用户名: 密码: 验证码:
多基站协同通信系统的结构和无线资源管理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了多基站协同通信系统的结构和无线资源管理,目标是提出基于现有结构的,低复杂度,高性能,高可实现性的多基站协同资源分配算法.主要研究了新型的有序分布系统结构,多基站功率控制算法和多小区多用户调度算法。
     首先,本文根据传统蜂窝小区的缺点和无线信号的传播特性,提出了可兼容现有系统的新型的有序分布系统结构。新系统在原本有序的结构中引入了分布式的处理,通过将多个基站覆盖的区域分为单一覆盖区和交叉覆盖区,来充分利用各个基站的资源并抑制共道干扰。本文研究了正三角形小区,正六边形小区等结构,对每种结构进行了系统容量分析,并提出了不同结构下的频率配置和参数设计的方法。将这种新型结构的遍历容量和中断容量与传统蜂窝结构以及全分布式系统做了比较,发现新结构通过引入基站间的宏分集协作和频率复用,可以有效地抑制干扰,提升系统容量。
     功率控制在多小区系统中是重要的抑制干扰的手段。本文提出了在传统小区或单一覆盖区下基于Stackelberg博弈的功率控制算法。通过将多小区的功率控制问题建模为领导者-追随者模型来综合考虑用户及网络的效用,并利用制订统一全局价格的方法来抑制并剔除信道条件较差的用户,以优化整个系统的容量。然后证明在大规模干扰理想网络内,该博弈会收敛到唯一的最优均衡点,并提出了一个价格更新函数来动态调整整个网络内的发送功率价格。仿真结果表明该算法在大规模系统中有很好的性能。
     本文还研究了交叉覆盖区和宏分集模式下的功率控制。首先针对单个交叉覆盖区或宏分集小区的情况,在各个小区使用正交空时编码作为宏分集方案时,提出了一种各基站间的功率分配方案。若最小化遍历成对符号差错率上界,其功率分配结果等效于按信道大尺度衰落信息进行注水算法分配。为了降低功率分配的复杂度,通过对最优化问题的近似,提出了一种低复杂度的功率分配算法。该算法为每个分布式基站分配一个权重,根据该权重按比例进行功率分配。在大多数情况下该低复杂度算法可以达到与注水算法相近的性能。在网络中有多个交叉覆盖区或者是宏分集小区时,提出了一种新的主从协同功率控制算法。该算法把为移动台服务的基站分为主基站和从基站,各从基站以主基站分配的功率为参考值分配功率,并可采用低复杂度和开销的分布式形式实现。与现有的分布式系统中功控算法相比,新算法可以显著地提高整个系统的容量。此外,还提出了一种可以在扁平化网络中使用的主从基站通信系统机制。
     在研究功率控制问题的基础上,本文进一步提出了多小区多用户中的干扰匹配调度机制.其目标是在信干比平衡的功率控制算法下最大化系统的容量。该算法考虑每个用户的信道条件和发送引起的共道干扰,在同一个时刻调度匹配的用户。本文证明这种干扰匹配算法在任何小区数及用户数下都可以最优化系统容量的下界。且干扰匹配调度是一种低复杂度的算法,并可以全分布式的方式实现。仿真结果说明其性能很接近最优算法的性能。同时该算法与先前文献提出的轮转调度和功率匹配调度算法相比有很大的性能增益,当系统范围很大的时候,这种增益尤为明显。
This thesis focuses on the architecture and radio resource management of multiple base stations cooperative communication systems.The target is to propose low-complexity,high-performance, broadly applicable radio resource algorithms for multiple base stations cooperative systems.This research mainly includes the novel architecture called orderly distributed communication system,the power control algorithms for multiple base stations, and the multiuser scheduling policy for multicell circumstance.
