用户名: 密码: 验证码:
电化学方法制备金属氧化物半导体纳米材料及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物半导体纳米材料,由于其具有半导体的特性、结构多样性、多种价态的可变性和共存性、可表现出非化学计量学组成和结构的稳定性,在光学、催化和光伏等方面表现出优异的性质。对金属氧化物半导体纳米材料的研究,涉及到晶体生长、纳米科学、结构、催化、电学、光学和表面科学等多门学科,具有很大的挑战意义。因此,制备纳米结构的金属氧化物半导体并研究其相关性质和发掘新性质是非常具有理论和现实意义的。本论文研究的SbxOy,ZnO,CuO及其与Ag修饰纳米结构,在光催化、燃料敏化太阳能电池、CO和碳氢化合物催化氧化和作为燃料电池阳极催化剂方面具有重大的潜在应用。论文主要围绕基于一维的金属氧化物半导体纳米材料的制备、结构表征、生长机理分析和性质表征展开。制备的方法主要基于电化学方法,金属氧化物半导体材料主要为SbxOy,ZnO和CuO,研究的性质主要为光学性质和催化性质。
     (1)利用化学镀的方法,以Cu片作为基体,实现一般情况下氧化性较强的Cu/Cu2+电对还原相对具有还原性的Sb/Sb3+电对,第一次制备了Sb十四面体疏松三维结构Sb纳米笼,这种三维结构是由Sb纳米线按其菱形晶体晶胞的a、b和c三轴有序延伸编织而得。在氧气氛围下低温加热,可使Sb纳米结构的表面氧化,而其形貌保持不变,但结晶度变差。生长在钝化基体上的Sb纳米笼,由于其与基体上的铜氧化物相互作用,其氧化速率增快。这种疏松的三维结构,可用于催化剂的载体或催化剂。
     (2)各种ZnO纳米材料可通过电化学腐蚀的方法制备获得。电化学腐蚀分为三种模式:液膜、半浸状态基体上部的气膜和下部的溶液。基于一维的ZnO纳米材料的生长机理为电化学腐蚀和取向连接。ZnO纳米材料的生长受浓度、反应时间、添加剂、基体状态、液膜厚度和溶剂种类等因素影响,通过控制这些条件,观察到了ZnO纳米材料形貌的演化过程,获得的ZnO纳米材料形貌有纳米棒、纳米线、纳米针、纳米颗粒、梳状结构、纳米枝状体和多级结构。采用紫外可见吸收光谱和荧光光谱研究材料的关学性质。各样品的光学带隙随形貌变化而变化。其中,短纳米棒的光学带隙最宽,而粗纳米棒的最窄。除了粗纳米棒,其它样品均表现出带边发射。这种带边发射强度随样品的形貌变化也发生变化,短纳米棒的发光强度最强。
     (3)以化学镀在Zn基体上沉积的多孔Ag纳米簇作为模板,在热处理下,从Ag纳米簇长出ZnO纳米线。Ag在ZnO纳米线电极上的电化学行为特殊,主要是由于ZnO纳米线电极的特殊性。Ag纳米颗粒修饰的ZnO纳米线超级结构,在紫外区的吸收强度几乎不变,但ZnO的光学带隙变小,且但荧光强度剧烈降低,这是由于在ZnO和Ag之间发生电荷转移。在拉曼实验中,在修饰结构中产生许多有序分布的分裂峰,其产生原因为表面等离子体共振耦合。此外,在修饰结构中会发生不寻常的超级强吸光的特殊现象,我们把之归属于在Ag修饰ZnO纳米线特殊结构上所发生的表面等离子体共振及其耦合、光学非线性特性、电荷转移和等离子体波导的共同作用。
     (4)采用化学镀和电化学腐蚀的联合方法,制备了ZnO纳米材料修饰Ag亚微米级颗粒的复合材料。控制电化学腐蚀的时间,可以获得较低ZnO覆盖度的镶嵌结构、较高ZnO覆盖度的核壳结构和高ZnO覆盖度的仙人球结构。考察了不同ZnO覆盖度的复合材料的光学性质和光电响应行为。只有镶嵌结构表现出宽范围的紫外可见光吸收,且表现出增强的光电响应效应,主要原因为较大的Ag颗粒,可储存更多的电荷;众多ZnO纳米结构修饰一颗直径较大(亚微米级)的Ag颗粒,使电荷转移效率提高;Ag颗粒的表面等离子体共振且修饰的ZnO不产生影响,可增强Ag与ZnO之间的电荷转移。
     (5)采用电化学腐蚀的方法,制备了氧化铜纳米颗粒、絮状结构、亚微米级砖形结构和不同特征的纳米棒和纳米片等。这些纳米材料的制备,主要是通过控制晶体生长的条件来获得的。样品生长的条件包括浓度、生长时间、添加剂、生长模式、温度等。探讨了不同形貌、不同表面状态、不同结构和不同分布的氧化铜纳米材料的形成机理。
     (6)采用XPS和拉曼光谱研究了氧化铜纳米材料的氧吸附能力。考察了不同形貌和结构的氧化铜纳米材料的氧吸附行为。氧吸附能力的大小,主要取决于样品缺陷结构的多少、结晶度的高低、比表面积的大小等。在氧气储存后,样品表现出更强的氧吸附能力。样品在吸附氧的同时,也吸附大量的含碳物,并对其进行原位催化氧化。氧化的程度,在不同的环境下,可发生半氧化、亚深氧化和完全氧化。一般样品的氧吸附能力越高,其对含碳物的催化活性也越高。但样品的催化活性也受其本身结构的影响,即吸附键的强度受样品结构的影响。温度高,有利于催化反应的进行。
     (7)探讨了氧化铜纳米材料作为直接乙醇燃料电池的阳极催化剂对乙醇电催化氧化的催化作用,提出了一种新的求催化剂载量的方法,研究了氧化铜纳米材料电催化剂催化乙醇的机理及催化行为的特殊性。结果发现,CuO纳米材料对乙醇的电催化氧化表现出高的催化活性,无明显的中毒效应,催化反应动力学快。这主要是由于CuO纳米材料具有高的氧物种吸附能力、良好的碳吸附结构、高价态或其趋势的氧化铜本身具有的催化作用等。CuO纳米材料不用引入第二种物种,通过本身的结构变化,自动可提升催化效率。具有大量缺陷结构的纳米棒,其催化活性更高,这主要是由于其一维的构造,更有利于各物种的吸附与脱附、有利于载流子的传输、有利于其本身的氧化和更大程度地与溶液接触等。
Metal oxide semiconductor (MOS) nanostructures have powerful applications in optics, catalysis, and photovoltaics due to their semiconducting properties, structural varieties, ability to change valence, co-existence of mixed valences, nonstoichiometic composition, and stability. The research on MOS nanostructures involve crystal growth, nanoscience, crystal structure, catalysis, electricity, optics, and surface science, which presenting a great challenge. Therefore, synthesizing MOS nanostructures and investigating the related properties or seeking new features are high of significance both in theory and in application. Dissertation is developed centered around the synthesis, structure characterization, formation mechanism discussion, and properties study of MOS nanostructures, including SbxOy, ZnO, CuO, and their composites with Ag. The synthesizing method is mainly based on electrochemical route, the studied properties are mainly related to optics and catalysis.
     (1) The potential ofφ(Cu/Cu2+) is higher than that ofφ(Sb/Sb3+). However, the successful occurrence of Cu foil to replace Sb3+ to form a Sb coating (a typical chemical plating method) is mainly due to no Cu2+ before reaction and the much lower concentration of Cu2+ during reaction. A regular fourteen-faced polyhedron shape of Sb three-dimensional structure is obtained by this facile method. The structure presents a loose feature which is similar to a cage. The cage is formed by the ordered intertexture of Sb nanowires. Sb cage can be oxidized under moderate hearting in O2 atmosphere with morphology conservation but with poor crystallinity. The cage grown on a passivation substrate can be oxidized much facilely due to the interaction with the copper oxide species in the passivation coating. Such a loose structure may find promising application in catalysis.
     (2) Various morphologies of ZnO nanostructures can be obtained through a novel method, incorporating electrochemical corrosion with three modes: liquid membrane and above and below the water line in partial immersion. The mechanism of the growth of one-dimensional-based nanostructures is proposed as electrochemical corrosion and oriented attachment, which occur in a liquid membrane or in a vapor membrane or in solution for partial immersion. The evolution of ZnO nanostructures such as nanorods, nanowires, nanopins, nanoparticles, comb-like structures, nanodentrites, and hierarchical structures is observed, and the influence of concentration, reaction time, additives, state of substrate, membrane thickness, and solvent on the morphology of ZnO is investigated. Optical properties of ZnO nanostructures are studied by using UV-visible absorption spectra and photoluminescence (PL). Their optical gaps vary from different morphologies. Among the studied samples, short nanorods show the largest optical gap, while big nanorods present the smallest value of optical gap. PL properties demonstrate that peaks of near-band emission and defect-related luminescence are basically in the same position. However, intensities for different morphologies are of different values, and short nanorods exhibit the best near-band emissions.
     (3) ZnO nanowires can grow during heat treatment from the micropores of Ag nanoclusters deposited on a Zn substrate. A Ag-modified ZnO nanowires superstucture is obtained by electrodepostion. The elctrochemical behavior of Ag(I) reducing on the surfaces of ZnO nanowires is unusual. The intensity of light absorption in the ultraviolet region almost keeps, but the optical bandgap of ZnO nanowires is red shifted, and the photoluminescence (PL) intensity decreases greatly, which are mainly due to the charge transfer between ZnO and Ag. Moreover, many split Raman peaks appear resulting from surface plasmon resonance (SPR) coupling. Additionally, extraordinary strong light absorption is obtained primarily arising from the interaction of SPR, SPR coupling, nonlinearities, charge transfer, and plasmon waveguides occurring on the superstructure.
     (4) ZnO nanostructure-modified Ag sub-micron particles composite is prepared by association of chemical plating and electrochemical corrosion. By controlling reaction time, composites with different coverage of ZnO on the surfaces of Ag sub-micron particles such as mosaic structures, core/shell structures, and ball cactus-like structures are obtained. The optical properties and photoelectron response on different composites are also studied. Only mosaic structures present the broad UV-vis absorption and exhibit enhanced photovoltaic effects mainly arising from the relatively large size of Ag particles which can store much more photoinduced electrons, the configuration of many ZnO nanostructres sharing one big Ag particle which promoting the efficiency of charge transfer, and the occurrence of SPR on Ag which enhancing the charge transfer between Ag and ZnO.
     (5) Copper oxide nanoparticles, floc-like structures, sub-micron brick-like structures, and nanorods and nanofilms with different features in shapes are assembled by an electrochemical corrosion route. The successful obtainment of these nanostructures are mainly based on the control of the growing conditions, including concentration, growing time, additives, growing modes, and temperature. In addition, the formation mechanism of copper oxide nanostructures with different shapes, different surface states, different structures, and different distributions are also investigated.
     (6) The oxygen adsorption properties of copper oxide nanostructures are studied via X-ray photoelectron spectroscopy (XPS) and Raman spectra (RS). The behavior of oxygen adsorption on different copper oxide nanostructures is investigated. The results show that the oxygen adsorption ability of copper oxide nanostructures depends on the quantities of defect structures, the crystallinity, and the specific surface area. The samples exhibit stronger oxygen adsorption ability after exposure to O2 atmosphere. The adsorbed oxygen can oxidize surface adsorbed carbon species. The degree of the oxidation of the carbon species depends on the reaction condition. Generally, the stronger the ability of oxygen adsorption, the higher the catalytic activities toward the oxidation of the carbon species. Moreover, high temperature enhances catalytic reactions.
     (7) The catalytic activity toward ethanol electrooxidation on copper oxide nanostructure is studied. The results show that copper oxide nanostruture demonstrates high catalytic activity toward ethanol electrooxidation with high catalytic kinetics and unobvious poisoning effects. The high catalytic activity is mainly derived from the copper oxide nanostructure which presenting the strong oxygen adsorption ability, the catalysis of the high-valence copper species, and the nanoscale of copper oxide catalyst. Without introducing a promoter, copper oxide nanostructure itself can improve its catalytic activity by changing surface structure. Copper oxide nanorods with large quantities of defect structures can exhibit much higher catalytic activity, which is mainly due to its one-dimensional configuration that benefiting the adsorption and desorption of reactants and products, the transportation of carriers, the oxidation of CuO, and the contact of CuO with solution in deep extent. Copper oxide nanostructure can be severed as an electrocatalyst in the anode material in direct ethanol fuel cells.
