用户名: 密码: 验证码:
Zielger-Natta复合催化剂的制备及其乙烯聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型Ziegler-Natta烯烃聚合催化剂的载体一般以无机物为主,如SiO、MgCl2和沸石等。同无机物载体相比,有机物载体可以大幅度减少烯烃聚合产物中的无机灰分,提高聚烯烃产品的性能,还可以较容易地引入官能团,有效地控制催化活性中心在载体上的分布,从而更好地调控烯烃聚合过程以及聚合产物的形貌。因此,将无机/有机载体复合制备催化剂成为新型聚烯烃催化剂的重要方向。目前制备无机/有机复合材料的方法主要有乳液聚合法、悬浮聚合法及层层组装法等,但是这些方法制备过程比较繁琐,同时也引入了其它一些极性物质,不适用于烯烃聚合催化剂的制备过程。相转化法是膜材料领域常用的一类简单易行的成膜方法。本文首先考察了相转化法制备硅胶/聚(苯乙烯-co-丙烯酸)(PSA)复合载体的基本实验条件,然后将该方法引入复合Ziegler-Natta催化剂的制备,用PSA包覆以硅胶为载体的TiCl3催化剂(SLC-S催化剂),再负载MgCl2/TiCl4络合物制得核壳结构的复合催化剂,聚合反应后得到了分子量分布较宽的聚乙烯产品,研究结果对于单反应器内制备宽/双峰聚乙烯具有重要的意义。
     论文主要进行了以下几个方面的研究:(1)基于相转化法成膜机理制备硅胶/聚(苯乙烯-co-丙烯酸)(PSA)核壳型微球,并确定制备复合微球的基本实验条件;(2)依据确定的相转化法成膜的条件制备Ziegler-Natta复合催化剂,并分别用乙烯气相聚合和淤浆聚合考察氢气含量及有机膜的厚度对催化剂的聚合活性及其聚乙烯性能的影响;(3)对复合催化剂中壳层部分的催化剂进行了改进,并考察了催化剂的性能。具体的工作成果如下:
     1.提出采用相转化法制备具有良好分散性的无机/有机复合载体颗粒,并考察了非溶剂的蒸发速度、聚合物的浓度、硅胶粒径及聚(苯乙烯-co-丙烯酸)的类型等因素对复合载体的表面形貌及粒径的影响。非溶剂的蒸发速度越慢,复合载体的分散性越好,但为兼顾生产效率与覆膜效果,蒸发速度采用1 ml/min;聚合物浓度越大,复合载体表面越粗糙;硅胶的粒径越大,复合载体表面越蓬松;而聚(苯乙烯-co-丙烯酸)的分子量以及官能团的含量基本不影响复合载体的形貌以及粒径分布。另外,复合载体表面包覆的PSA膜较致密,与单独的硅胶载体相比,其比表面积、孔体积及孔径明显减小
     2.利用相转化法制备了同时包含无机载体和有机载体的复合Ziegler-Natta催化剂,研究了该催化剂乙烯气相聚合反应的聚合活性和聚合产物的性能。复合催化剂具有较高的活性,活性高达3000克聚乙烯/克催化剂(9.0 bar聚合压力),且复合催化剂的动力学可调。膜厚为3微米的复合催化剂聚合活性高于核层的SLC-S催化剂,且具有带诱导期的平稳型动力学曲线,而膜厚为1.5微米的复合催化剂的活性接近于SLC-S催化剂,且其具有相似的衰减型动力学曲线。同时,不同的膜厚还能够调节复合催化剂的氢调性能及所得聚乙烯的分子量分布,得到宽峰分子量分布的聚乙烯。
     3.对Ziegler-Natta复合催化剂进行了乙烯淤浆聚合的研究,考察了不同覆膜厚度的催化剂对乙烯淤浆聚合活性和聚合产物性能的影响。研究发现,复合催化剂淤浆聚合的活性明显高于气相聚合。SLC-S催化剂和HC-5催化剂的动力学曲线由气相聚合中的快速衰减型转变为淤浆聚合中的平稳型的曲线类型,而HC-20催化剂的动力学曲线则有平稳型变为淤浆聚合中的缓慢衰减型。淤浆聚合中随着膜厚的增加Mn和Mw逐渐依次增大,与其气相聚合的规律相同,但MWD则逐渐变窄。同时,催化剂淤浆聚合所得聚乙烯的堆密度略低于气相聚合。
     4.为了改善催化剂的性能,采用BuMgCl代替MgCl2进行反应制得了一系列的复合载体催化剂,主要研究了TiCl4加入量对壳层催化剂的聚合活性及聚乙烯分子量分布的影响。随着TiCl4加入量的增加,催化剂的活性逐渐升高,且几乎呈线性的增加趋势。同时,其聚合动力学曲线的类型由快速衰减型逐渐过渡为缓慢衰减型,MWD逐渐减小,聚合反应所得聚乙烯的堆密度则逐渐增加。
Most of the support materials successfully used in Ziegler-Natta catalysts have been inorganic compounds, such as silica gel, magnesium chloride and zeolite. Compared with the inorganic carriers, organic carriers can greatly reduce inorganic residues to improve the performance of polyolefin products. Therefore, inorganic/organic carrier of the composite catalyst has become an important direction of new polyolefin catalysts. The current preparation method of inorganic/organic composite are complicated and introduces a number of other polar substances, not being suitable for the catalyst of olefin polymerization. A phase inversion method was introduced for hybrid Ziegler-Natta Catalyst preparation.
     This thesis focused on the following three aspects:(1) the preparation of silica/poly (styrene-co-acrylic acid) (PSA) core-shell microspheres; (2) the study of hybrid Ziegler-Natta catalysts for gas phase and slurry phase ethylene polymerization; (3) the improvement of hybrid Ziegler-Natta catalysts for slurry ethylene polymerization. Specific works are as follows:
     1. Inorganic/organic composite carrier particles were prepared based on phase inversion method. The influences of several factors on the composite surface morphology and particle size were studied, such as evaporation rate of the non-solvent, polymer concentration, the size of silica gel particle and different poly (styrene-co-acrylic acid). The slower of the non-solvent evaporation rate was, the better the dispersion of composite carrier became, and 1 ml/min was chosen as the suitable non-solvent evaporation rate. The influences of other factors on the particle size distribution of composite carriers were quite small. In addition, the specific surface area, pore volume and pore size of the composite supports were significantly reduced compared to silica gel.
     2. Hybrid Ziegler-Natta catalysts were prepared based on phase inversion method. Ethylene polymerizations were conducted in a gas phase reactor. Composite catalyst has high activity (3000 g polyethylene/g catalyst) (9.0 bar pressure). HC-20 catalyst had a good ethylene polymerization activity and its kinetic curve was stable with an inductive period, while HC-5 catalyst demonstrated a fast decay during polymerization and its activity and kinetic curve both resembled SLC-S catalyst. What's more, the thickness of membrane could affect the hydrogen response of the hybrid catalysts and the molecular weight distribution of resultant polyethylene.
     3. The hybrid Ziegler-Natta catalysts were employed for ethylene slurry polymerization. The activities of the composite catalysts in slurry polymerization were significantly higher than the activities in the gas phase polymerization. In the slurry polymerization, the kinetic profiles of SLC-S catalyst, HC-5 catalyst and HC-20 catalyst were relatively stable then with a small decay. With the increase of the thickness of hybrid catalysts, Mn and Mw of the obtained polyethylene gradually increased, but their MWD became narrow. Meanwhile, the bulk density of the polyethylene obtained from slurry polymerization was slightly lower than that from gas phase polymerization.
     4. In order to improve the performance of the catalyst, MgCl2 was replaced by BuMgCl to obtain a series of catalysts. With the increase of the amount of TiCl4, catalyst activity gradually increased with a linearly trend. At the same time, the kinetic profiles were in the gradual transition from the rapid decay type to the slowly decaying type, MWD decreased and the bulk density increased.
引文
[1]Galli P, Vecellio G. Technology:driving force behind innovation and growth of polyolefins. Progress in Polymer Science,2001,26(8):1287-1336.