     First,in consideration of the drawbacks of the traditional cellular system and the properties of radio propagation,this thesis proposes a novel wireless network architecture called orderly distributed communication system,which is compatible with the extant system. The new architecture introduces the distributed process into a strictly orderly system.It fully utilizes the resource of each base station by dividing the coverage area into uni-covered regions and cross-covered regions.This thesis studies on the regular triangular cell and regular hexangular cell.For each architecture,the system capacity is analyzed,and the rules of choosing the system parameters are given.Comparing the ergodic and outage throughput of the novel architecture with those of traditional cellular systems and fully distributed systems,it can be found that the new architecture can effectively suppress the interference and improve the capacity by introducing both macro diversity and frequency reuse between multiple base stations.
     Power control is an effective approach to suppress the interference in cellular network. This thesis proposes a power control method which is based on the Stackelberg game for the traditional cellular systems or uni-covered regions.It improves the system capacity by modeling the power control problem as a leader-follower game,and establishing a global price to eliminate the users with bad channel condition.This thesis proves that this game converges to a unique equilibrium in a large-scale interference ideal network,and proposes a price update function to adjust the price of the whole network.Numerical results show that this algorithm performs well especially in a large-scale system.
     This thesis also studies the power control method for cross-covered regions and macro diversity mode.First,for one cell or cross-covered region case,when the orthogonal spacetime coding is used to obtain the macro diversity gain,this thesis proposes a power allocation scheme among different base stations.To minimize the upper bound of the ergodic pair-wise symbol error rate is equivalent to perform water-filling against the large-scale fading.To reduce the complexity,a novel power allocation method is proposed by approximating the original problem.This method assigns a weight to each base station,and allocates power proportional to these weights.In most situations,the weight-based method can achieve almost the same performance as water-filling.Second,for the multiple cells or cross-covered regions case,this thesis proposes a novel primary-subsidiary cooperative power control method.This algorithm divides the service base stations as primary base stations and subsidiary base stations.The subsidiary base station adjusts its transmit power according to the transmit power of the primary base station.The new algorithm can be implemented in a distributed way,and significantly improve the system capacity while compared with the extant power control method for fully distributed systems.Moreover,a novel primary-subsidiary cooperative communication policy for a flat network is proposed.
     Based on the study of power control,this thesis further proposes an interference matched multiuser scheduling policy in multicell circumstance.The target is to maximize the system throughput under signal to interference balanced power control method.This policy takes the channel conditions and potential interference of each user into consideration,and schedules matched users in each slot.This thesis proves that the interference matched algorithm optimizes the lower bound of the system capacity irrespective of the cell number and the user number.Moreover,the new algorithm has an extremely low complexity,and can be implemented in a fully distributed way.Simulation results show there is only a very narrow performance gap betweenthe new method and the optimal scheduling.And over the extant round robin scheduling and power matched scheduling,the novel method achieves a great performance gain,especially in a large-scale system.
引文
[1]Rappaport T.Wireless communications Principles & Practice[M].New York:IEEE Press,Prentice Hall,1996.
    [2]Kim Y,Jeong B,Chung J,et al.Beyond 3G:Vision,Requirements,and Enabling Technologies[J].IEEE Communications Magazine,2003,41(3):120-124.
    [3]郭梯云,邬国扬,李建东.移动通信[M].西安:西安科技大学出版社,2000.
    [4]Tse D,Viswanath P.无线通信基础[M].北京:人民邮电出版社,2007.
    [5]Mitola J,Maguire G.Cognitive Radio:Making software radios more personal[J].Personal Communications,1999,6(4):13-18.
    [6]Kaaranen H,Ahtiainen A,Laitnen L,et al.3G技术和UMTS网络[M].北京:中国铁道出版社,2004.
    [7]3GPP.Requirement for Evolved UTRA and Evolved UTRAN,3GPP TR25.913v7.3.0[R/OL].www.3gpp.org/ftp/Specs/html-info/25913.html.
    [8]3GPP.Physical layer aspects for evolved Universal Terrestrial Radio Access,3GPP TR25.814v7.1.0[R/OL].www.3gpp.org/ftp/Specs/html-info/25814.html.