引文
[1] Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305: 1269-1272
    [2] Naidu B S, Pandey M, Sudarsan V, et al. Photoluminescence and Raman spectroscopic investigations of morphology assisted effects in Sb2O3. Chem Phys Lett, 2009, 474: 180-184
    [3] Voss T, Svacha G T, Mazur Eet al. High-order waveguide modes in ZnO nanowires. Nano Lett, 2007, 7: 3675-3680
    [4] Vomiero A, Ferroni M, Comini E, et al. Preparation of radial and longitudinal nanosized heterostructures of In2O3 and SnO2. Nano Lett, 2007, 7: 3553-3558
    [5] Shi L, Xu Y, Hark S, et al. Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett, 2007, 7: 3559-3563
    [6] Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316: 102-105
    [7] Chiquito A J, Lanfredi A J C, de Oliveira R F M, et al. Electron dephasing and weak localization in Sn doped In2O3 nanowires. Nano Lett, 2007, 7: 1439-1443
    [8] Kang S H, Choi S-H, Kang M-S, et al. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater, 2008, 20: 54-58
    [9] Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc, 2005, 127: 8286-8287
    [10] Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 2007, 17: 1451-1457
    [11] Park M-S, Wang G-X, Kang Y-M, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem, 2007, 119: 764-767
    [12] Park J C. Kim J. Kwon H. et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater, 2009, 21: 803-807.
    [13] Zhang H, Lu X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4: 380-386
    [14] Zhou H, Wong S S. A aacile and mild synthesis of 1-D ZnO, CuO, and Fe2O3 nanostructures and nanostructured arrays. ACS Nano, 2008, 2: 944-958
    [15] Makkus R C, Hemmes K, de Wir J H W. A comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells. J Electrochem Soc, 1994, 141: 3429-3438
    [16] Hu G, Li S Q, Gong H, et al. White light from an indium zinc oxide/porous silicon light-emitting diode. J Phys Chem C, 2009, 113: 751-754
    [17] McShane C M, Choi K-S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J Am Chem Soc, 2009, 131: 2561-2569
    [18] An K, Kwon S G, Park M, et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett, 2008, 8: 4252-4258
    [19] Curreli M, Li C, Sun Y, et al. Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc, 2005, 127: 6922-6923
    [20] Chang M-T, Chou L-J, Hsieh C-H, et al. Magnetic and electrical characterizations of half-metallic Fe3O4 nanowires. Adv Mater, 2007, 19: 2290-2294
    [21] Oka K, Yanagida T, Nagashima K, et al. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. J Am Chem Soc, 2009, 131: 3434-3435
    [22] Feng X, Feng L, Jin M, et al. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films. J Am Chem Soc, 2004, 126: 62-63
    [23] Kimura T, Sekio Y, Nakamura H, et al. Cupric oxide as an induced-multiferroic with high-TC. Nature Mater, 7, 2008: 291-294
    [24] Deng Z, Tang F, Chen D, et al. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J Phys Chem B, 2006, 110: 18225-18230
    [25] Liu L, Hu Z, Cui Y, et al. A facile route to the fabrication of morphology-controlled Sb2O3 nanostructures. Solid State Sci, 2010, in press
    [26] Nayak J, Sarangi S N, Dash A K, et al. Observation of semiconductor to insulator transition in Sb/Sb2O3 clusters synthesized by low-energy cluster beam deposition with different conditions. Vacuum, 2006, 81: 366-372
    [27] Kazmerski L L. Polycrystalline and Amorphous Thin Films and Devices. Academic Press, New York, 1980.
    [28] Harbeke G. Polycrystalline Semiconductors. Physical Properties and Applications. Springer, Berlin, 1984.
    [29] El-Kadry N, Ahmed MF, Abdel-Hady K. Effect of deposition parameters on the optical absorption in thermally evaporated cadmium telluride thin films. Thin Solid Films, 1996, 274: 120-127
    [30] Szczyrbowski J, Czapla A. Optical absorption in d.c. sputtered indium arsenide films. Thin Solid Films, 1977, 46: 127-37.
    [31] Tigau N, Ciupina V, Prodan G. The effect of substrate temperature on the optical properties of polycrystalline Sb2O3 thin films. J Cryst Growth, 2005, 277: 529-535
    [32] Wang J-F, Chen H-C, Zhang X-H. Nonlinear electrical behaviour of the TiO2.Sb203 system. Chin Phys Lett, 2000, 17: 530-531
    [33] Thomas J M. Colloidal metals: past, present, and future. Pure Appl Chem, 1988, 60: 1517-1528
    [34] Fransson L, Vaughey J T, Benedek R. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study. Electrochem Commun, 2001, 3: 317-323
    [35] Trifonova A, Wachtler M, Winter M, et al. Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries. Ionics, 2002, 8: 321-328
    [36] Mukaibo H, Osaka T, Reale P, et al. Optimized Sn/SnSb lithium storage materials. J Power Sources, 2004, 132: 225-228
    [37] Tarascon J-M, Morcrette M, Dupont L, et al. On the electrochemical reactivity mechanism of CoSb3 vs. lithium. J Electrochem Soc, 2003, 150: A732-A741
    [38] Pralong V, Leriche J-B, Beaudoin B, et al. Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ionics, 2004, 166: 295-305
    [39] Tirado J L. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater Sci Eng, 2003, R40: 103-136
    [40] Bryngelsson H, Eskhult J, Nyholm L, et al. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater, 2007, 19: 1170-1180
    [41] Liu H H, Iwasawa Y. Unique performance and characterization of a crystalline SbRe2O6 catalyst for celective ammoxidation of isobutane. J Phys Chem B, 2002, 106: 2319-2329
    [42] Spengler J, Anderle F, Bosch E, et al. Antimony oxide-modified vanadia-based catalysts-physical characterization and catalytic properties. J Phys Chem B, 2001, 105: 10772-10783
    [43] Liu H C, Imoto H, Shido T, et al. Selective ammoxidation of isobutylene to methacrylonitrile on a new family of crystalline Re-Sb-O catalysts. J Catal, 2001, 200: 69-78
    [44] Becker K, Steinberg K H, Spindler H. In 2nd Conf on Spillover. K Marx Universitat, Leipzig. Steinberg K H. Ed 1989, p 204
    [45] Ruiz P, Delmon B. The role of mobile oxygen species in the selective oxidation of isobutene. Catal Today, 1988, 3: 199-209
    [46] Delmon B, Ruiz P. Synergy in selective catalytic oxidation. React Kinet Catal Lett, 1987, 35: 303-314
    [47] Schuit G C A. Bismuth molybdates as oxidation catalysts. J Less Common Met, 1974, 36: 329-338
    [48] Dadyburjor D B, Jewur S S, Ruckenstein E. Selective oxidation of hydrocarbons on composite oxides. Catal Rev Sci Eng, 1979, 19: 293-350
    [49] Keulks G W. Mechanism of oxygen atom incorporation into the products of propylene oxidation over bismuth molybdate. J Catal, 1970, 19: 232-235
    [50] Faus F M, Zhou B, Matralis H, et al. Catalytic cooperation between molybdena and antimony oxide (Sb2O4) in N-ethylformamide dehydration. III. Comparison of a mathematical model based on the remote control mechanism with experimental results. J Catal, 1991, 132: 200-209
    [51] Spengler J, Anderle F, Bosch E, et al. Antimony oxide-modified vanadia-based catalysts-physical characterization and catalytic properties. J Phys Chem B, 2001, 105: 10772-10783
    [52] Duh B. Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer, 2002, 43: 3147-3154
    [53] Liu H H, Iwasawa Y. Unique performance and characterization of a crystalline SbRe2O6 catalyst for selective ammoxidation of isobutane. J Phys Chem B, 2002, 106: 2319-2329
    [54] Aravindan V, Vickraman P. A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries. Solid State Sci, 2007, 9: 1069-1073
    [55] Lu H, Wilkie C A. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene Polymer. Degradation and Stability, 2010, 95: 564-571
    [56] Liu K, Zhai J, Jiang L. Fabrication and characterization of superhydrophobic Sb2O3 films. Nanotechnology, 2008, 19: 165604
    [57] Hu Y, Zhang H, Yang H. Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. J Alloys & Compounds, 2007, 428: 327-331
    [58] Friedrichs S, Meyer R R, Sloan J, et al. Complete characterization of a Sb2O3/(21,-8)SWNT inclusion composite. Chem Commun, 2001, 929-930.
    [59] Ye C H, Meng G W, Zhang L D, et al. A facile vapor-solid synthetic route to Sb2O3 fibrils and tubules. Chem Phys Lett, 2002, 363: 34-38.
    [60] Sendor D, Weirich T, Simon U. Transformation of nanoporous oxoselenoantimonates into Sb2O3-nanoribbons and nanorods. Chem Commun, 2005, 5790-5792
    [61] Zhang Y X, Li G H, Zhang L D. Growth of Sb2O3 nanotubes via a simple surfactant-assisted solvothermal process. Chem Lett, 2004, 33: 334-335.
    [62] Li B J, Zhao Y B, Xu X M, et al. Fabrication of hollow Sb2O3 microspheres by PEG coil template. Chem Lett, 2006, 35: 1026-1027.