    [2]郭华,初宇红,张晓凌,王德林.国内外聚乙烯生产现状及市场分析.弹性体,2009,19(2):71-76.
    [3]金栋,吕效平.世界聚乙烯工业现状及生产工艺研究新进展.化工科技市场,2006,29(2):1-5.
    [4]Facett E W, Gibson R O, Perrin M W, Patton J G, Williams E G. Br. Pat.,471590,1937.
    [5]宋立平,李静辉LDPE技术与市场.塑料加工应用,1999,21(2):53-60.
    [6]胡铁彪,高继志.线型低密度聚乙烯的性能特点及扩大应用的几点看法.塑料加工应用,1999,21(4):31-37.
    [7]李兵.高密度聚乙烯技术进展.当代化工,2006,35(5):322-326.
    [8]Ziegler K, Breil H, Martin H, Holzkamp E. Ger. Pat.,973626,1953.
    [9]Ziegler K, Breil H, Martin H, Holzkamp E. U.S. Pat.,3257332,1954.
    [10]于先锋,张红兵.线性低密度聚乙烯的应用及其发展趋势.齐鲁石油化工,2004,32(3):203-207.
    [11]Ballard D G, Jones E, Pioli A J P, Robinson PA, Wyatt R J. U. S. Pat.,3840508,1974.
    [12]李玉芳,伍小明.双峰聚乙烯生产工艺及催化剂研究进展.上海化工,2007,32(1):27-32.
    [13]崔月,李勇智.双峰聚乙烯技术研究进展.广东化工,2007,34(8):42-44.
    [14]Scheirs J, Bohm L L, Boot J C, Leevers P S. PE100 resins for pipe applications:Continuing the development into the 21st century. Trends in Polymer Science,1996,4(12):408-415.
    [15]小约翰布尔著,孙泊庆,栾瑛洁,张玉昆译.齐格勒-纳塔催化剂和聚合.北京:化学工业出版社,1986.
    [16]Chadwick, John C. Ziegler-Natta Catalysis. Encyclopedia of polymer science and technology. 2003, John Wiley & Sons:New York.
    [17]Kashiwa N, Fujimura H, Tokuzumi Y. Ethylene, propylene and 1-butene polymerization catalysts.1968.
    [18]Kashiwa N. The discovery and progress of MgCl2-supported TiCl4 catalysts. Journal of Polymer Science:Part A:Polymer Chemistry,2004,42(1):1-8.
    [19]Giulio Natta, Piero Pino, Giorgio Mazzanti, Umberto Giannini. A crystallizable organometallic complex containing titanium and aluminium. Journal of the American Chemical Society,1957,79(11):2975-2976.
    [20]Breslow D S, Newburg N R. Bis-(cyclopentadienyl)-titanium dichloride-alkylalumnum complexls as catalysts for the polymerization of ethylene. Journal of the American Chemical Society,1957,79(18):5072-5073.
    [21]Sinn H, Kaminsky W, Vollmer H J, Woldt R. "Living polymers" on polymerization with extremely productive Ziegler catalysts. Angewandte Chemie-International Edition,1980, 19(5):390-392.
    [22]肖士镜,余赋生著.烯烃配位聚合催化剂及聚烯烃.北京:北京工业大学出版社,2002.
    [23]Kaminsky W, Laban A. Metallocene catalysis. Applied Catalysis a-General,2001,222(1-2): 47-61.
    [24]Kaminsky W. Polymerization catalysis. Catalysis Today,2000,62(1):23-34.
    [25]钱军,王加龙.茂金属聚乙烯的特性、应用及其加工型研究.塑料制造,2009,(7):91-94.
    [26]Johnson L K, Killian C M, Brookhart M. New Pd(Ⅱ)-and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society,1995, 117(23):6414-6415.
    [27]Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene. Journal of the American Chemical Society,1998,120(16): 4049-4050.
    [28]Britovsek G J P, Gibson V C, Kimberley B S, Maddox P J, McTavish S J, Solan G A, White A J P, Williams D J. Novel olefin polymerization catalysts based on iron and cobalt. Chemical Communications,1998, (7):849-850.