    [9]Nokia,Nokia Siemens Networks.Views for the LTE-Advanced requirements[C].3GPP REV-080003,3GPP IMT-Advanced Workshop,2008.
    [10]NTT DoCoMo.Physical layer requirements for LTE-Advanced[C].3GPP R1-082077,2008.
    [11]Ericsson.LTE-Advanced,Requirements and targets[C].GPP REV-080003,3GPP IMT-Advanced Workshop,2008.
    [12]沈嘉,索士强,全海洋,等.3GPP长期演进(LTE)技术原理与系统设计[M].北京:人民邮电出版社,2008.
    [13]Telatar E.Capacity of multi-antenna Gaussian channels[J].European Trans.Telecommun,1999,6:585-595.
    [14]Telatar E,Tse D.Capacity and mutual information of wideband multipath fading channels.IEEE Transactions on Information Theory,2000,46(4):384-1400.
    [15]Goldsmith A,Jafar A,Jindal N,et al.Capacity limits of MIMO channels[J].IEEE Journal on Sel Areas in Communications,2003,21(5):684-702.
    [16]Tarokh V,Jafarkhani H,Calderbank A R.Space-time block coding for wireless communications:performance results[J].IEEE J.on Selected Areas in Commun,1999,17(3):451-460.
    [17]Tarokh V,Jafarkhani H,Calderbank.Space-time block codes from orthogonal designs[J].IEEE Transaction on Information Theory.1999,7(45):1456-1467.
    [18]Tarokh V,Seshadri N,Calderbank A R.Space-time codes for high data rate wireless communication:performance criterion and code construction[J].IEEE Trans.Info.Theory,1998,44(1):744-765.
    [19]Zander J.Distributed cocharmel interference control in cellular radio systems[J].IEEE Tran.Veh.Technol,1992,41(3):305-311.
    [20]Biglieri E,Torino P.Digital Transmission in the 21st Century:Conflating Modulation and Coding[J].IEEE Communications Magazine,2002,50th Anniversary Commemorative Issue:128-137.
    [21]MacKay D.Good error-correcting codes based on sparse very matrices[J].IEEE Trans.Inform.Theory,1999,45:399-431.
    [22]Horst R,Pardalos P,Thoai N.全局优化引论[M].北京:清华大学出版社,2003.
    [23]Boyd S,Vandenberghe L.Convex Optimization[M].New York:Cambridge University Press,2004.
    [24]Bedekar A,Borst S,Ramanan K,et al.Downlink scheduling in CDMA data networks[C]//Proc IEEE Glob Telecom Conf,Rio de Janeiro,Brazil,Dec.1999.New York:IEEE Press,1999:2653-2657.
    [25]Qiu X,Chawla K.On the performance of adaptive modulation in cellular systems[J].IEEE Trans.Commun,1999,47(6):884-895.
    [26]Chiang M.Geometric programming for communications systems[J].Found.Trends Commun.Inf.Theory[J],2005,2(1/2):1-156.
    [27]Song G,Li Y.Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks[J].IEEE Commun Mag,2005,43(12):127-134.
    [28]Knopp R,Humblet P.Information capacity and power control in single-cell multiuser communicationsfC]// Proc.IEEE IntConf.Commun.,Seattle,WA,Jun.1995.New York:IEEE Press,1995:331-335.
    [29]Andrews M,Kumaran K,Ramanan K,et al.Providing quality of service over a shared wireless link[J].IEEE Commun Mag,2001,39(2):150-154.
    [30]Foschini G J,Huang H,Karakayali K,et al.The value of coherent base station coordination[C]//Proc.Conference on Information Sciences and Systems (CISS),2005.
    [31]Wan C,Andrews J G.The Capacity Gain from Base Station Cooperative Scheduling in a MIMO DPC Cellular System[J].IEEE International Symposium on Information Theory,2006,1:1224-1228.