    [63] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett, 1998, 72: 3270-3272
    [64] Huang M H, Mao S, Feick H Y. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899
    [65] Gao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder. Phys Rev Lett, 1999, 82: 2278-2281
    [66] Yang J L, An S J, Park W I, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater, 2004, 16: 1661-1664
    [67] Jones F, Léonard F, Talin A A, et al. Electrical conduction and photoluminescence properties of solution-grown ZnO nanowires. J Appl Phys, 2007, 102: 014305
    [68] Yan H, He R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J Am Chem Soc, 2003, 125: 4728-4729
    [69] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Mater, 2005, 4: 455-459
    [70] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Mater, 2005, 4: 42-46
    [71] Willander M, Lozovik Y E, Zhao Q X, et al. Excitonic effects in ZnO nanowires and hollow nanotubes. Proc of SPIE, 2007, 6486: 648614
    [72] Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305: 1269-1273
    [73] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241-245
    [74] Wang G, Li X. Size dependency of the elastic modulus of ZnO nanowires: Surface stress effect. Appl Phys Lett, 2007, 91: 231912
    [75] Pedersen T G. Quantum size effects in ZnO nanowires. Phys Stat Sol (c), 2005, 2: 4026-4030
    [76] Schlenker E, Bakin A, Postels B, et al. Electrical characterization of ZnO nanorods. Phys Stat Sol (b), 2007, 244: 1473-1477
    [77] Liu Y, Dong J, Hesketh P, et al. Synthesis and gas sensing properties of ZnO single crystal flakes. J Mater Chem, 2005, 15: 2316-232
    [78] Fan Z, Wang D, Chang P-C, et al. ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett. 2004, 85: 5923-5925
    [79] Sun Z-P, Liu L, Zhang L, et al. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology, 2006, 17: 2266-2270
    [80] Kang B S, Ren F, Heo Y W, et al. pH measurements with single ZnO nanorods integrated with a microchannel. Appl Phys Lett, 2005, 86: 112105
    [81] Topoglidis E, Cass A E G, ORegan B, et al. Immobilization and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem, 2001, 517: 20-27
    [82] Yang Y H, Yang H F, Yang M H, et al. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix. Anal Chim Acta, 2004, 525: 213-220
    [83] Zang J, Li C M, Cui X, et al. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis, 2007, 19: 1008-1014
    [84] Huang M, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899
    [85] Jung S, Oh E, Lee K, et al. A sonochemical method for fabricating aligned ZnO nanorods. Adv Mater, 2007, 19: 749-753
    [86] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291: 1947-1949
    [87] Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309: 1700-1704
    [88] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett, 2003, 3: 1625-1631
    [89] Kong X Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303: 1348-1351
    [90] Hughes W L, Wang Z L. Formation of piezoelectric single-crystal nanorings and nanobows. J Am Chem Soc, 2004, 126: 6703-6709
    [91] Hu Z S, Ramírez D J E, Cervera B E H, et al. Synthesis of ZnO nanoparticles in 2-propanol by reaction with water. J Phys Chem B, 2005, 109: 11209-11214
    [92] Li G-R, Lu X-H, Qu D-L, et al. Electrochemical growth and control of ZnO dendritic structures. J Phys Chem C, 2007, 111: 6678-6683
    [93] Yan H, He R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J Am Chem Soc, 2003, 125: 4728-4729
    [94] Jiang P, Zhou J, Fang H, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater, 2007, 17: 1303-1310
    [95] Jing Y L, Jian G W, Zhi F R. Hierarchical ZnO nanostructures. Nano Lett, 2002, 2: 1287-1291
    [96] Juarez B H, Garcia P D, Golmayo D, et al. ZnO inverse opals by chemical vapor deposition. Adv Mater, 2005, 17: 2761-2765
    [97] Kim D S, Ji R, Fan H J, et al. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small, 2007, 3: 76-80
    [98] Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater, 2002, 14: 1841-1843
    [99] Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater, 2002, 14: 215-218
    [100] Wang L S, Zhang X Z, Zhao S Q, et al. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl Phys Lett, 2005, 86: 024108
    [101] Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309: 1700-1704
    [102] Ng H T, Han J, Yamada T, et al. Single-crystal nanowire vertical surround-gate field-effect transistor. Nano Lett, 2004, 4: 1247-1252
    [103] Jr H, Hsu Ju H, Wang C W, et al. Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. J Phys Chem B, 2006, 110: 50-53
    [104] Rybczynski J, Banerjee D, Kosiorek A, et al. Formation of super arrays of periodic nanoparticles and aligned ZnO nanorods - simulation and experiments. Nano Lett, 2004, 4: 2037-2040
    [105] Chik H, Liang J, Cloutier S G. et al. Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl Phys Lett, 2004, 84: 3376-3378
    [106] Greyson E C, Babayan Y, Odom T W. Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv Mater, 2004, 16: 1348-1352
    [107] Jung S, Oh E, Lee K, et al. A Sonochemical method for fabricating aligned ZnO nanorods. Adv Mater, 2007, 19: 749-753
    [108] Yahiro J, Oaki Y, Imai H. Biomimetic synthesis of wurtzite ZnO nanowires possessing a mosaic structure. Small, 2006, 2: 1183-1187
    [109] Wang J X, Sun X W, Yang Y, et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology, 2006, 17: 4995-4998
    [110] Jones F, Léonard F, Talin A A, et al. Electrical conduction and photoluminescence properties of solution-grown ZnO nanowires. J Appl Phys, 2007, 102: 014305
    [111] Jiang Z-Y, Xu T, Xie Z-X, et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J Phys Chem B, 2005, 109: 23269-23273
    [112] Li G, Dawa C R, Bu Q, et al. Electrochemical synthesis of orientation-ordered ZnO nanorod bundles. Electrochem Commun, 2007, 9: 863-868
    [113] Wang Y C, Leu I C, Hon M H. Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition. J Cryst Growth, 2002, 237-239: 564-568
    [114] Musa A O, Akomolafe T, Carter M J. Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energy Mater Sol Cells, 1998, 51: 305-316
    [115] Hsieh C T, Chen J M, Lin H H, et al. Field emission from various CuO nanostructures. Appl Phys Lett, 2003, 83: 3383-3385
    [116] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105: 1025-1102
    [117] Switzer J A, Kothari H M, Poizot P, et al. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425: 490-493
    [118] Kydd R, Teoh W Y, Wong K, et al. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater, 2009, 19: 369-377
    [119] Wang X, Rodriguez J A, Hanson C, et al. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. J Phys Chem B, 2006, 110: 428-434
    [120] Schuyten S, Dinka P, Mukasyan A S, et al. A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol. Catal Lett, 2008, 121: 189-198
    [121] Baltes C, Vukojevi? S, Schüth F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal, 2008, 258: 334-344
    [122] Bera P, Priolkar K R, Sarode P R, et al. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: formation of a Ce1-xCuxO2-solid solution. Chem Mater, 2002, 14: 3591-3601
    [123] Tang B-X, Wang F, Li J-H, et al. Reusable Cu2O/PPh3/TBAB system for the cross-couplings of aryl halides and heteroaryl halides with terminal alkynes. J Org Chem, 2007, 72: 6294-6297
    [124] Son S U, Park I K, Park J, et al. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem Commun, 2004, 778-779
    [125] Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetratinginorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc, 2009, 131: 4576-4577
    [126] Danaee I, Jafarian M, Forouzandeh F, et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy, 2008, 33: 4367-4376
    [127] Hasanzadeh M, Karim-Nezhad G, Mahjani M G, et al. A study of the electrocatalytic oxidation of cyclohexanol on copper electrode. Catal Commun, 2008, 10: 295-299
    [128] Chowdhuri A, Gupta V, Sreenivas K, et al. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett. 2004, 84: 1180-1182
    [129] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867-871
    [130] Liao B, Wei Q, Wang K, et al. Study on CuO-BaTiO3 semiconductor CO2 sensor. Sens Actuators B, 2001, 80: 208-214
    [131] Wang G, Gu A, Wang W, et al. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochem Commun, 2009, 11: 631-634
    [132] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499
    [133] Grugeon S, Laruelle S, Herrera-Urbina, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc, 2001, 148: A285-A292
    [134] Larcher DSudant G Leriche J B et al. The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 2002, 149: A234-A241
    [135] Morales J, Sánchez L, Martín F, et al. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochim Acta, 2004, 49: 4589-4597
    [136] Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater. 2009, 21: 803-807
    [137] Reznik D, Pintschovius L, Ito M, et al. Electron–phonon coupling re?ecting dynamic charge inhomogeneity in copper oxide superconductors. Nature, 2006, 440: 1170-1173
    [138] Tranquada J M, Woo H, Perring T G, et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature, 2004, 429: 534-538.
    [139] Tian B, Zheng X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449: 885-890
    [140] Wu Y, Xiang J, Yang C, et al. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430: 61-65
    [141] Zhang Y, Suenaga K, Colliex C, et al. Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973-975
    [142] Han S, Li C, Liu Z Q, et al. Transition metal oxide core-shell nanowires: generic synthesis and transport studies. Nano Lett, 2004, 4: 1241-1246
    [143] Lauhon L J, Gudiksen M S, Wang D L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420: 57-61
    [144] Li Q, Yam V W-W. Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires. Angew Chem Int Ed, 2007, 46: 1-5
    [145] Lee J, Javed T, Skeini T, et al. Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. Angew Chem, 2006, 118: 4937-4941
    [146] Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. 2007, 450: 402-406
    [147] Chang D E, S?rensen A S, Demler E A, et al. A single-photon transistor using nano-scale surface plasmons. Nature Phys, 2007, 3: 807-812
    [148] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett, 2003, 3: 1229-1233
    [149] Klimov V V, Ducloy M, Letokhov V S. A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object. Chem Phys Lett, 2002, 358: 192-198
    [150] Smolyaninov I I, Elliott J, Zayats A et al. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons. Phys Rev Lett, 2005, 94: 057401
    [151] Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nature Mater, 2008, 7: 435-441
    [152] Shevchenko E V, Talapin D V, Murray C B, et al. Polymorphism in AB13 nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc, 2005, 127: 8741-8747
    [153] Ohtomo A, Muller D A, Grazul J L et al. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature, 2002, 419: 378-380
    [154] Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004, 427: 423-426 155] He Jr H, Lao C S, Chen L J. et al. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. J Am Chem Soc, 2005, 127: 16376-16377
    [156] Chen X H, Moskovits M. Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett, 2007, 7: 807-812
    [157] Garcia M A, Merino J M, Fernández P E, et al. Magnetic properties of ZnO nanoparticles. Nano Lett, 2007, 7: 1489-1494
    [158] Suber L, Fiorani D, Scavia G, et al. Permanent magnetism in dithiol-capped silver nanoparticles. Chem Mater, 2007, 19: 1509-1517
    [159] Brinkman A, Huijben M, Zalk M V, et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater, 2007, 6: 493-496
    [160] Bryan J D, Santangelo S A, Keveren S C, et al. Activation of high-TC ferromagnetism in Co2+:TiO2 and Cr3+:TiO2 nanorods and nanocrystals by grain boundary defects. J Am Chem Soc, 2005, 127: 15568-15574
    [161] Xing G Z, Yi J B, Tao J G, et al. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv Mater, 2008, 20: 3521–3527
    [162] Choi W, Termin A, Hoffmann M R. Effect of doped metal ions on the photocatalytic reactivity of TiO2 quantum particles. Angew Chem, 1994, 106: 1148-1149
    [163] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69-96
    [164] Wang C Y, Bahnemann D W, Dohrmann J K. A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun, 2000: 1539-1540
    [165] Elmalem E, Saunders A E, Costi R, et al. Growth of photocatalytic CdSe–Pt nanorods and nanonets, Adv Mater, 2008, 20: 4312-4317
    [166] He J-H, Ichinose I, Kunitake T, et al. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films: nanoparticle morphology and catalytic activity. J Am Chem Soc, 2003, 125: 11034-11040.
    [167] Huang X H, Tu J P, Zeng Z Y, et al. Nickel foam-supported porous NiOOAg film electrode for lithium-ion batteries. J Electrochem Soc, 2008, 155: A438-A441
    [168] Zhou Z-Y, Huang Z-Z, Chen D-J, et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem, 2010, 122: 421-424
    [169] Sekiguchi T, Miyashita S, Obara K, et al. Hydrothermal growth of ZnO single crystals and their optical characterization. J Cryst Growth, 2000, 214/215: 72-76
    [170] Johnson J C, Yan H, Yang P, et al. Optical cavity effects in ZnO nanowire lasers and waveguides. J Phys Chem B, 2003, 107: 8816-8828
    [171] Kong X Y, Wang Z L. Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Appl Phys Lett, 2004, 84: 975-977
    [172] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett, 2003, 3: 1625-1631
    [173] Kuang Q, Jiang Z Y, Xie Z X, et al. Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2. J Am Chem Soc, 2005, 127: 11777-11784
    [174] Jung S-H, Oh E, Lee K-H, et al. A Sonochemical method for fabricating aligned ZnO nanorods. Adv Mater, 2007, 19: 749-753
    [175] Kong X Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303: 1348-1351
    [176] Jiang Z-Y, Xu T, Xie Z-X, et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J Phys Chem B, 2005, 109: 23269-23273
    [177] Tian Z R Voigt J A Liu Jet al. Biomimetic arrays of oriented helical ZnO nanorods and columns. J Am Chem Soc, 2002, 124: 12954-12955
    [178] Imai H, Iwai S, Yamabi S. Phosphate-mediated ZnO nanosheets with a mosaic structure. Chem Lett, 2004, 33: 768-769
    [179] Yoshida T, Tochimoto M, Schlettwein D, et al. Self-assembly of Zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chem Mater, 1999, 11: 2657-2667
    [180] Yahiro J, Oaki Y, Imai H. Biomimetic synthesis of wurtzite ZnO nanowires possessing a mosaic structure. Small, 2006, 2: 1183-1187
    [181] Gao P X, Ding Y, Mai W, et al. Conversion of Zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309: 1700-1704
    [182] Wu X, Jiang P, Ding Y, et al Mismatch strain induced formation of ZnO/ZnS heterostructured rings. Adv Mater, 2007, 19: 2319-2323
    [183] Gilman J J. The Art and Science of Growing Crystals. John Wiley & Sons, Inc: New York, 1963.
    [184] Brune H, Roder H, Bromann K, et al. Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates. Surf Sci, 1996, 349: L115-L122.