    [29]Britovsek G J P, Bruce M, Gibson V C. Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C. Solan G A, Stromberg S, White A J P, Williams D J. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands:Synthesis, structures, and polymerization studies. Journal of the American Chemical Society,1999, 121(38):8728-8740.
    [30]赵烨,高海洋,张玲,伍青.功能化聚烯烃合成研究进展.高分子通报,2009,(7):27-35.
    [31]Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo-and copolymerization. Chemical Reviews,2000,100(4):1169-1203.
    [32]Bohm L L. The ethylene polymerization with Ziegler catalysts:Fifty years after the discovery. Angewandte Chemie-International Edition,2003,42(41):5010-5030.
    [33]Alt F P, Bohm L L, Enderle H F, Berthold J. Bimodal polyethylene-Interplay of catalyst and process. Macromolecular Symposia,2001,163(1):135-144.
    [34]崔晓明,李明.双峰聚乙烯的生产技术及市场前景.国外塑料,2006,24(10):40-46.
    [35]李明,伍小明.双峰聚乙烯生产工艺及催化剂研究进展.化工戈藏2006,(5):38-41.
    [36]Hompens G K. Polyolefins production technology advance. Chemical Week,2002,164(13): 35-36.
    [37]BP Chem Int Ltd. Catalyst compositions and process for preparing polyolefins. EP0608054A2,1994.
    [38]Ahlers A, Kaminsky W. Variation of molecular weight distribution of polyethylenes obtained with homogeneous Ziegler-Natta catalysts. Macromolecular Rapid Communication,1988, 9(7):457-462.
    [39]孙敏,陈伟,景振华.制备宽双峰分子量分布聚乙烯的催化体系.合成树脂及塑料,2000,17(3):9-11.
    [40]Lopez-Linares F, Barrios A D, Ortega H, Matos J O, Joskowicz P, Agrifoglio G. Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler-Natta and a metallocene/MAO catalyst system. Journal of Molecular Catalysis A:Chemical,2000,159(2): 269-272.
    [41]Jianke L, Erling R. Bimodal polyethylenes obtained with a dual-site metallocene catalyst system. Effect of trimethylaluminium addition. Macromolecular Rapid Communication,2001, 22(12):952-956.
    [42]王世波,刘东兵,徐人威,毛炳权.复合镍铁乙烯聚合催化剂制备双峰聚乙烯.科学通报,2005,50(21):2434-2435.
    [43]刘东兵,王洪涛,邱波,周歆,刘长城.非茂单活性中心-BCG复合催化剂用于制备双峰高密度聚乙烯.石油化工,2007,36(9):901-906.
    [44]Kim J D, Soares J B P, Rempel G L. Use of hydrogen for the tailoring of the molecular weight distribution of polyethylene in a bimetallic supported metallocene catalyst system. Macromolecular Rapid Communications,1998,19(4):197-199.
    [45]Kim J D, Soares J B P, Rempel G L. Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. Journal of Polymer Science Part A-Polymer Chemistry,1999,37(3): 331-339.
    [46]Han S C, Jin S C, Wha Y L. Control of molecular weight distribution of polyethylene catalyzed over Ziegler-Natta/metallocene hybrid and mixed catalysts. Journal of Molecular Catalysis A:Chemical,2000,159(1-2):203-213.
    [47]Han S C, Young H C, Wha Y L. Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts comparison between hybrid and mixed catalysts. Catalysis Today,2000,63(2-4):523-530.
    [48]McDaniel M P. Controlling polymer properties with the Phillips chromium catalysts. Industrial and Engineering Chemistry Research,1988,27(9):1550-1564.
    [49]李三喜.Ti-Hf双金属高效载体催化剂合成宽分子量分布聚乙烯的研究.应用化学,2001,18(5):412-415.
    [50]阎卫东,魏玉茂,孙爱武,胡友良.宽峰聚乙烯催化合成及其性能..大庆石油学院学报,1999,23(2):23-26.