    [32]Foschini G J,Karakayali K,Valenzuela R.Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency [J].IEE Commun.Proceedings,2006,152(4):45:51.
    [33]Peel B,Hochwald B M,Swindlehurst A L.A vector-perturbation technique for near-capacity multiantenna multiuser communication-Part I:channel inversion and regularization.IEEE Trans.Commun,2004,53:195-202.
    [34]Jindal N.MIMO broadcast channels with finite rate feedback.IEEE Trans.Information Theory,2006,52 (11):5045-5059.
    [35]Yu W.Sum Capacity Computation for the Gaussian Vector Broadcast Channel via Dual Decomposition[J].IEEE Transactions on Information Theory,2006,52(2):754-759.
    [36]Yu W,Wonjong R,Boyd S,et al.Iterative water-filling for Gaussian vector multiple-access channels[J].IEEE Transactions on Information Theory,2004,50(1):145-152.
    [37]Vishwanath S,Jindal N,Goldsmith A.Duality,Achievable Rates,and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels[J].IEEE Transactions on Information Theory,2003,49(10):2658-2668.
    [38]Viswanathan H,Venkatesan S,Huang H.Downlink capacity evaluation of cellular networks with known-interference cancellation[J].IEEE J.Select.Areas Commun,2003,21(5):802-811.
    [39]Ebrahimi M,Maddah-Ali M A,Khandani.Power allocation and asymptotic achievable sum-rates in single-hop wireless networks[J].Proc.CISS,Princeton,NJ,2006,3:498-503.
    [40]Meshkati F,Poor V,Schwartz S,et al.An energy-efficient approach to power control and receiver design in wireless data networks[J].IEEE Trans.Commun,2005,53(11):1885-1894.
    [41]Xiao M,Shroff N B,Chong E K P.A utility-based power-control scheme in wireless cellular systems[J].IEEE/ACM Trans Networking,11 (2):210-221.
    [42]Huang J,Berry R,Honig M L,Distributed interference compensation for wireless networks[J].IEEE J.Sel.Area's Commun,2006,24(5):1074-1084.
    [43]Kiani S G,(?)ien G E,Gesbert D.Maximizing multi-cell capacity using distributed power allocation and scheduling[C]// Proc.IEEE Wireless Commun Networking Conf.(WCNC),Mar.2007.New York:IEEE Press,2007:331-335.
    [44]3GPP.Evolved Universal Terrestrial Radio Access Network (E-UTRAN);E-UTRAN Architecture Description,3GPP TR36.401v8.5.0[S/OL].http://www.3gpp.org/ftp/Specs/2009-03/Rel-8/36_series/36401-850.zip.
    [45]3GPP.Evolved Universal Terrestrial Radio Access Network (E-UTRAN);X2 Protocol Specification,3GPP TR36.423v8.5.0[S/OL].http.7/www.3gpp.org/ftp/Specs/2009-03/Rel-8/36_series/36423-850.zip.
    [46]Beaulieu N C,Cheng C.Efficient Nakagami-m fading channel simulation[J].Vehicular Technology,IEEE Transactions on,2005,54(2):413-424.
    [47]Kang Z,Yao K,Lorenzelli F.Nakagami-m fading modeling in the frequency domain for OFDM
    system analysis[J].IEEE Communications Letters,2003,7(10):484-486.
    [48]Calcev G,Chizhik D,Goransson B,et al.A wideband spatial channel model for system-wide simulations[J].IEEE Transactions on Vehicular Technology,2007,56(2):389-403.
    [49]Parsons J D.The Mobile Radio Propagation Channel[M].2nd ed.New YorkJohn Wiley & Sons Ltd,2000.
    [50]Erceg V,Greenstein L J,Tjandra S Y,et al.An empirically based path loss model for wireless channels in suburban environments[J].IEEE Journal on Selected Areas in Communications,1999,17(7):1205-1211.
    [51]Ahmad A.A CDMA network architecture using optimized sectoring[J].IEEE Transactions on Vehicular Technology,2002,51(3):404-410.