    [185] Tian Z R, Voigt J A, Xu H F, et al. Dendritic growth of cubically ordered nanoporous materials through self-asembly. Nano Lett, 2003, 3: 89-92
    [186] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 287: 969-971
    [187] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed, 2002, 41: 1188-1191
    [188] Chemseddine A, Moritz T. Nanostructuring titania. Control over nanocrystal structure, size, shape, and organization. Eur J Inorg Chem, 1999, 2: 235-245
    [189] Liu J, Huang X, Li Y, et al. Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology. Cryst Growth Des, 2006, 6: 1690-1696
    [190] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the“Oriented Attachment”mechanism. J Am Chem Soc, 2004, 126: 14943-14949
    [191] Mokari T, Rothenberg E, Popov I, et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science, 2004, 304: 1787-1790
    [192] Saunders A E, Popov I, Banin U. Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B, 2006, 110: 25421-25429
    [193] Zhang H, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J Phys Chem B, 2000, 104: 3481-3487
    [194] Wu M, Lin G, Chen D, et al. Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem Mater, 2002, 14: 1974-1980
    [195] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater, 2001, 13: 113-116
    [196] Ihn S-G, Song J-I. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett, 2007, 7: 39-44
    [197] Zhu J, Peng H, Chan C K, et al. Hyperbranched Lead selenide nanowire networks. Nano Lett, 2007, 7: 1095-1099
    [198] Bakkers E P A M, Vandam J A, Franceschi S D, et al. Epitaxial growth of InP nanowires on germanium. Nature Mater, 2004, 3: 769-773
    [199] Dorn A, Wong C R, Bawendi M G. Electrically controlled catalytic nanowire growth from solution. Adv Mater, 2009, 21: 3479-3482
    [200] Lee J H, Wu J H, Liu H L, Iron–gold barcode nanowires. Angew Chem Int Ed, 2007, 46: 1-6
    [201] Huang Z, Harris K D, Brett M J. Morphology control of nanotube arrays. Adv Mater, 2009, 21: 2983-2987.
    [202] Liu Q, Liu H, Han M, et al. Nanometer-sized nickel hollow spheres. Adv Mater, 2005, 17: 1995-1999
    [203] Li G-R, Qu D-L, Yu X-L, et al. Microstructural evolution of CeO2 from porous structures to clusters of nanosheet arrays assisted by gas bubbles via electrodeposition. Langmuir, 2008, 24: 4254-4259
    [204] Elias J, Lévy-Clément C, Bechelany M, et al. Hollow urchin-like ZnO thin films by electrochemical deposition. Adv Mater, 2010, 22: 1-6
    [205] Li G-R, Qu D-L, Tong Y-X Facile fabrication of magnetic single-crystalline ceria nanobelts. Electrochem Commun, 2008, 10: 80-84
    [206] Hu C, Liu H, Dong W, et al. La(OH)3 and La2O3 nanobelts. Synthesis and physical properties. Adv Mater, 2007, 19: 470-474
    [207] Zhang X, Zhang X, Zou K, et al. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. J Am Chem Soc, 2007, 129: 3527-3532
    [208] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquid interfaces. Science, 2003, 299: 226-229
    [209] Zhang Y, Li G, Wu Y, et al. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv Mater, 2002, 14: 1227-1230
    [210] Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed, 2005, 44: 2100-2102
    [211] Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett, 2005, 5: 191-195
    [212] Grimes C A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 2007, 17: 1451-1457
    [213] Baca A J, Meitl M A, Ko H C, et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv Funct Mater, 2007, 17: 3051-3062
    [214] Wang J, Thompson D A, Simmons J G. Wet chemical etching for V-grooves into InP substrates. J Electrochem Soc, 1998, 145: 2931-2937.
    [215] Wind R A, Jones H, Little M J, et al. Orientation-resolved chemical kinetics: using microfabrication to unravel the complicated chemistry of KOH/Si etching. J Phys Chem B, 2002, 106: 1557–1569.
    [216] Cobley C M, Rycenga M, Zhou F, et al. Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew Chem Int Ed, 2009, 48: 4824-4827
    [217] Tian N, Zhou Z-Y, Sun S-G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-735
    [218] Latham A H, Wilson M J, Schiffer P, et al. TEM-induced structural evolution in amorphous Fe oxide nanoparticles. J Am Chem Soc, 2006, 128: 12632-12633
    [219] Marks L D. Experimental studies of small particle structures. Rep Prog Phys, 1994, 57: 603-649
    [220] Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004, 126: 273-279
    [221] Schaffner M H, Patthey F, Schneider W D. Growth study of silver on MgO(100)/Mo(100). Surf Sci, 1998, 417: 159-167
    [222] Zhang L, Cosandey F, Persaud R, et al. Initial growth and morphology of thin Au films on TiO2(110). Surf Sci, 1999, 439: 73-78
    [223] Bauer I Z. Phenomenological theory of crystal precipitation on surfaces. Kristallogr, 1958, 110: 372-394
    [224] Argile C, Rhead G E. Adsorbed layer and thin film growth modes monitored by Auger electron spectroscopy. Surf Sci Rep, 1989, 10: 277-356
    [225] Wen B, Liu C, Liu Y, Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem B, 2005, 109: 12372-12375
    [226] Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem, 2007, 46: 6980-6986
    [227] Dong W, Shi Z, Ma J, et al. One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers. J Phys Chem B, 2006, 110: 5845-5848
    [228] Jiang P, Zhou J, Fang H, et al. Hierarchical shelled ZnO structures made of nunched nanowire arrays. Adv Funct Mater, 2007, 17: 1303-1310
    [229] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett, 1996, 68: 403-405
    [230] Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods. Phys Res Sect B, 2003, 199: 286-290
    [231] Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B, 2001, 63: 075205
    [232] Chen Y, Bagnall D M, Zhu Z, et al. Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy. J Cryst Growth, 1997, 181: 165-169
    [233] Li G-R, Lu X-H, Qu D-L, et al. Electrochemical growth and control of ZnO dendritic structures. J Phys Chem C, 2007, 111: 6678-6683
    [234] Pedersen T G. Quantum size effects in ZnO nanowires. phys stat sol (c), 2005, 2: 4026-4030
    [235] Bao J, Zimmler M A, Capasso F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett, 2006, 6: 1719-1722
    [236] Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys Rev Lett, 1969, 23: 579-581
    [237] Heitz R, Hoffmann A, Thurian P, et al. The copper center: a transient shallow acceptor in zinc sulfide and cadmium sulfide. J Phys: Condens Matter, 1992, 4: 157-168
    [238] Kouklin N. Cu-Doped ZnO Nanowires for efficient and multispectral photodetection applications. Adv Mater, 2008, 20: 2190-2194
    [239] Garces N, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals. Appl Phys Lett, 2002, 81: 622-624
    [240] Buhmann D, Schulz H J, Thiede M. Photoluminescence of vanadium and copper -doped cadmium sulfide crystals. Phys Rev B, 1979, 19: 5360-5368
    [241] Robbins D, Herbert D, Dean P. The origin of theα,β, andγblue no-phonon transitions in copper-doped zinc oxide: a deep-level problem. J Phys C Solid State Phys, 1981, 14: 2859-2870
    [242] Li P-J, Liao Z-M, Zhang X-Z, et al. Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett, 2009, 9: 2513-2518
    [243] Han W-Q, Wu L, Klie R F, et al. Enhanced optical absorption induced by dense nanocavities inside titania nanorods. Adv Mater, 2007, 19: 2525-2529
    [244] Zong R L, Zhou J, Li Q et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J Phys Chem B, 2004, 108: 16713-16716.
    [245] Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances. J Chem Phys Lett, 1998, 288: 243-247
    [246] Prodan E, Nordlander P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett, 2003, 3: 543-547
    [247] Stuart H R, Hall D G. Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett, 1998, 80: 5663-5666
    [248] Odom T W, Nehl C L. How gold nanoparticles have stayed in the light: the 3M’s principle. ACS Nano, 2008, 2: 612-616
    [249] Kreibig U, Vollmer M. In Optical Properties of Metal Clusters Springer-Verlag, New York. 1995
    [250] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830
    [251] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 10: 1025-1102
    [252] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance. Adv Mater, 2004,16: 1685-1706
    [253] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater, 2003, 2: 229-232
    [254] Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Springer-Verlag: New York. 1995
    [255] Shen Y R. Principles of Nonlinear Optics. Wiley: New Jersey. 1988
    [256]Jin R, Jureller J E, Kim H Y, et al. Correlating second harmonic optical responses of single Ag nanoparticles with morphology. J Am Chem Soc, 2005, 127: 12482-12483
    [257] Panoiu N-C, Osgood R M. Subwavelength nonlinear plasmonic nanowire. Nano Lett, 2004, 4: 2427-2430
    [258] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459: 410-413
    [259] Hamanaka Y, Fukuta K, Nakamura A, et al. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl Phys Lett, 2004, 84: 4938-4940
    [260] del Coso R, Requejo-Isidro J, Solis J, et al. Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold. J Appl Phys, 2004, 95: 2755-2762
    [261] Lu Y, Liu G L, Lee L P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett, 2005, 5: 5-9
    [262] Wang Q Q, Han J B, Gong H M, et al. Linear and nonlinear optical properties of Ag nanowire polarizing glass. Adv Funct Mater, 2006, 16: 2405-2408
    [263] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937
    [264] Chen S H, Webster S, Czerw R, et al. Morphology effects on the optical properties of silver nanoparticles. J Nanosci Nanotechnol, 2004, 4: 254-259
    [265] Mock J J, Barbic M, Smith D R, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys, 2002, 116: 6755-6759
    [266] Xu G, Tazawa M, Jin P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl Phys Lett, 2003, 82: 3811-3813
    [267] Mock J J, Smith D R, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett, 2003, 3: 485-491
    [268] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett, 2003, 3: 1229-1233
    [269] Chaney S B, Zhao Y P, Shanmukh S, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett, 2005, 87: 031908
    [270] Shan G, Xu L, Wang G, et al. Enhanced Raman scattering of ZnO quantum dots on silver colloids. J Phys Chem C, 2007, 111: 3290-3293
    [271] Gao J, Fu J, Lin C, et al. Formation and photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core. Langmuir, 2004, 20: 9775-9779
    [272] Zhang D, XieY, Mrozek M F, et al. Raman detection of proteomic analytes. Anal Chem, 2003, 75: 5703-5709
    [273] Cao Y C, Jin R, Nam J-M, et al. Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc, 2003, 125: 14676-14677
    [274] Takahashi T, Kuroiwa S, Ogura T, et al. Probing the oxygen activation reaction in intact whole mitochondria through analysis of molecular vibrations. J Am Chem Soc, 2005, 127: 9970-9971
    [275] Sugawa K, Akiyama T, Kawazumi H, et al. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films. Langmuir, 2009, 25: 3887-3893
    [276] Cozzoli P D, Fanizza E, Comparelli R, et al. Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J Phys Chem B, 2004, 108: 9623-9630
    [277] Hirakawa T, Kamat P V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc, 2005, 127: 3928-3934
    [278] Oldfield G, Ung T, Mulvaney P. Au@SnO2 core-shell nanocapacitors. Adv Mater, 2000, 12: 1519-1522
    [279] Wood A, Giersig M, Mulvaney P. Fermi level equilibration in quantum dot-metal nanojunctions. J Phys Chem B, 2001, 105: 8810-8815
    [280] Reitz J B, Solomon E I. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc, 1998, 120: 11467-11478
    [281] Nunan J, Robota H, Cohn M, et al. Physicochemical properties of cerium-containing three-way catalysts and the effect of cerium on catalyst activity. J Catal, 1992, 133: 309-324
    [282] Sass A S, Shvets V A, Savel G A, et al. Mechanism of low-temperature oxidation of carbon monoxide on supported mixed catalysts containing noble metals and cerium oxide. Kinet Katal, 1986, 27: 894-903
    [283] Oh S H, Eickel C C. Effects of cerium addition on carbon monoxide oxidation kinetics over alumina-supported rhodium catalysts. J Catal, 1988, 112: 543-55
    [284] Li L, Zhan Y, Zheng Q, et al. Water–gas shift reaction over CuO/CeO2 catalysts: effect of the thermal stability and oxygen vacancies of CeO2 supports previously prepared by different methods. Catal Lett, 2009, 130: 532-540
    [285] Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752-755
    [286] Sedmak G, Hocevar S, Levec J. Transient kinetic model of CO oxidation over a nanostructured Cu0.1Ce0.9O2-y catalyst. J Catal, 2004, 222: 87-99
    [287] Costa P D, Moden B, Meitzner G, et al. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5. Phys Chem Chem Phys, 2002, 4: 4590-4601
    [288] Gamarra D, Martínez-Arias A. Preferential oxidation of CO in rich H2 over CuO/CeO2: operando-DRIFTS analysis of deactivating effect of CO2 and H2O. J Catal, 2009, 263:189-195
    [289] Singh P, Hegde M S. Ce1-xRuxO2-δ(x=0.05, 0.10): A new high oxygen storage material and Pt, Pd-free three-way catalyst. Chem Mater, 2009, 21: 3337-3345
    [290] Kim K-H, Kim J-R, Ihm S-K. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65Zr0.35O2 prepared by continuous hydrothermal synthesis in supercritical water. J Hazard Mater, 2009, 167: 1158-1162
