用户名: 密码: 验证码:
淮南煤田(以朱集矿为例)侵入岩和煤中稀土元素地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮南煤田是华东重要的煤炭生产基地,井田中岩浆岩的发育是煤层开采的安全的重要地质现象,稀土元素含量、分布在一定的环境条件下相对稳定,但在岩浆作用的地层中变化复杂。为此,作者在充分调研的基础上,以淮南煤田朱集矿为例,通过对朱集井田202个样品(包括侵入岩样、煤层样以及炭质泥岩样)的采集,结合高精度的XRF、ICP-AES、ICP-MS、XRD分析、显微鉴定等测试与分析方法,从岩浆岩、煤层中的物理化学性质与稀土元素的关系入手,探索了侵入岩与煤中稀土元素地球化学等相关科学问题。
     通过研究得出:研究区岩浆岩岩性变化从中酸性到中基性,其中主量元素参数(如TiO2/Al2O3)和稀土元素参数(如(La/Yb)N, Ce/Ce*与Eu/Eu*)也随着岩浆的演化呈现不同的特征,说明岩浆岩在演化过程中的地球化学作用的差异性;对比研究了受岩浆岩影响与未受岩浆岩影响的煤层中的稀土元素地球化学特征,得出了未受岩浆影响的煤层中,稀土元素含量呈正态分布,大多数的值介于70-170μg/g,但煤层顶板和夹矸的稀土元素含量显著增高,分别为712和718μg/g;3、4-1和4-2煤层中受到岩浆岩影响的煤样中的稀土元素含量的平均值分别为81、104和142μg/g,具有一定的差异性;研究发现了构造对煤层中的稀土元素有重要的控制作用,同时还发现稀土元素地球化学参数与煤层厚度存在统计学上显著线性回归关系。
Huainan Coalfield is the most important coal production base of East China. The abundant development of intrusive rocks in the coalfield constitutes a threat to safety mining. At normal coal-forming conditions, the concentration, distribution pattern of rare earth elements (REE) in coals are rather stable, however, at some areas where intrusive rocks were identified, the concentration, distribution pattern of coals REE could be more complicated. Therefore, we collected202samples including4intrusive rocks,196coal samples of10minable coal seams and2carbonaceous rocks after full investigation of the coal bearing sequences. The precision instruments such XRF, ICP-AES, ICP-MS, XRDand polarized-light microscope were used to fully investigate the physical characteristics and chemical compositions of coals and rocks and their relationship with REE.
     The results show that the intrusive rocks along coal bearing sequences upward correspondsa transition from acidic granite, intermediate diorite to basic gabbro.Major elements index (e.g. TiO2/Al2O3) and geochemistry parameters of REE like (La/Yb)N, Ce/Ce*and Eu/Eu*also show systematic variation with the evolution of intrusive magma, suggesting different geochemistry of intrusive rocks with the evolution of intrusive magma. The concentration of REE in coal samples that not affected by intrusive fluids fitted well into the normal distribution, and most of values are at between70and170μg/g; However, the REE concentration in coal roof and gangue was significantly higher, up to712and718μg/g, respectively; The intrusive coals seams of3,4-1and4-2had an average value of81,104and142μg/g, respectively, showing certain difference as compared to the normal deposited coals. The tectonic setting influenced largely the coals REE concentration in the upper coal-bearing sequences, and the geochemistry parameters of REE have significant correlations with the thickness of coal seams.
引文
Birk, D., White, J.C.,1991. Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia:Element sites, distribution, mineralogy. International Journal of Coal Geology,19,219-251.
    Bouska, V., Pesek, J.,1999. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. International Journal of Coal Geology,40,211-235.
    Brown, R., Dykstra, J.,1995. Systematic errors in the use of loss-on-ignition to measure unburned carbon in fly ash. Fuel 74(4):570-574
    Crowley, S.S., Stanton, R.W., Ryer, T.A.,1989. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Organic Geochemistry,14, 315-331.
    Dai, S., Chou, C.-L., Yue, M., Luo, K., Ren, D.,2005. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China:influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology,61,241-258.