    [51]Wang J F, Wang L, Gao H Q, Wang W Q, Wang W, Zhao Z R, Sun T X, Feng L F. Ethylene polymerization using a novel MgCl2/SiO2-supported Ziegler-Natta catalyst. Polymer International, 2006,55(3):299-304.
    [52]陈永平,范志强,王齐,傅智盛,徐君庭,徐红.掺杂MgCl2负载Z-N催化剂合成宽相对分子质量分布聚乙烯.渐江学学报(工学版),2006,40(11):1900-1904.
    [53]程薇,许学翔,赵伟,景振华.负载型非茂金属催化剂结构的表征.石油化工,2005,34(9):844-849.
    [54]邹丰楼,李杨,邹晓天,李松涛,宋玉春,周秀中,徐善生.分子量宽峰分布聚乙烯茂金属催化剂的研究.合成树脂及材料,2000,17(2):28-33.
    [55]Michael S F, Tarun K M. David R W. Nanosphere-microsphere assembly:methods for core-shell materials preparation. Chemistry of Materials,2001,13(6) 2210-2216.
    [56]Schneider J J. Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis. Advanced Materials,2001,13(7):529-533.
    [57]马光辉,苏志国.高分子微球材料.北京:化学工业出版社,2005.
    [58]Furusawa K, Anzai C. Preparation of composite particles by hetercoagulations. Colloid and Polymer Science,1987,265(10):882-888.
    [59]陈敏.聚合物/SiO2有机-无机纳米复合微球的制备与表征[博士学位论文].上海:复旦大学.2006.
    [60]Zhu Y, Da H, Yang X, Hu Y. Preparation and characterization of core-shell monodispersed magnetic silica microspheres. Colloids and Surfaces A:Physicochem and Engineering Aspects,2003,231(1-3):123-129.
    [61]杨忠强,刘凤岐.无机有机-核壳材料研究进展.化学通报,2004,(3):163-170.
    [62]Nagai K, Satake H, Nishishita O, Matsumoto H, Hashimoto H, Kido J, Kuramoto N. Polymer encapsulation of porous silica particles by aqueous vinyl polymerization method. Reprints of 7th Polymer Microspheres Symposium,1992:155-158(Oct.13-15,1992, Kobe, Japan).
    [63]Gu S, Kondo T, Onishi J, Konno M. Synthetic method of inorganic/organic monodisperse mono-core particles. Reprints of 12th Polymer Microspheres Symposium,2002:125-128(Nov. 6-8,2002, Fukui, Japan).
    [64]Shim J W, Kim J W, Han S H, Chang I S, Kim H K, Kang H H, Lee O S, Suh K D. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,207(1-3):105-111.
    [65]Martin C, Ramirez L, Cuellar J. Stainless steel microbeads coated with sulfonated polystyrene-co-divinylbenzene. Surface and Coating Technology,2003,165(1):58-64.
    [66]Yu D G, An J H. Preparation and characterization of titanium dioxide core and polymer shell hybrid composite particles prepared by two-step dispersion polymerization. Polymer,2004, 45(14):4761-4768.
    [67]Lami E B, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media:1 silica nanoparticles encapsulated by polystyrene. Journal of Colloid and Interface Science,1998,197(2):293-308.
    [68]Lami E B, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media:2 effect of silica size and concentration on the morphology of silica-polystyrene composite particles. Journal of Colloid and Interface Science,1999,210(2):281-289.
    [69]Ninjbadgar T, Yamamoto S, Fukuda T. Synthesis and magnetic properties of γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles. Solid State Sciences,2004, 6(8):879-885.
    [70]Avivi S, Felner I, Novik I, Gedanken A. The preparation of magnetic proteinaceous microspheres using the sonochemical method. Biochimica et Biophysica Acta,2001,1527(3): 123-129.
    [71]Wang Y J, Xiong Y, Chen F, Luo G S. Preparation of core-shell glass bead/polysulfone microspheres with two-step sol-gel process. Journal of Applied Polymer Science,2006,99(6): 3365-3369.
    [72]Loeb G S, Sourirajian S. Sea water demineralization by means of an osmotic membrane. Advances in Chemistry,1963,38:117-132.