    [291] Trovarelli A. In Catalysis by Ceria and Related Materials. Vol 2. Hutchings G J. Ed. Catalytic Science Series. Imperial College Press: London. 2002
    [292] Di Monte R, Ka?par J. Nanostructured CeO2-ZrO2 mixed oxides. J Mater Chem, 2005, 15: 633-648
    [293] Machida M, Murata Y, Kishikawa K, et al. On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem Mater, 2008, 20: 4489-4494
    [294] Avgouropoulos G, Ioannides T, Matralis H, Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Appl Catal B, 2005, 56: 87-93
    [295] Skrman B, Nakayama T, Grandjean D, et al. Morphology and structure of CuOx/CeO2 nanocomposite catalysts produced by inert gas condensation: An HREM, EFTEM, XPS, and high-energy diffraction study. Chem Mater, 2002, 14: 3686-3699
    [296] Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. nature mater, 2008, 7 333-338
    [297] Papavasiliou J, Avgouropoulos G, Ioannides T. Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts. J Catal, 2007, 251: 7-20
    [298] Ho?mann J, Schauermann S, Johánek V, et al. The kinetics of methanol oxidation on a supported Pd model catalyst: molecular beam and TR-IRAS experiments. J Catal, 2003, 213: 176-190
    [299] Schauermann S, Ho?mann J, Johánek V, et al. Adsorption, decomposition and oxidation of methanol on alumina supported palladium particles. Phys Chem Chem Phys, 2002, 4: 3909-3918
    [300] Schauermann S, Hoffmann J, Johánek V, et al. Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew Chem Int Ed, 2002, 41: 2532-2535
    [301] Morin M C, Lamy C, Léger J M. Structural effects in electrocatalysis: oxidation of ethanol on platinum single crystal electrodes. effect of pH. J Electroanal Chem, 1990, 283: 287-291
    [302] Huang J C, Liu Z L, He C B, et al. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. J Phys Chem B, 2005, 109: 16644-16649
    [303] Liu Z L, Ling X Y, Su X D, et al. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B, 2004, 108: 8234-8240
    [304] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B, 2004, 108: 2654-2659
    [305] Zhu Y, Uchida H, Yajima T, et al. Attenuated total Reflection-Fourier Transform Infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir, 2001, 17: 146-154
    [306] Chen Y X, Miki A, Ye S, et al. An acitive intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc, 2003, 125: 3680-3681
    [307] Xia X H, Iwasita T, Ge F, Vielstich W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platium. Electrochim Acta, 1996, 41: 711-718
    [308] Zhu Y, Uchida H, Yajima T, et al. Attenuated total Reflection-Fourier Transform Infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir, 2001, 17: 146-154
    [309] Gamara G A, Lima de R B, Iwasita T. Catalysis of ethanol electrooxidation by PtRu: the influence of catalyst composition. Electrochem Commun, 2004, 6: 812-815
    [310] Xia X H Liess H-D Iwasita T. Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem, 1997, 437: 233-240
    [311] Yu E H, Scott K, Reeve R W. A study of the anodic oxidation of methanol on Pt in alkaline solution. J Electroanal Chem, 2003, 547: 17-24
    [312] Caram J A, Gutierrez C. Cyclic voltammetric and potential -modulated reflectance spectroscopic study of the electroadsorption of methanol and ethanol ono a platinum electrode in acid and alkaline media. J Electroanal Chem, 1992, 323: 213-230
    [313] Lemons R A. Fuel cells for transportation. J Power Sources, 1990, 29: 251-264
    [314] Igarashi H, Fujino T, Watanabe M. Hydrogen electrooxidation on platinum catalysts in the presence of trace carbon monoxide. J Electroanal Chem, 1995, 391: 119-123
    [315] Oetjen H-F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J Electrochem Soc, 1996, 143: 3838-3842
    [316] Radmilovic V, Gasteiger H A, Ross P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J Catal, 1995, 154: 98-106
    [317] Arico A S, Creti P, Kim H, et al. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst. J Electrochem Soc, 1996, 143: 3950-3959
    [318] Vijayaraghavan G, Gao L, Korzeniewski C. Methanol electrochemistry at carbon-supported Pt and PtRu fuel cell catalysts: voltammetric and in situ infrared spectroscopic measurements at 23 and 60 oC. Langmuir, 2003, 19: 2333-2337
    [319] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B, 2004, 108: 2654-2659
    [320] Bock C, Paquet C, Couillard M, et al. Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc, 2004, 126: 8028-8037
    [321] Deivaraj T C, Lee J Y. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications - a comparative study. J Power Sources, 2005, 142: 43-49
    [322] AricòA S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development. Fuel Cells, 2001, 1: 133-161
    [323] Schmidt T J, Noeske M, Gasteiger H A, et al. Electrocatalytic activity of Pt–Ru alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating-disk measurements. Langmuir, 1997, 14: 2591-2595
    [324] Chrzanowski W, Wieckowski A. Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum-electrodes. Catal Lett, 1998, 50: 69-75
    [325] Watanabe M, Igarashi H, Fujino T. Design of CO tolerant anode catalysts for polymer electrolyte fuel cell. Electrochemistry, 1999, 67: 1194-1196
    [326] Watanabe M, Zhu Y, Uchida H. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. J Phys Chem B, 2000, 104: 1762-1768
    [327] Igarashi H, Fujino T, Zhu Y, et al. CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys, 2001, 3: 306-314
    [328] Cao L, Scheiba F, Roth C, et al. Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed, 2006, 45: 5315-5319
    [329] Li L, Xing Y. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C, 2007, 111: 2803-2808
    [330] Wei Y-C, Liu C-W, Wang K-W. Activity–structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO2 and PtRu alloying. ChemPhysChem, 2009, 10: 1230-1237
    [331] Balducci G, Islam M S, Kaspar J, et al. Bulk reduction and oxygen migration in the ceria-based oxides. Chem Mater, 2000, 12:677-681
    [332] Campos C L, Roldán C, Aponte M, et al. Preparation and methanol oxidation catalysis of Pt-CeO2 electrode. J Electroanal Chem, 2005, 581: 206-215
    [333] Wang J, Deng X, Xi J, et al. Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles. J Power Sources, 2007, 170: 297-302
    [334] Xu H, Hou X. Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells. Int J Hydrogen Energy, 2007, 32: 4397-4401
    [335] Park K-W, Choi J-H, Kwon B-K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B, 2002, 106: 1869-187
    [336] Gurau B R, Viswanathan R, Liu R X, et al. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B, 1998, 102: 9997-10003.
    [337] Chen K Y, Shen P K, Tseung A C C. Anodic oxidation of impure H2 on Teflon-bonded Pt-Ru/WO3/C electrodes. J Electrochem Soc, 1995, 142: L185-L187
    [338] Shen P K, Chen K Y, Tseung A C C. CO oxidation on Pt-Ru/WO3 electrodes. J Electrochem Soc, 1995, 142: L85-L86
    [339] Wang Y Q, Wei Z D, Li L, et al. Methanol electrochemical oxidation on Au/Pt electrode enhanced by phosphomolybdic acid. J Phys Chem C, 2008, 112: 18672-18676
    [340] Goodenough J B, Manoharan R, Shukla A K, et al. Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study. Chem Mater, 1989, 1: 391-398
    [341] Park K-W, Choi J-H, Kwon B-K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B, 2002, 106: 1869-187
    [342] Zhou W, Zhou Z, Song S, et al. Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B, 2003, 46: 273-285
    [343] Jiang L, Sun G, Zhou Z, et al. Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell. Catal Today, 2004, 93-95: 665-670.
    [344] Park K W, Choi J H, Kwon B K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B, 2002, 106: 1869-1877
    [345] Mukerjee S, Urian R C, Lee S J, et al. Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. J Electrochem Soc, 2004, 151: A1094-A1103
    [346] Park K W, Ahn K S, Nah Y C, et al. Electrocatalytic enhancement of methanol oxidation at Pt-WOx nanophase electrodes and in-situ observation of hydrogen spillover using electrochromism. J Phys Chem B, 2003, 107: 4352-4355
    [347] Tian N, Zhou Z-Y, Sun S-G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-735
    [348] Van Effen R M, Evans D H. A study of aldehyde oxidation at glassy carbon, mercury, copper, silver, gold and nickel anodes. J Electroanal Chem, 1979, 103: 383-397
    [349] Motheo A J, Machado S A S, Rabelo F J B, et al. Electrochemical study of ethanol oxidation on nickel in alkaline media. J Braz Chem Soc, 1994, 5: 161-165
    [350] Danaee I, Jafarian M, Forouzandeh F, et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy, 2008, 33: 4367-4376
    [351] Golikand A N, Shahrokhian S, Asgari M, et al. Electrocatalytic oxidation of methanol on a nickle electrode modified by nickel dimethylglyoxime complex in alkaline medium. J Power Sources, 2005, 144: 21-27
    [352] Yi Q, Huang W, Zhang J, et al. Methanol oxidation on titanium-supported nano-scale Ni ?akes. Catal Commun, 2008, 9: 2053-2058
    [353] Tarasevich M R, Karichev Z R, Bogdanovskaya V A, et al. Kinetics of ethanol electrooxidation at RuNi catalysts. Electrochem Commun, 2005, 7: 141-146
    [354] Gupta S S, Datta J. Elctrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTEE suspension. J Power Sources, 2005, 145: 124-132
    [355] Raghuveer V, Thampi K R, Xanthopoulos N, et al. Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics, 2001, 140: 263-274
    [356] Hasanzadeh M, Karim-Nezhad G, Mahjani M G, et al. A study of the electrocatalytic oxidation of cyclohexanol on copper electrode. Catal Commun, 2008, 10: 295-299
    [357] Wang G, Gu A, Wang W, et al. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochem Commun, 2009, 11: 631-634
    [358] Xie Y, Huber C. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal Chem, 1881, 63: 1714-7719
    [359] Paixao T R L C, Corbo D, Bertotti M. Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium. Analytica Chimica Acta, 2002, 472: 123-131
    [360] AricòA S, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells, 2001, 1: 133-161
    [361] Shobba T, Mayanna S M, Sequeira C A C. Preparation and characterization of Co–W alloys as anode materials for methanol fuel cells. J Power Sources, 2002, 108: 261-264
    [1] Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404: 59-61
    [2] Xu C, Wang H, Shen P K, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater, 2007, 19: 4256-4259
    [3] Han W-Q, Wu L, Klie R F, et al. Enhanced optical absorption induced by dense nanocavities inside titania nanorods. Adv Mater, 2007, 19: 2525-2529
    [4] Feng X, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater, 2006, 18: 3063-3078
    [5] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937
    [6] Cobley C M, Rycenga M, Zhou F, et al. Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew Chem Int Ed, 2009, 48: 4824-4827
    [7] Xu G, Tazawa M, Jin P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl Phys Lett, 2003, 82: 3811-3813
    [8] Mock J J Smith D R Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett, 2003, 3: 485-491
    [9] Zhao Y P, Chaney S B, Shanmukh S, et al. Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B, 2006, 110: 3153-3157
    [10] Zhang Y, Li G, Wu Y, et al. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv Mater, 2002, 14: 1227-1230
    [11] Stegemann B, Ritter C, Kaiser B, et al. Crystallization of antimony nanoparticles: pattern formation and fractal growth. J Phys Chem B, 2004, 108: 14292 -14297
    [12] Wang X-S, Kushvaha S S, Yan Z, et al. Self-assembly of antimony nanowires on graphite. Appl Phys Lett, 2006, 88: 233105
    [13] Hu Y, Zhang H, Yang H, et al. Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. J Alloys Compounds, 2007, 428: 327-331
    [14] Friedrichs S, Meyer R R, Sloan J, et al. Complete characterization of a Sb2O3/(21,-8)SWNT inclusion composite. Chem Commun, 2001: 929-930
    [15] Ye C H, Meng G W, Zhang L D, et al. A facile vapor-solid synthetic route to Sb2O3 fibrils and tubules. Chem Phys Lett, 2002, 363: 34-38
    [16] Sendor D, Weirich T, Simon U. Transformation of nanoporous oxoselenoantimonates into Sb2O3-nanoribbons and nanorods. Chem Commun, 2005: 5790-5792
    [17] Zhang Y X, Li G H, Zhang L D. Growth of Sb2O3 nanotubes via a simple surfactant-assisted solvothermal process. Chem Lett, 2004, 33: 334-335
    [18] Li B J, Zhao Y B, Xu X M, et al. Fabrication of hollow Sb2O3 microspheres by PEG coil template. Chem Lett, 2006, 35: 1026-1027
    [19] Sharp R I, Warming E. Lattice dynamics of antimony. J Phys F, 1971, 1: 570-587
    [20] Roy A, Komatsu M, Matsuishi K, et al. Raman spectroscopic studies on Sb nanoparticles in SiO2 matrix prepared by rf-cosputtering technique. J Phys Chem Solids, 1997, 58: 741-747
    [21] Lannin J S, Calleja J M, Cardona M. Second-order Raman scattering in the Group-VA semimetals bismuth, antimony, and arsenic. Phys Rev B, 1975, 12: 585-593
    [22] Bryngelsson H, Eskhult J, Nyholm L, et al. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater, 2007, 19: 1170-1180
    [1] Anthony S P, Lee J I, Kima J K. Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl Phys Lett, 2007, 90: 103107.