    Dai, S., Li, D., Chou, C.-L., Zhao, L., Zhang, Y., Ren, D., Ma, Y., Sun, Y.,2008. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology,74,185-202.
    Dai, S., Li, D., Ren, D., Tang, Y, Shao, L., Song, H.,2004. Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China:influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry,19,1315-1330.
    Dai, S., Ren, D.,2006. Fluorine concentration of coals in China-An estimation considering coal reserves. Fuel,85,929-935.
    Dai, S., Ren, D.,2007. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan Coalfield, Hebei, China. Energy & Fuels,21,1663-1673.
    Dai, S., Ren, D., Chou, C.-L., Li, S., Jiang, Y.,2006. Mineralogy and geochemistry of the No.6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology,66,253-270.
    Dai, S., Wang, X., Chen, W., Li, D., Chou, C.-L., Zhou, Y., Zhu, C., Li, H., Zhu, X., Xing, Y., Zhang, W., Zou, J.,2010. A high-pyrite semi anthracite of Late Permian age in the Songzao Coalfield, southwestern China:Mineralogical and geochemical relations with underlying mafic tuffs. International Journal of Coal Geology,83,430-445.
    Dai, S., Wang, X., Zhou, Y., Hower, J.C., Li, D., Chen, W., Zhu, X., Zou, J.,201 1b. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology,282,29-44.
    Dai, S., Zhou, Y., Ren, D., Wang, X., Li, D., Zhao, L.,2007. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southwestern China. Science in China Series D:Earth Science,50,678-688.
    Dai, S., Ren, D., Chou, C.-L., Finkelman, R.B., Seredin, V.V., Zhou, Y.,2012. Geochemistry of trace elements in Chinese coals:A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, doi: 10.1016/j.coal.2011.02.003.
    Dong, S., Zhang, Y., Long, C., Yang, Z., Ji, Q., Wang, T., Hu, J., Chen, X.,2008. Jurassic Tectonic Revolution in China and New Interpretation of the 'Yanshan Movement'. Acta Geologica Sinica,82,334-347.
    Du, G., Zhuang, X., Querol, X., Izquierdo, M., Alastuey, A., Moreno, T., Font, O.,2009. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. International Journal of Coal Geology,78,16-26.
    Eskenazy, G.M.,1978. Rare-earth elements in some coal basins ofBulgaria. Geologica Balcanica 8,81-88.
    Eskenazy, G.M.,1987a. Rare earth elements and yttrium in lithotypesof Bulgarian coals. Organic Geochemistry 11,83-89.
    Eskenazy, G.M.,1987b. Zirconium and hafnium in Bulgarian coals.Fuel 66,1652-1657.
    Eskenazy, G.M.,1987c. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. International Journal of Coal Geology,7,301-314.
    Eskenazy, G.M.,1999. Aspects of the geochemistry of rare earth elements in coal:an experimental approach. International Journal of Coal Geology,38,285-295.
    Fang, S., Jia, C., Song, Y., Xu, H., Liu, L.,2005. The tectonism during Yanshan Period in southern Junggar foreland basin and its implications for hydrocarbon accumulation. Earth Science Frontiers,12,67-76.
    Finkelman, R. B.,1994. Modes of occurrence of environmentally-sensitive trace elements in coal: levels of confidence. Fuel Processing Technology,39,21-34.
    Finkelman, R.B.,1993. Trace and minor elements in coal. In:Engel, M.H., Macko, S. (Eds.), Organic Geochemistry. Plenum, New York, pp.593-607.
    Finkelman, R.B.,1994. Modes of occurrence of potentially hazardous elements in coal:levels of confidence. Fuel Processing Technology,39,21-34.
    Finkelman, R.B., Bostick, N.H., Dulong, F.T., Senftle, F.E., Thorpe, A.N.,1998. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado. International Journal of Coal Geology,36,223-241.
    GB/T-15224.1,2010.煤炭质量分级第一部分:灰分
    GB/T-15224.3,2010.煤炭质量分级第三部分:发热量
    GB/T-5751,2009.中国煤炭分类
    Gemmell, J.B., Large, R.R.,1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania, Australia. Economic Geology,87,620-649.