    [73]Zeman L, Fraser T. Formation of air-cast cellulose acetate membranes. Part Ⅰ Study of macrovoid formation. Journal of Membrane Science,1993,84(1-2):93-106.
    [74]Zeman L, Fraser T. Formation of air-cast cellulose acetate membranes. Part Ⅱ Kinetics of demixing and macrovoid growth. Journal of Membrane Science,1994,87(3):267-279.
    [75]Strathmann H, Koch K. The formation mechanism of phase inversion membranes. Desalination,1977,21(3):241-249.
    [76]Strathmann H, Koch K, Amar P. The formation mechanism of asymmetrical membranes. Desalination,1975,16(2):179-203.
    [77]Wienk I M, Boom R M, Beerlage M A M, Bulte A M W, Smolders C A, Strathmann H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science,1996,113(2):361-371.
    [78]Mulder M. Basic principle of membrane technology. The Netherlands:Kluer Academic Dordrechr,1992,1-109.
    [79]俞三传,高从堦.浸入沉淀相转化法制膜.膜科学与技术,2000,20(5):36-41.
    [80]Stropnik B, Kaiser V. Polymeric membranes preparation by wet phase separation: mechanisms and elementary processes. Desalination,2002,145(1):1-10.
    [81]Reuvers A J, Smolders C A. Formation of membranes by means of immersion precipitation. Part Ⅱ The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. Journal of Membrane and Science,1987,34(1):67-86.
    [82]Smolders C A, Reuvers A J, Boom R M, Wienk I M. Microsturcture in phase inversion membrane. Part Ⅰ Formation of macrovoids. Journal of Membrane Science,1992,73(3): 259-275.
    [83]王保国,刘茂林,蒋维钧.中空纤维聚偏氟乙烯微孔膜研究.膜科学与技术,1995,15(1):46-50.
    [1]杨忠强,刘凤岐.无机有机-核壳材料研究进展.化学通报,2004,(3):163-170.
    [2]Nagai K, Satake H, Nishishita O, Matsumoto H, Hashimoto H, Kido J, Kuramoto N. Polymer encapsulation of porous silica particles by aqueous vinyl polymerization method. Reprints of 7th Polymer Microspheres Symposium,1992:155-158(Oct.13-15,1992, Kobe, Japan).
    [3]Shim J W, Kim J W, Han S H, Chang I S, Kim H K, Kang H H, Lee O S, Suh K D. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,207(1-3):105-111.
    [4]Ninjbadgar T, Yamamoto S, Fukuda T. Synthesis and magnetic properties of γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles. Solid State Sciences,2004,6(8): 879-885.
    [5]Caruso F, Schuler C, Kurth D G. Core-shell particles and hollow shells containing metallo-supramolecular components. Chemical Materials,1999,11(11):3394-3399.
    [6]Wang Y J, Xiong Y, Chen F, Luo G S. Preparation of core-shell glass bead/polysulfone microspheres with two-step sol-gel process. Journal of Applied Polymer Science,2006,99(6): 3365-3369.
    [7]马崇峰,易成林,朱叶,江金强,陈明清,刘晓亚.原子转移自由基聚合法合成双亲性无规共聚物聚(苯乙烯-co-丙烯酸)及其自组装行为的研究.石油化工,2008,37(7):718-726.
    [8]曹现福,陈德宏,张靓靓,许凯,陈鸣才.超临界二氧化碳中丙烯酸与苯乙烯共聚.高等学校化学学报,2006,27(11):2188-2192.
    [9]左丹英.溶液相转化法制备PVDF微孔膜过程中的结构控制及其性能研究[博士学位论文].浙江杭州:浙江大学.2005.
    [10]Mulder M. Basic principle of membrane technology. The Netherlands:Kluer Academic Dordrechr,1992,1-109.
    [11]杜丽君,秦伟,蒋斌波,吴文清,王靖岱,阳永荣.硅胶/聚苯乙烯-丙烯酸核壳结构复合粒子的制备及表征.材料研究学报,2010,24(2):182-186.