    [2] Yang J, Winter M, Besenhard J O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ionics, 1996, 90: 281-287
    [3] Huggins R A Nix W D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics, 2000, 6: 57-63
    [4] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech, 2008, 3: 31-35
    [5] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-937
    [6] Cobley C M, Rycenga M, Zhou F, et al. Etching and growth: an intertwined pathway to silver nanocrystals with exotic shapes. Angew Chem Int Ed, 2009, 48: 4824-4827
    [7] Xu G, Tazawa M, Jin P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl Phys Lett, 2003, 82: 3811-3813
    [8] Mock J J H, Ryan T, Degiron A, et al. Distance-dependent Plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett, 2008, 8: 2245-2252.
    [9] Zhao Y P, Chaney S B, Shanmukh S, et al. Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B, 2006, 110: 3153-3157
    [10] Innocenzi P, Falcaro P, Grosso D, et al. Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J Phys Chem B, 2003, 107: 4711-4717
    [11] Vogt B D, Lee H J, Wu W, et al. Specular X-ray reflectivity and small angle neutron scattering for structure determination of ordered mesoporous dielectric films. J Phys Chem B, 2005, 109: 18445-18450
    [12] Jiu J, Isoda S, Wang F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J Phys Chem B, 2006, 110: 2087-2092
    [13] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the“Oriented Attachment”mechanism. J Am Chem Soc, 2004, 126: 14943-14949
    [14] Sun Z-P, Liu L, Zhang L, et al. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology, 2006, 17: 2266-2270
    [15] Fan Z, Wang D, Chang P-C, et al. ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett, 2004, 85: 5923-5925
    [16] Wang X, Zhou J, Lao C, et al. In situ field emission of density-controlled ZnO nanowire arrays. Adv Mater, 2007, 19: 1627-1631
    [17] Mohaddes-Ardabili L, Zheng H, Ogale S B, et al. Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nature Mater, 2004, 3: 533-538
    [18] Hochbaum A I, Chen R, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451: 163-167
    [19] Zhang X, Sun B Hodgkiss J M, et al. Tunable ultrafast optical switching via waveguided gold nanowires. Adv Mater, 2008, 20: 4455-4459
    [20] Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B, 2001, 63: 155409
    [21] Huang F, Zhang H, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett, 2003, 3: 373-378
    [22] Wloka J, Mueller K, Schmuki P. Pore morphology and self-organization effects during etching of n-type GaP(100) in bromide solutions. Electrochem Solid-State Lett, 2005, 8: B72-B75
    [23] Wang J, Thompson D A, Simmons J G. Wet chemical etching for V-grooves into InP substrates. J Electrochem Soc, 1998,145: 2931-2937
    [24] Wind R A, Jones H, Little M J, et al. Orientation-resolved chemical kinetics: using microfabrication to unravel the complicated chemistry of KOH/Si etching. J Phys Chem B, 2002, 106: 1557-1569
    [25] Kelly J J, Philipsen H G G. Anisotropy in the wet-etching of semiconductors. Current Opin Solid State Mater Sci, 2005, 9: 84-90
    [26] Li H, Liang C, Zhong K, et al. The modulation of optical property and its correlation with microstructures of ZnO nanowires. Nanoscale Research Letters, 2009, 4: 1183-1190
    [27] Palik E D, Bermudez V M, Glembocki O J. Ellipsometric study of orientation-dependent etching of silicon in aqueous potassium hydroxide. J Electrochem Soc, 1985, 132: 871-884
    [28] Hernandez R, Zappi M, Kuo C-H. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environ Sci Technol, 2004, 38: 5157-5163
    [29] Frankel G S. Pitting corrosion of metals. A review of the critical factors. J Electrochem Soc, 1998, 145: 2186-2198
    [30] Bohni H. Localized Corrosion of Passive Metals. In Uhlig’s Corrosion Handbook. Revie W Ed. John Wiley & Sons. Inc: New York, 2000, p173
    [31] Gilman J J. The Art and Science of Growing Crystals. John Wiley & Sons. Inc: New York, 1963.
    [32] Brune H, Roder H, Bromann K, et al. Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates. J Surf Sci, 1996, 349: L115-L122
    [33] Tian Z R, Voigt J A, Xu H F, et al. Dendritic growth of cubically ordered nanoporous materials through self-assembly. Nano Lett, 2003, 3: 89-92
    [34] Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO nanostructures. Nano Lett, 2002, 2: 1287-1291
    [35] Pilbáth Z, Sziráki L. The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions. Electrochimica Acta, 2008, 53: 3218-3230
    [36] Wroblowa H S, Qaderi S B. The mechanism of oxygen reduction on zinc. J Electroanal Chem Interf Electrochem, 1990, 295: 153-161
    [37] Yadav A P, Nishikata A, Tsuru T. Oxygen reduction mechanism on corroded zinc. J Electroanal Chem, 2005, 585: 142-149
    [38] Macdonald D D, Ismail K M, Sikora E. Characterization of the passive state on zinc. J Electrochem Soc, 1998, 145: 3141-3149
    [39] Rickert M. Electrochemistry of Solids. Springer-Verlag, Berlin. 1982, p 22
    [40] Xu H L, Wang W Z, Zhu W. Oriented attachment of crystalline CuS nanorods. Chem Lett, 2006, 35: 264-265
    [41] Alivisatos A P. Perspectives: Biomineralization: Naturally aligned nanocrystals. Science, 2000, 289: 736-737
    [42] Shinde V R, Lokhande C D, Mane R S, et al. Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Appl Surf Sci, 2005, 245: 407-413
    [43] Zurilla R W, Sen R K, Yeager E. The kinetics of the oxygen reduction reaction on gold in alkaline solution. J Electrochem Soc, 1978, 125: 1103-1109
    [44] Dalchiele E A, Giorgi P, Marotti R E, et al. Electrodeposition of ZnO thin films on n-Si(1 0 0). Sol Energy Mater Sol Cells, 2001, 70: 245-254
    [45] Jiang P, Zhou J, Fang H, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater, 2007, 17: 1303-1310
    [46] Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed, 2003, 42: 3031-3034
    [47] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys, 1996, 79: 7983-7990
    [48] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater, 2001, 13: 113-116
    [1] Mathur S, Barth S. Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. Small, 2007, 3: 2070-2075
    [2] Hsieh C-H, Chou L-J, Lin G-R, et al. Nanophotonic switch: gold-in-Ga2O3 peapod nanowires. Nano Lett, 2008, 8: 3081-3085
    [3] Yan J, Fang X, Zhang L, et al. Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Letts, 2008, 8: 2794-2799
    [4] Zeng Z, Natesan K, Cai Z, et al. The role of metal nanoparticles and nanonetworks in alloy degradation. Nature Mater, 2008, 7: 641-646
    [5] Li P J, Liao Z M, Zhang X Z, et al. Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires. Nano Lett, 2009, 9: 2513-2518
    [6] Lee J, Hernandez P, Lee J, et al. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater, 2007, 6: 291-295
    [7] Yang J J, Pickett M D, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech, 2008, 3: 429-433
    [8] Lao C, Li Y, Wong C P, et al. Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett, 2007, 7: 1323-1328
    [9] Law M, Greene L, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Mater, 2005, 4: 455-459
    [10] Nandanan E, Jana N R, Ying J Y. Functionalization of gold nanospheres and nanorods by chitosan oligosaccharide derivatives. Adv Mater, 2008, 20: 2068-2073.
    [11] Shi L, Xu Y, Hark S, et al. Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett, 2007, 7: 3559-3563
    [12] Ghilane J, Fan F R F, Bard A J. Facile electrochemical characterization of core/shell nanoparticles. Ag core/Ag2O shell structures. Nano Lett, 2007, 7: 1406-1412
    [13] Yuan G D, Zhang W J, Jie J S, et al. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv Mater, 2008, 20: 168-173
    [14] Oka K, Yanagida T, Nagashima K, et al. Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. J Am Chem Soc, 2009, 131: 3434-3435
    [15] Ferry V E, Sweatlock L A, Pacifici D, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett, 2008, 8: 4391-4397
    [16] Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nature Mater, 2008, 7: 435-441
    [17] Chaney S B, Zhao Y P, Shanmukh S, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman. Appl Phys Lett, 2005, 87: 031908
    [18] Baena J D, Marques R, Medina F, et al. Artificial magnetic metamaterial design by using spiral resonators. Phys Rev B, 2004, 69: 014402
    [19] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nature Mater, 2008, 7: 442-453
    [20] Manjavacas A, García de Abajo F J. Robust plasmon waveguides in strongly interacting nanowire arrays. Nano Lett, 2009, 9: 1285-1289
    [21] Zhang X, Sun B, Hodgkiss J M, et al. Tunable ultrafast optical switching via waveguided gold nanowires. Adv Mater, 2008, 20: 4455-4459
    [22] Smith E J, Liu Z, Mei Y, et al. Combined surface plasmon and classical waveguiding through metamaterial fiber design. Nano Lett, 2010, 10: 1-5
    [23] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials. Nature Photonics, 2007, 1: 224-227
    [24] Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686
    [25] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830
    [26] Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles: charge distribution and fermi-level equilibration. J Phys Chem B, 2003, 107: 7479-7485
    [27] Jakob M, Levanon H, Kamat P V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett, 2003, 3: 353-358
    [28] Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem, 2007, 46: 6980-6986
    [29] Height M J, Pratsinis S E, Mekasuwandumrong O, et al. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl Catal B, 2006, 63: 305-312
    [30] Bhattacharyya S, Gedanken A. Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C, 2008, 112: 659-665
    [31] Pacholski C, Kornowski A, Weller H. Site-specific photodeposition of silver on ZnO nanorods. Angew Chem Int Ed, 2004, 43: 4774-4777
    [32] Shan G, Xu L, Wang G, et al. Enhanced Raman scattering of ZnO quantum dots on silver colloids. J Phys Chem C, 2007, 111: 3290-3293.