    [52]佟学俭,罗涛.OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [53]Nee R V,Prasad R.OFDM for wireless multimedia communications[M].London:Artech House,2000.
    [54]Webb W.Understanding Cellular Radio[M].London:Artech House,1998.
    [55]St(u|¨)ber G.Principles of mobile communication[M].2nd ed.New York:Kluwer Academic Publishers,2002.
    [56]Lee W.Overview of cellular CDMA[J].IEEE Transaction on Vehicular Technology,1991,40(2):291-302.
    [57]Gilhousen K,Jacobs I,Padovani R.On the capacity of a cellular CDMA sytem[J].IEEE Transaction on Vehicular Technology,1991,40(2):303-312.
    [58]Ariyavisitakul S,Chang L F.Signal and interference statistics of a CDMA system with feedback power control[J].IEEE Trans Commun,1993,41:1626-1634.
    [59]Aulin T.A modified model for the fading signal at a mobile radio channel[J].IEEE Transaction on Vehicular Technology,1979,28:182-203.
    [60]Austin M D,St(u|¨)ber G L.In-service Signal Quality Estimation for TDMA Cellular Systems.Kluwer J.Wireless Personal Commun[J],1996,2:245-254.
    [61]Austin M D,St(u|¨)ber G L.Co-channel interference modeling for signal strength based handoff analysis[J].Electronics Letters,1994,30:1914-1915.
    [62]Kiani S,Gerbert D.Optimal and Distributed Scheduling for Multicell Capacity Maximization[J].IEEE Transaction on Wireless Commun,2008,7(1):288-297.
    [63]Corson M S,Maker J P,Cernicione J H.Internet-based mobile ad hoc networking[J].IEEE Internet Computing,1999,3(4):63-70.
    [64]IEEE.Wireless LAN medium access control(MAC) and physical layer(PHY) specifications,802.11[S].New York:IEEE Press,1999.
    [65]Bluetooth Special Interest Group.Bluetooth specifications[S/OL],http://www.bluetooth.org/.
    [66]ESTI.HiperLan/2[S/OL].http://portal.etsi.org/bran/kta/hiperlan/hiperlan2.asp.
    [67]Akyildiz I,Wang X,Wang W.Wireless mesh networks:a survey[J].Computer Networks,2005,47(4):445-487.
    [68]Oyman O,Nicholas J,Sandhu S.Multihop relaying for broadband wireless mesh networks:from theory to practice[J].IEEE Communications Magazine,2007,45(11):116-122.
    [69]Bruno R,Conti M,Gregori,E.Mesh networks:commodity multihop ad hoc networks[J].IEEE Communications Magazine,2005,43(3):123-131.
    [70]Roh W and Paulraj A.Outage performance of the distributed antenna system in a composite fading channel[C]// IEEE Vehicular Technology Conference Fall,Vancouver,Canada,Sept,2002.New York:IEEE Press,2002:3:1520-1524.
    [71]Roh W and Paulraj A.MIMO channel capacity for the distributed antenna systems[C]// IEEE Vehicular Technology Conference Fall,Vancouver,Canada,Sept,2002,IEEE Press,2002:2:706-709.
    [72]Xiao L,Dai L,Zhuang H,Zhou S,Yao Y.Information-theoretic capacity analysis in MIMO distributed antenna system[C]//IEEE Vehicular Technology Conference Spring,Jeju Island,Korea,April 2003.New York:IEEE Press,2003:1:779-782.
    [73]Foschini G J,Gans M J.On limits of wireless communications in a fading environment when using multiple antennas[J].Wireless Personal Communications,1998,6(3):311-335.
    [74]Zhou S,Zhao M,Xu X,Wang J,et al.Distributed wireless communication system:a new architecture for future public wireless access[J].IEEE Communications Magazine,2003,41(3):108-113.
    [75]陶小峰,吴春丽,许晓东.一种广义分布式多小区架构一群小区[J].中兴通讯技术,2006,12(6):39-43.