    [12]Kinnerle K, Strathmann H. Analysis of the structure-determining process of phase inversion membrane. Desalination,1990,79(2-3):283-302.
    [13]Zhang K, Chen H T, Chen X, Chen Z M, Cui Z C, Yang B. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromolecular Materials and Engineering,2003,288(4):380-385.
    [14]Zhang K, Wu W, Meng H, Guo K, Chen J F. Pickering emulsion polymerization:preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology,2009,190(3):393-400.
    [15]Luo H L, Sheng J, Wan Y Z. Preparation and characterization of TiO2/polystyrene core-shell nanospheres via microwave-assisted emulsion polymerization. Materials Letters,2008,62(1): 37-40.
    [16]Yao T J, Lin Q, Zhang K, Zhao D F, Lv H, Zhang J H, Yang B. Preparation of SiO2 @ polystyrene @ polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside. Journal of Colloid and Interface Science,2007,315(2): 434-438.
    [17]Yong T H, Chen L W. Pore formation mechanism of membranes from phase inversion process. Desalination,1995,103(3):233-247.
    [1]Mteza S B, Hsu C C, Bacon D W. A study of polyethylene-gr-2-tert-butyl amino methacrylate-supported TiCl4 catalyst for ethylene polymerization. Journal of Polymer Science:Part A:Polymer Chemistry,1996,34(9):1693-1702.
    [2]Shi L Y, Qin Y X, Cheng W X, Chen H, Tang T. Effect of swelling response of the support particles on ethylene polymerization. Polymer,2007,48(9):2481-2488.
    [3]Sung C H, Hoang T B, Naoya K, Jin J Z, Toshiya U, Kazuo S. Ethene polymerization with a poly(styrene-co-divinylbenzene) beads supported rac-Ph2Si(Ind)2ZrCl2 catalyst. Macromolecular Chemistry and Physics,1998,199(7):1393-1397.
    [4]Guo Y, Zhang X Q, Dong W M. Organic-inorganic hybrid supported zirconocene catalysts for ethylene polymerization. Journal of Molecular Catalysis A:Chemical,2005,237(1-2):45-49.
    [5]Zhang D, Jin G X. Radical co-polymerization of diiminedibromidenickel (Ⅱ)-functionalized olefin with styrene:synthesis of polymer-incorporated nickel Ⅱ α-diimine catalyst for ethylene polymerization. Applied Catalysis A:General,2004,262(1):13-18.
    [6]Sun L, Hsu C C, Bacon D W. Polymer-supported Ziegler-Natta Catalysts Ⅰ A preliminary study of catalyst synthesis. Journal of Polymer Science, Part A:Polymer Chemistry,1994, 32(11):2127-2134.
    [7]Sun L, Hsu C C, Bacon D W. Polymer-supported Ziegler-Natta Catalysts Ⅱ Ethylene homo-and copolymerization with TiCl4/MgR2/poly(ethylene-co-acrylic acid) catalyst. Journal of Polymer Science, Part A:Polymer Chemistry,1994,32(11):2135-2145.
    [8]Zhang K, Wu W, Meng H, Guo K., Chen J F. Pickering emulsion polymerization:preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology,2009,190(3):393-400.
    [9]Zhang K, Chen H, Chen X, Chen Z M, Cui Z C, Yang B. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromolecular Materials and Engineering,2003,288(4):380-385.
    [10]阳永荣,叶志斌,任晓红.TiCl4-Mg(OC2H5)催化乙烯聚合和形态学研究Ⅱ.预聚合对聚合物颗粒形态的修正.石油化工,2002,31(1):21-23.
    [11]Przybyla C, Tesche B, Fink G. Ethylene copolymerization with the heterogeneous catalyst system SiO2/MAO/rac-Me2Si[2-Me-4-Ph-Ind]2ZrCl2:The filter effect. Macromolecular Rapid Communications,1999,20(6):328-332.
    [12]邹丰楼,李杨,邹晓天,李松涛,宋玉春,周秀中,徐善生.分子量宽峰分布聚乙烯茂金属催化剂的研究.合成树脂及塑料,2000,17(2):28-31.