    [33] Dong W, Shi Z, Ma J, et al. One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers. J Phys Chem B, 2006, 110: 5845-5848
    [34] Chen X H, Moskovits M. Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett, 2007, 7: 807-812
    [35] Wen B, Liu C, Liu Y. Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem B, 2005, 109: 12372-12375
    [36] Zhang X N, Li C R, Zhang Z. Controlling the growth direction of one-dimensional ZnO nanostructures by changing the oxygen content in the reaction atmosphere. Appl Phys A, 2006, 82: 33-37
    [37] Tian M, Wang J, Kurtz J, et al. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett, 2003, 3: 919-923
    [38] Yamada K, Mukaida M, Kai H, et al. Transmission electron microscopy characterization of nanorods in BaNb2O6-doped ErBa2Cu3O7-films. Appl Phys Lett, 2008, 92: 112503
    [39] Li N, Wu W, Chou S Y. Sub-20-nm alignment in nanoimprint lithography using moire fringe. Nano Lett, 2006, 6: 2626-2629
    [40] Rakoczy D, Strasser G, Smoliner J. Measuring the energetic distribution of ballistic electrons after their refraction at an Au-GaAs interface. Appl Phys Lett, 2002, 81: 4964-4966
    [41] Smoliner J, Heer R, Ede C, et al. Electron refraction in ballistic electron-emission microscopy studied by a superlattice energy filter. Phys Rev B, 1998, 58: R7516-R7519
    [42] Bauer E Z. Phenomenal theory of precipitation on surfaces. II. Kristallogr, 1958, 110: 372-431
    [43] Hirakawa T, Kamat P V. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc, 2005, 127: 3928-3934
    [44] Damen T C, Porto S P S, Tell B. Raman effect in zinc oxide. Phys Rev, 1966, 142: 570-574
    [45] Mensah S L, Kayastha V K, Yap Y K. Selective growth of pure and long ZnO nanowires by controlled vapor concentration gradients. J Phys Chem C, 2007, 111: 16092-16095
    [46] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater, 2007, 17: 1303-1310
    [47] Kunert H W, Brink D J, Auret F D, et al. Multiphonon processes in ZnO. Phys Stat Sol C, 2005, 2: 1131-1136
    [48] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 2003, 107: 668-677
    [49] Tsuji M, Matsumoto K, Miyamae N, et al. Rapid preparation of silver nanorods and nanowires by a microwave-polyol Method in the presence of Pt catalyst and polyvinylpyrrolidone. Cryst Growth Des, 2007, 7: 311-320
    [50] Su K H, Wei Q H, Zhang X, et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett, 2003, 3: 1087-1090
    [51] Sweatlock L A, Maier S A, Atwater H A, et al. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B, 2005, 71: 235408
    [52] Odom T W, Nehl C L. How gold nanoparticles have stayed in the light: the 3M's principle. ACS Nano, 2008, 2: 612-616
    [53] HamanakaY, Fukuta K, Nakamura, A et al. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl Phys Lett, 2004, 84: 4938-4940
    [54] del Coso R, Requejo-Isidro J, Solis J, et al. Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold. J Appl Phys, 2004, 95: 2755-2762
    [55] Panoiu N-C, Osgood R M. Subwavelength nonlinear plasmonic nanowire. Nano Lett, 2004, 4: 2427-2430
    [56] Voss T, Svacha G T, Mazur E, et al. High-order waveguide modes in ZnO nanowires. Nano Lett, 2007, 7: 3675-3680
    [57] Zhang Z Y, Zhao Y P. Tuning the optical absorption properties of Ag nanorods by their topologic shapes: a discrete dipole approximation calculation. Appl Phys Lett, 2006, 89: 023110
    [58] Chaney S B, Zhang Z Y, ZhaoY P. Anomalous polarized absorbance spectra of aligned Ag nanorod arrays. Appl Phys Lett, 2006, 89: 053117
    [1] Lee J, Hernandez P, Lee J, et al. Exciton-plasmon interactions inmolecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater, 2007, 6: 291-295
    [2] Lee J, Javed T, Skeini T, et al. Bioconjugated Ag nanoparticles and CdTe nanowires: metamaterials with field-enhanced light absorption. Angew Chem, 2006, 118: 4937-4941
    [3] Lee J, Govorov A O, Dulka J, et al. Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett, 2004, 4: 2323-2330
    [4] Dong W, Shi Z, Ma J, et al. One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers. J Phys Chem B, 2006, 110: 5845-5848
    [5] Lue J T, Huang W C, Ma S K. Spin-flip scattering for the electrical property of metallic-nanoparticle thin films. Phys Rev B, 1995, 51: 014570-014575
    [6] Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO-Au nanoparticles: charge distribution and Fermi-level equilibration. J Phys Chem B, 2003, 107: 7479-7485
    [7] Hong C S, Park H H, Wang S J, et al. Formation of photoresist-free patterned ZnO film containing nano-sized Ag by photochemical solution deposition. Appl Surf Sci, 2006, 252: 7739-7742
    [8] Sarto F, Sarto M S, Larciprete M C, Sibilia C. Transparent films for electromagnetic shielding of plastics. Rev Adv Mater Sci, 2003, 5: 329-336
    [9] Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem, 2007, 46: 6980-6986
    [10] Height M J, Pratsinis S E, Mekasuwandumrong O, et al. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl Catal B, 2006, 63: 305-312
    [11] Bhattacharyya S, Gedanken A. Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C, 2008, 112: 659-665
    [12] Pacholski C, Kornowski A, Weller H. Site-specific photodeposition of silver on ZnO nanorods. Angew Chem Int Ed, 2004, 43: 4774-4777
    [13] Hirakawa T, Kamat P V, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc, 2005, 127: 3928-3934
    [14] Gao X, Yu L, MacCuspie R I, et al. Controlled growth of Se nanoparticles on Ag nanoparticles in different ratios. Adv Mater, 2005, 17: 426-429
    [15] Kim H G, Borse P H, Choi W, et al. Photocatalytic nanodiodes for visible-light photocatalysis. Angew Chem Int Ed, 2005, 44: 4585-4589
    [16] Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414: 625-627
    [17] Khan S U M, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243-2245
    [18] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed, 2003, 42: 4908-4911
    [19] Kar S, Dev A, Chaudhuri S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J Phys Chem B, 2006, 110: 17848-17853
    [20] Wang Z L, Kong X Y, Ding Y, et al. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater, 2004, 14: 943-956
    [21] Zhao Y-P, Chaney S B, Shanmukh S, et al. Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J Phys Chem B, 2006, 110: 3153-3157
    [22] Kapoor S. Preparation, characterization, and surface modification of silver particles. Langmuir, 1998, 14: 1021-1025
    [23] Yang Y, Nogami M, Shi J, et al. Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties. Appl Phys Lett, 2006, 88: 081110
    [24] Zhang D, Qi L, Ma J, et al. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem Mater, 2001, 13: 2753-2755
    [25] Zong R-L, Zhou J, Li Q, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J Phys Chem B, 2004, 108: 16713-16716
    [26] Chen S Murray R W. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. J Phys Chem B, 1999, 103: 9996-10000
    [27] Chen S Ingram R S Hostetler M J et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science, 1998, 280: 2098-2101
    [28] Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the Fermi level equilibration. J Am Chem Soc, 2004, 126: 4943-4950
    [29] Sugawa K, Akiyama T, Kawazumi H, et al. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films. Langmuir, 2009, 25: 3887-3893
    [1] Xu C, Wang H, Shen P K, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater, 2007, 19: 4256-4259
    [2] Tian N, Zhou Z-Y, Sun S-G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-735
    [3] Han W-Q, Wu L, Klie R F, et al. Enhanced optical absorption induced by dense nanocavities inside titania nanorods. Adv Mater, 2007, 19: 2525-2529
    [4] Zhong K, Xia J, Li H H, et al. Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. J Phys Chem C, 2009, 113: 15514-15523
    [5] Feng X, Feng L, Jin M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc, 2004, 126: 62-63
    [6] Lu C, Qi L, Yang J, et al. Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J Phys Chem B, 2004, 108: 17825-17831
    [7] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions”. J Am Chem Soc, 2004, 126: 8124-8125
    [8] Zou G F, Li H, Zhang D W, et al. Well-aligned arrays of CuO nanoplatelets. J Phys Chem B, 2006, 110: 1632-1637
    [9] Xiang J Y, Tu J P, Huang X H, et al. A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem, 2008, 12: 94-945
    [10] Zhang Y, Wang S, Li X, et al. CuO shuttle-like nanocrystals synthesized by oriented attachment. J Cryst Growth, 2006, 291: 196-201
    [11] Xu H, Wang W, Zhu W, et al. Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst Growth Des, 2007, 7: 2720-2724
    [12] Liu Q, Liang Y, Liu H, et al. Solution phase synthesis of CuO nanorods. Mater Chem Phys, 2006, 98: 519-522
    [13] Park J C, Kim J, Kwon H, et al. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater, 2008, 20: 1-5
    [14] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas. Chem Mater, 2006, 18: 867-871
    [15] Chang Y, Zeng H C. Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons. Cryst Growth Des, 2004, 4: 397-402
    [16] Song X, Sun S, Zhang W, et al. Synthesis of Cu(OH)2 nanowires at aqueous-organic interfaces. J Phys Chem B, 2004, 108: 5200-5205
    [17] Wang S H, Huang Q J, Wen X G, et al. Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires. Phys Chem Chem Phys, 2002, 4: 3425-3429
    [18] Jiang X C, Herricks T, Xia Y N. CuO Nanowires can be synthesized by heating copper substrates in air. Nano Lett, 2002, 2: 1333-1338
    [19] Langmaier J, Samec Z. Voltammetry of ion transfer across a polarized room-temperature ionic liquid membrane facilitated by valinomycin: theoretical aspects and application. Ana Chem, 2009, 81: 6382-6389
    [20] Kim Y, Amemiya S. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane. Anal Chem, 2008, 80: 6056-606
    [21] Banerji N, Fürstenberg A, Bhosale S, et al. Ultrafast photoinduced charge separation in naphthalene diimide based multichromophoric systems in liquid solutions and in a lipid membrane. J Phys Chem B, 2008, 112: 8912-8922
    [22] Kovalchuk N M, Vollhardt D. Surfactant transfer through a liquid membrane: origin of spontaneous oscillations at the membrane/acceptor phase interface. J Phys Chem B, 2006, 110: 9774-9778
    [23] Ahmad F, Mukhtar H, Man Z, et al. Predicting separation of lower hydrocarbon from natural gas by a nano-porous membrane using capillary condensation. Chem Eng Technol, 2007, 30: 1266-1273
    [24] Lucena R, Cárdenas S, Gallego M, et al. ATR-FT-IR membrane-based sensor for integrated microliquid?liquid extraction and detection. Anal Chem, 2005, 77: 7472-7477
    [25] Pileni M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater, 2003, 2: 145-150
    [26] Hirai T, Orikoshi T, Komasawa I. Preparation of Y2O3:Yb, Er infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system. Chem Mater, 2002, 14: 3576-3583
    [27] Liang H, Angelini T E, Braun P V, et al. Roles of anionic and cationic template components in biomineralization of CdS nanorods using self-assembled DNA-membrane complexes. J Am Chem Soc, 2004, 126: 14157-14165
    [28] Wu Q-S, Sun D-M, Liu H-J, et al. Abnormal polymorph conversion of calcium carbonate and nano-self-assembly of vaterite by a supported liquid membrane system. Cryst Growth Des, 2004, 4: 717-720
    [29] Oh N, Kim J H, Yoon C S. Self-assembly of silver nanoparticles synthesized by using a liquid-crystalline phospholipid membrane. Adv Mater, 2008, 20: 3404-3409
    [30] Hu Z, Fischbein M D, Querner C, et al. Electric-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale devices. Nano Lett, 2006, 6: 2585-2591
    [31] Hou H, Xie Y, Li Q. Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons. Cryst Growth Des, 2005, 5: 201-205
    [32] Wen X, Zhang W, Yang S. Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir, 2003, 19: 5898-5903
    [33] Baca A J, Meitl M A, Ko H C, et al. Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv Funct Mater, 2007, 17: 3051-3062
    [34] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 287: 969-971
    [35] Zhang Z, Sun H, Shao X, et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater, 2005, 17: 42-47
    [36] Chang Y, Zeng H C. Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons. Cryst Growth Des, 2004, 4: 397-402
    [37] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "Oriented Attachment" mechanism. J Am Chem Soc, 2004, 126: 14943-14949
    [38] Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim Cosmochim Acta, 1999, 63: 1549-1557
    [39] Benjamin W J, Virginia M A, Mihail P P, et al. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires. Nano Lett, 2007, 7: 1435-1438
    [40] Li Y, Tan B, Wu Y. Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures. Chem Mater, 2008, 20: 567-576
