fluorescence in solution:an experimental study of the diffusion process. J. Chem. Phys.1962,66 (3):455-458.
    [345]Li, Y.-H.; Zhang, L.; Huang, J.; Liang, R.-P.; Qiu, J.-D., Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem. Commun.2013,49(45):5180-5182.
    [346]Eaton, A. D.; Franson, M. A. H., Standard methods for the examination of water & wastewater.2005.
    [347]曹春;刘玫瑰;曹明;夏云生;朱昌青,基于自然尺寸分布的单一CdTe量子点样品中Eu(Ⅲ)诱导的能量转移测定磷酸根离子.中国科学:化学2010,(4):379-385.
    [348]Ganjali, M. R.; Hosseini, M.; Memari, Z.; Faridbod, F.; Norouzi, P.; Goldooz. H.; Badiei, A., Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex. Anal. Chim. Acta 2011,708 (1-2):107-110.
    [349]Hatai, J.; Pal, S.; Bandyopadhyay, S., An inorganic phosphate (Pi) sensor triggers 'turn-on' fluorescence response by removal of a Cu2+ion from a Cu2+-ligand sensor: determination of Pi in biological samples. Tetrahedron Lett.2012,53 (33):4357-4360.
    [350]Fan, X.B.; Peng, W.C.; Li, Y.; Li, X.Y.; Wang, S.L.; Zhang, G.L.:Zhang, F.B., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater.2008,20 (23):4490-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700