    [76]许晓东,陶小峰,吴春丽,等.采用发送功率加权分配策略的群小区架构容量与覆盖分析.电子与信息学报,2007,29(6):1271-1275.
    [77]Liu L,Wu X Wang J.Optimal size selection for Group Cell architecture for beyond 3G systems[C]//14th Asia-Pacific Conference on Communications,2008.New York:IEEE Press,2008:1-5.
    [78]Ni Z,Li D.Effect of fading correlation on capacity of distributed MIMO[C]// Personal,Indoor and Mobile Radio Communications 15th IEEE International Symposium,Barcelona,Spain,Sept.2004.New York:IEEE Press,2008:3/1637-1641.
    [79]朱剑,朱近康.移动通信系统小区结构配置方法和相应的收发系统:中国,CN1756410[P].2006-04-05.
    [80]Xiao L,Dai L,Zhuang H,et al.Information-theoretic capacity analysis in MIMO distributed antenna system[C]// IEEE Vehicular Technology Conference Spring,Jeju Island,Korea,April 2003.New York:IEEE Press,2003:1:779-782.
    [81]Wan C,Andrews J G,Yi Chaehag.The capacity of multicellular distributed antenna networks[C]//Wireless Networks,Communications and Mobile Computing,2005 International Conference,Rhodes,Greece,June 2005.New York:IEEE Press,2003:2:1337-1342.
    [82]Aein J M.Power balancing in systems employing frequency reuse[J].COMSAT Tech Review,1973,3(2):.277-299.
    [83]Alavi H,Nettleton R W.Downstream power control for a spread spectrum cellular mobile radio system[C]//Globecom,Miami,FL,1982.New York:IEEE Press,1982:84-88.
    [84]Nettleton R W.Traffic theory and interference management for a spread specturm cellular cellular mobile radio system[C]// Proc.of ICC,Seattle,WA,Jun.1980.New York:IEEE Press,1980:54-57.
    [85]Zander J.Performance of optimum transmitter power control in cellularradio systems[J].IEEE Trans Vehiculai Tech,1992,41:57-62.
    [86]Yates R D,Huang C Y.Integrated power control and base station assignment[J].IEEETrans.V T,1995,44(3):638-644.
    [87]Grandhi S A,Vijayan R,Goodman D J.Distributed power control in cellular radio systems[J].IEEE Trans Commun,1994,41(10):226-228.
    [88]Lee T H,Lin J C.A fully distributed power control algorithm for cellular mobile systems[J].IEEE J on Selected Areas in Commun,1996,14(4):692-697.
    [89]Sung C W,Wong W S.A distributed fixed-step power control algorithm for mobile cellular systems[J].IEEE Trans V T,1999,48(2):553-562.
    [90]Kandukuri S and S.Boyd.Optimal power control in interference limited fading wireless channels with outage probability specifications[J].IEEE Trans.Wireless Commun,2002,1(1):46-55.
    [91]Tan C W,Palomar,D P,Chiang M,Solving nonconvex power control problems in wireless networks:low SIR regime and distributed algorithms.// Proc.Globecom'05,Nov,2005.New York:IEEE Press,2005:6:1-6.
    [92]Gjendemsj(?) A,Gesbert D,0ien G E,et al.Optimal power allocation and scheduling for two-cell capacity maximization[C]// Proc.Modeling and Optimization in Mobile,Ad Hoc,and Wireless Networks,Boston,MA,Apr.2006.New York:IEEE Press,1-6.
    [93]MacKenzie A B,Wicker S B.Game theory in communications:motivation,explanation,and application to power control[C]// Proc.GLOBECOM '01,2001.New York:IEEE Press,2001:2:821-826.
    [94]Saraydar C,Mandayam N B,Goodman D J.Pricing and power control in a multicell wireless data network[J].IEEE Trans Commun,2001,19(10):1883-1892.