    [13]Hindryekx F, Dubois P, Jerome R, Marti M G. Ethylene polymerization by a high activity MgCl2 supported Ti catalyst in the presence of hydrogen and/or 1-octene. Polymer,1998, 39(3):621-629.
    [14]Mulhaupt R. Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts. Macromolecular Chemistry and Physics,2003,204(2): 289-327.
    [15]Shaffer W K, Ray W H. Polymerization of olefins through heterogeneous catalysis VIII A kinetic explanation for unusual effects. Journal of Applied Polymer Science,1997,65(6): 1053-1080.
    [1]Ballard D G. History of Polyolefins. D Reidel Publishing Company,1986.
    [2]张启兴,杨萱,吴果,王海华.乙烯气相聚合Ziegler负载型催化剂的研究.石油化工,2003,32(2):116-120.
    [3]伍青,王海华Ziegler-Natta催化剂催化乙烯气相聚合.高分子通报,1993,12(4):248-253.
    [4]Bergstra M F, Weickert G. Semi-batch reactor for kinetic measurements of catalyzed olefin co-polymerizations in gas and slurry phase. Chemical Engineering Science,2006,61(15): 4909-4918.
    [5]郭子方.乙烯淤浆聚合Ziegler-Natta催化剂的研究进展.石油化工,2009,38(4):451-455.
    [6]Jejelowo M O, Lynch D T, Wanke S E. Comparison of ethylene polymerization in gas-phase and slurry reactors. Macromolecules,1991,24(8):1755-1761.
    [7]Choi K Y, Ray W H. Polymerization of olefins through heterogeneous catalysis Ⅱ Kinetics of gas phase propylene polymerization with Ziegler-Natta catalysts. Journal of Applied Polymer Science,1985,30(3):1065-1081.
    [8]Salajka Z, Kratochvila J, Hamrik O, Kazda A, Gheorghiu M. One-phase supported titanium-based catalysts for polymerization of ethylene and its copolymerization with 1-alkenes I Preparation and properties of catalysts. Journal of Polymer Science, Part A: Polymer Chemistry,1990,28(7):1651-1660.
    [9]Sun L, Hsu C C, Bacon D W. Polymer-supported Ziegler-Natta Catalysts Ⅰ A preliminary study of catalyst synthesis. Journal of Polymer Science, Part A:Polymer Chemistry,1994, 32(11):2127-2134.
    [10]Floyd S, Heiskanen T, Taylor T W, Mann G E, Ray W H. Polymerization of olefins through heterogeneous catalysis Ⅷ Effect of particle heat and mass transfer on polymerization behaviour and polymer properties. Journal of Applied Polymer Science,1987,33(4): 1021-1065.
    [11]Shi L Y, Qin Y X, Cheng W X, Chen H, Tang T. Effect of swelling response of the support particles on ethylene polymerization. Polymer,2007,48(9):2481-2488.
    [12]Stork M, Koch M, Klapper M, Mullen K, Gregorius H, Rief U. Ethylene polymerization using crosslinked polystyrene as support for zirconocene dichloride/methylaluminoxane. Macromolecular Rapid Communications,1999,20(4):210-213.
    [13]Baulina A A, Budanovaa M A, Ivancheva S S, Sokolova V N, Yerofeyeva B V. Kinetic characteristics of the propagation reaction in polymerization of ethylene using highly effective ziegler type catalytic systems containing magnesium. Polymer Science USSR,1980, 22(7):1814-1823.
    [14]Kim I, Kim J H, Woo S I. Kinetic study of ethylene polymerization by highly active silica supported TiCl4/MgCl2 catalysts. Journal of Applied Polymer Science,1990,39(4):837-854.
    [15]Sobota P. The role of MgCl2 as supporter for the new generation of olefin polymerization catalysts. Polymer-Plastics Technology and Engineering,1989,28(5-6):493-510.
    [16]Soga K, Ohnishi R, Doi Y. Copolymerization of ethylene with propylene over SiO2-supported MgCl2/TiCl4 catalyst. Polymer Bulletin,1983,9(6-7):299-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700