    [41] Zhang Z, Sun H, Shao X, et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater, 2005, 17: 42-47
    [42] Vere A W. Crystal Growth: Principles and Progress; Dobson P J. Ed; Plenum Press: New York, 1987. p17
    [43] Xu H, Wang W, Zhu W, et al. Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dmensional CuO nanoleaves. Cryst Growth Des, 2007, 7: 2720-2724
    [1] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400: 649-651
    [2] Fu Q, Saltsbarg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301: 935-938
    [3] Machida M, Murata Y, Kishikawa K, et al. On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem Mater, 2008, 20: 4489-4494
    [4] Kim K-H, Kim J-R, Ihm S-K. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65Zr0.35O2 prepared by continuous hydrothermal synthesis in supercritical water. J Hazard Mater, 2009, 167: 1158–1162
    [5] Terribile D, Trovarelli A, de Leitenburg C, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions. Catal Today, 1999, 47: 133-140
    [6] Wang J, Deng X, Xi J, et al. Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles. J Power Sources, 2007, 170: 297-302
    [7] Singh P, Hegde M S, Gopalakrishnan J. Ce2/3Cr1/3O2+y: A new oxygen storage material based on the fluorite structure. Chem Mater, 2008, 20: 7268-7273
    [8] Machida M., Kawamura K., Ito K., et al. Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem Mater, 2005, 17: 1487-1492
    [9] Zafar Q, Abad A, Mattisson T, et al. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chem Engin Sci, 2007, 62, 6556-6567
    [10] Singh P, Hegde M S. Ce1-xRuxO2-(x=0.05, 0.10): A new high oxygen storage material and Pt, Pd-free three-way catalyst. Chem Mater, 2009, 21: 3337-3343
    [11] Singh P, Hegde M S, Gopalakrishnan J. Ce2/3Cr1/3O2+y: a new oxygen storage material based on the fluorite structure. Chem Mater, 2008, 20: 7268-7273
    [12] Sayle D C, Sayle T X T, Parker S C, et al. The stability of defects in the ceramic interfaces, MgO/MgO and CeO2/Al2O3. Surf Sci, 1995, 334: 170-178
    [13] Singh P, Hegde M S, Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-(M = Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity. J Solid State Chem, 2008, 181: 3248 -3256
    [14] Machida M, Kawamura K, Ito K, et al. Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem Mater, 2005, 17: 1487-1492
    [15] Xu J F, Ji W, Shen Z X, et al. Preparation and characterization of CuO nanocrystals. J Solid State Chem, 1999, 147: 516-519
    [16] Mcbride J R, Hass K C, Poindexter B D, et al. Raman and x-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys, 1994, 76: 2435-2441
    [17] Kydd R, Teoh W Y, Wong K, et al. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater, 2009, 19: 369-377
    [18] Wang X, Rodriguez J A, Hanson C, et al. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. J Phys Chem B, 2006, 110: 428-434
    [19] Schuyten S, Dinka P, Mukasyan A S, et al. A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol. Catal Lett, 2008, 121: 189-198
    [20] Bera P, Priolkar K R, Sarode P R, et al. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: formation of a Ce1-xCuxO2-solid solution. Chem Mater, 2002, 14: 3591-3601
    [21] Danaee I, Jafarian M, Forouzandeh F, et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy, 2008, 33: 4367-4376
    [22] Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc, 2009, 131: 4576-4577
    [23] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867-871
    [24] Liao B, Wei Q, Wang K, et al. Study on CuO-BaTiO3 semiconductor CO2 sensor. Sens Actuators B, 2001, 80: 208-214
    [25] Wang G, Gu A, Wang W, et al. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochem Commun, 2009, 11: 631-634
    [26] Luo M-F, Zhong Y-J, Yuan X-X, et al. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Appl Catal A, 1997, 162: 121-131
    [27] Schuyten S, Dinka P, Mukasyan A S, et al. A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol. Catal Lett, 2008, 121: 189-198
    [28] Maciel I. O, Anderson N, Pimenta M A, et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nature Mater, 2008, 7: 878-883
    [29] Wang Y S, Thomas P J,óBrien P. Nanocrystalline ZnO with ultraviolet luminescence. J Phys Chem B, 2006, 110: 4099-4104
    [30] Kittilstved K R, Gamelin D R, Activation of high-TC ferromagnetism in Mn2+-doped ZnO using amines. J Am Chem Soc, 2005, 127: 5292-5293
    [31] Coey J M D, Venkatesan M, Fitzgerald C B, Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater, 2005, 4: 173-179
    [32] Chung S-Y, Choi S-Y, Yamamoto T, et al. Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. Angew Chem Int Ed, 2009, 48: 543-546
    [33] Zhong K, Xia J, Li H H, et al. Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. J Phys Chem C, 2009, 113: 15514-15523
    [34] Francisco M S P, Mastelaro V R, Nascente P A P, et al. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts. J Phys Chem B, 2001, 105: 10515-10522
    [35] Guha S, Peebles D, Wieting T J, Zone-center (q = 0) optical phonons in cupric oxide studied by Raman and infrared spectroscopy. Phys Rev B, 1991, 43: 13092-130101
    [36] Desikan A N, Huang L, Oyama S T, Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported molybdenum oxide. J Phys Chem, 1991, 95: 10050-10056
    [37] Irwin J. C, Wei T, Franck J, Raman scattering investigation of copper oxide (Cu18O). J Phys Condens Matter, 1991, 3: 299-306
    [38] Deng J, Xu X, Wang J, et al. In situ surface Raman spectroscopy studies of oxygen adsorbed on electrolytic silver. Catal Lett, 1995, 32: 159-170
    [39] Luo M-F, Yan Z-L, Jin L-Y, et al. Raman spectroscopic study on the structure in the surface and the bulk shell of CexPr1-xO2-mixed oxides. J Phys Chem B, 2006, 110: 13068-13071
    [40] Hernandez W Y, Centeno M A, Romero-Sarria F, et al. Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation. J Phys Chem C, 2009, 113: 5629-5635
    [41] Singh P, Hegde M S, Ce1-xRuxO2-(x=0.05, 0.10): a new high oxygen storage material and Pt, Pd-free three-way catalyst. Chem Mater, 2009, 21: 3337-3345
    [42] Jing L, Xu Z, Sun X, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci, 2001, 180: 308-314
    [43] Mcbride J R, Hass K C, Poindexter B D, et al. Raman and x-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys, 1994, 76: 2435-2441
    [44] Pratesi A, Zanello P, Giorgi G, et al. New copper(II)/cyclic tetrapeptide system that easily oxidizes to copper(III) under atmospheric oxygen. Inorg Chem, 2007, 46: 10038-10040
    [45] Wang W, Liu Z, Liu Y, et al. A simple wet-chemical synthesis and characterization of CuO nanorods. Appl Phys A, 2003, 76: 417-420
    [46] Eysel H H, Thym S Z. Raman spectra of peroxides. Anorg Allg Chem, 1975, 411: 97-102
    [1] Dyer C. K. Fuel cells for portable applications. J. Power Sources, 2002, 106: 31-34
    [2] Arico A S, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells, 2001, 1: 133-161
    [3] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 2005, 5: 187-200
    [4] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev, 2006, 106: 4044-4098
    [5] Baumer M, Libuda J, Neyman K M, et al. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Phys Chem Chem Phys, 2007, 9: 3541-3558
    [6] Ye J, Liu J, Xu C, et al. Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium. Electrochem Commun, 2007, 9: 2760-2763
    [7] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B, 2004, 108: 2654-2659.
    [8] Zhu Y, Uchida H, Yajima T, et al. Attenuated total Reflection-Fourier Transform Infrared study of methanol oxidation on sputtered Pt film electrode. Langmuir, 2001, 17: 146-154
    [9] Xu C W, Wang H, Shen P K, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv Mater, 2007, 19: 4256-4259
    [10] Wang J, Deng X, Xi J, et al. Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles. J Power Sources, 2007, 170: 297-302
    [11] Jiang L, Sun G, Zhou Z, et al. Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B, 2005, 109: 8774-8778
    [12] Park K-W, Choi J-H, Kwon B-K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B, 2002, 106: 1869-1877
    [13] Liao S, Holmes K-A, Tsaprailis H, et al. High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J Am Chem Soc, 2006, 128: 3504-3005
    [14] Anderson A B, Grantscharova E, Seong S. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J Electrochem Soc, 1996, 143: 2075-2082
    [15] Gurau B, Viswanathan R, Liu R, et al. Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B, 1998, 102: 9997-10003
    [16] Shen P K, Tseung A C C. Anodic oxidation of methanol on Pt/WO3 in acidic media. J Electrochem Soc, 1994, 141: 3082-3090
    [17] Liang Y, Zhang H, Tian Z, et al. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J Phys Chem B, 2006, 110: 7828-7834
    [18] Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007, 315: 493-497
    [19] Zhou W, Zhou Z, Song S, et al. Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B, 2003, 46: 273-285
    [20] Zhou Z-Y, Huang Z-Z, Chen D-J, et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem, 2010, 49: 411-414
    [21] Zhang X, Lu W, Da J, et al. Porous platinum nanowire arrays for direct ethanol fuel cell applications. Chem Commun, 2009: 195-197
    [22] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005,105: 1025-1102
    [23] Switzer J A, Kothari H M, Poizot P, et al. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425: 490-493
    [24] Hasanzadeh M, Karim-Nezhad G, Mahjani M G, et al. A study of the electrocatalytic oxidation of cyclohexanol on copper electrode. Catal Commun, 2008, 10: 295-299
    [25] Danaee I, Jafarian M, Forouzandeh F, et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int J Hydrogen Energy, 2008, 33: 4367-4376
    [26] Kydd R, Teoh W Y, Wong K, et al. Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater, 2009, 19: 369-377
    [27] Wang X, Rodriguez J A, Hanson J C, et al. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. J Phys Chem B, 2006, 110: 428-434
    [28] Schuyten S, Dinka P, Mukasyan A S, et al. A novel combustion synthesis preparation of CuO/ZnO/ZrO2/Pd for oxidative hydrogen production from methanol. Catal Lett, 2008, 121: 189-198
    [29] El-Shafei A. A. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal Chem, 1999, 471: 89-95
    [30] Yi Q, Huang W, Zhang J, et al. Methanol oxidation on titanium-supported nano-scale Ni flakes. Catal Commun, 2008, 9: 2053-2058
    [31] Xu C, Hu Y, Rong J, et al. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem Commun, 2007, 9: 2009-2012
    [32] Garcia M A, Merino J M, Fernandez P E, et al. Magnetic properties of ZnO nanoparticles. Nano Lett, 2007, 7: 1489-1494
    [33] Tian N, Zhou Z.-Y, Sun S.-G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-735
    [34] Maciel I O, Anderson N, Pimenta M A, et al. Electron and phonon renormalization near charged defects in carbon nanotubes. Nature Mater, 2008, 7: 878-883
    [35] Wang Y S, Thomas P J,óBrien P, Nanocrystalline ZnO with ultraviolet luminescence. J Phy Chem B, 2006, 110: 4099-4104
    [36] Kittilstved K R, Gamelin D R. Activation of high-TC ferromagnetism in Mn2+-doped ZnO using amines. J Am Chem Soc, 2005, 127: 5292-5293
    [37] Coey J M D, Venkatesan M, Fitzgerald C B, Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater, 2005, 4: 173-179
    [38] Chung S-Y, Choi S-Y, Yamamoto T, et al. Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. Angew Chem Int Ed, 2009, 48: 543-546
    [39] Zhong K, Xia J, Li H H, et al. Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. J Phys Chem C, 2009, 113: 15514-15523
    [40] Hasanzadeh M, Karim-Nezhad G, Mahjani M G., et al. A study of the electrocatalytic oxidation of cyclohexanol on copper electrode. Catal Commun, 2008, 10: 295-299
    [41] Pratesi A, Zanello P, Giorgi G, et al. New copper(II)/cyclic tetrapeptide system that easily oxidizes to copper(III) under atmospheric oxygen. Inorg Chem, 2007, 46: 10038-10040
    [42] Raghuveer V, Thampi K R, Xanthopoulos N, et al. Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics, 2001, 140: 263-274
    [43] Zhou W, Zhou Z, Song S, et al. Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B, 2003, 46: 273-285
    [44] Zhang F, Jin R, Chen J, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal, 2005, 232: 424-431
    [45] Luo M F, Zhong Y J, Yuan X X, et al. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Appl Catal A , 1997, 162: 121-131
    [46] Tang X, Zhang B, Li Y, et al. CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A, 2005, 288: 116-125
    [47] B?umer M, Libuda J, Neyman K M, et al. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Phys Chem Chem Phys, 2007, 9: 3541-3558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700