    [95]Alpcan T,Basar T,Srikant R.CDMA uplink power control as a noncooperative game[C]// The 40th IEEE Conf on Decision and Control,Orlando,Florida,USA,2001.New York:IEEE Press,2001:659-669.
    [96]Feng N,Mau S,Mandayam N B.Joint network-centric and user-centric radio resource management in a multicell syste'm[J].IEEE Trans Wireless Commun,2005,53(7):1114-1118.
    [97]Zhou C,Zhang P,Honig M L,et al.Two-cell power allocation for downlink CDMA[J].IEEE Trans Wireless Commun,2004,3(6):2256-2266.
    [98]Zhou C,Honig M L,Jordan S.Utility-based power-control for a two-cell CDMA data network[J].IEEE Trans.Wireless Commun,2005,4(6):2764-2776.
    [99]Teerapabkajorndet W,Krishnamurthy P.A reverse link power control algorithm based on game theory for multi-cell wireless data networks[C]//Proc.Globecome Workshop '04,Nov,2004.New York:IEEE Press,2004:459-468.
    [100]弗登博格朱,梯若尔.博弈论[M].北京:中国人民大学出版社,2003.
    [101]高峰,吉本斯罗.博弈论基础[M].北京:中国社会科学出版社,1999.
    [102]Meyer C D.Matrix Analysis and Applied Algebra[M].Philadelphia:Soc for Industrial & Applied Math,2000.
    [103]Wang B,Han Z,Liu K J R.Dstributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game[C]// Proc.INFOCOM'2007,May 2007,New York:IEEE Press,2007:544-552.
    [104]Yates R,A frame work for uplink power control in cellular radio systems[J].IEEE J.Select.Areas Commun.,1995,13:1341-1347.
    [105]Han S,Zhou S,Wang J,Li V,Park K,Suboptimal transmission of orthogonal space-time block codes over correlated distributed antennas[J].IEEE Signal Processing Letter,2007,2(14):573-575.
    [106]Hu H,Weckerle M,Luo J.Adaptive transmission mode selection scheme for distributed wireless communication systems[J].IEEE Communication Letter,2006,7(10):573-575.
    [107]Palomar D P,Cioffi J M,Lagunas,M.A.Uniform power allocation in MIMO channels:a game-theoretic approach[J].IEEE Transactions on Information Theory,2003,49(7):1707-1727.
    [108]Ham J,Kim K,Kim S,et al.Link-adaptive MIMO systems with ordered SIC receiver using stream-ordering algorithms in multiuser environments[J].IEEE Transactions on Vehicular Technology,2008,57(5):3224-3230.
    [109]Nabar R,Bolcskei H.Space-time signal design for fading relay channels[C]//IEEE GLOBECOM,San Francisco,USA,Dec,2003,New York:IEEE Press,2003:4:1952-1956.
    [110]Yang N,Tian H,Chen S,et al,An adaptive frame resource allocation strategy for TDMA-based cooperative transmission[J].IEEE Communication Letter,2007,5(11):417-419.
    [111]Grandhi A,Vijayan R,Goodman J,Zander,J.Centralized power control in cellular radio systems[J].IEEE Transactions on Vehicular Technology,1993 42(4):466-468.
    [112]Gradshteyn I S,Ryzhik I M.Tables of integrals series,and products[M].6th ed.San Diego,CA:Academic Press,2000.
    [113]ESTI.Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands,EURO-COST,no.231[S].Hague:1991.
    [114]Gesbert D,Kiani S.Joint power control and user scheduling in multicell wireless etworks:Capacity scaling laws[J/OL],http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.2851v1.pdf.
    [115]Sedgewick R.Algorithms In C:Part 1-4 Fundamentals,data structures,sorting,searching[M].Boston:Addison Wesley,Pearson Education,1998.
    [116]Chawla K,Qiu X.Quasi-static resource allocation with interference avoidance for fixed wireless systems[J].IEEE J.Select.Areas Commun,1999,17:493-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700