    Goodarzi, F., Cameron, A.R.,1990. Organic petrology and elemental distribution in thermally altered coals from Telkwa, British Columbia. Energy Sources,12,315-343.
    Goodarzi, F., Swaine, D.J.,1994a.The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chemical Geology,118,301-318.
    Goodarzi, F., Swaine, D.J.,1994b.Paleoenvironmental and environmental implications of the boron content of coals. Geological Survey of Canada Bulletin,471,1-46.
    Graham, I.T., Pogson, R.E., Colchester, D.M., Hergt, J., Martin, R., Williams, P.A.,2007. Pink Lanthanite-(Nd) from Whitianga Quarry, Coromandel Peninsula, New Zealand. Canadian Mineralogist,45,1389-1396.
    Han,S.,1990. Coalfield Geology and Prediction of Huainan & Huaibei Region. Geological Publishing House, Beijing, pp,6-170 (in Chinese with English abstract).
    Haskin, L. A., Haskin, M. A., Frey, F. A., Wildeman, T. R. Relative and absolute terrestrial abundances of the rare earths. In:L. H. Ahrens, Ed., Origin and distribution of the element, p. 889-912. New York:Pergamon Press.1968.
    Hower, J.C., Ruppert, L.F., Eble, C.F.,1999. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. International Journal of Coal Geology,39,141-153.
    Hower, J.C., Ruppert, L.F., Williams, D.A.,2002. Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield, USA. International Journal of Coal Geology,53,27-42.
    ISO-11760,2005. Classification of coals.
    Ketris, M.P., Yudovich, Y.E.,2009. Estimations of Clarkes for carbonaceous biolithes:world average for trace element contents in black shales and coals. International Journal of Coal Geology,78,135-148.
    Kortenski, J., Bakardjiev, S.,1993. Rare earth and radioactive elements in some coals from the Sofia, Svoge and Pernik Basins, Bulgaria. International Journal of Coal Geology,22, 237-246.
    Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanetti, B.,1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology,27,745-750.
    Le Maitre, R.W.,1984. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Science,31,243-255.
    Liu, G., Yang, P., Peng, Z., Chou, C.-L.,2004. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China. Journal of Asian Earth Sciences,23,491-506.
    Liu, G., Zheng, L., Wu, E., Peng, Z.,2006. Depositional and Chemical Characterization of Coal From Yayu Coal Field. Energy Exploration & Exploitation,24,417-437.
    MacLean, W.H., Kranidiotis, P.,1987. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology,82,951-962.
    Masuda, A., Nakamura, N., Tanaka, T.1973. Fine structures of mutually normalized rare-earth patterns of chondrites.Geochimica et Cosmochimica Acta,37,239-248.
    Pollock, S.M., Goodarzi, F., Riediger, C.L.,2000. Mineralogical and elemental variation of coal from Alberta, Canada:an example from the No.2 seam, Genesee Mine. International Journal of Coal Geology,43,259-286.
    Pourmand, A., Dauphas, N., Ireland, T.J.,2011. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y:Revising Cl-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 10.1016/j.chemgeo.2011.08.011.
    Qi, H., Hu, R., Zhang, Q.,2007. REE Geochemistry of the Cretaceous lignite from Wulantuga Germanium Deposit, Inner Mongolia, Northeastern China. International Journal of Coal Geology 71,329-344.
    Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Fernandez-Turiel, J.L., Zeng, R., Xu, W., Zhuang, X., Spiro, B.,1997. Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. International Journal of Coal Geology,34,89-109.
    Ren, D., Zhao, F., Wang, Y., Yang, S.,1999. Distributions of minor and trace elements in Chinese coals. International Journal of Coal Geology,40,109-118.
    Seredin, V.V.,1996. Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology,30,101-129.
    Seredin, V.V.,2004.Metalliferous coals:formation conditions and outlooks for development. Coal Resources of Russia, vol. Ⅵ. Geoinformmark, Moscow, pp.452-519 (in Russian).
    Seredin, V.V., Finkelman, R.B.,2008. Metalliferous coals:a review of the main genetic and geochemical types. International Journal of Coal Geology,76,253-289.
    Seredin, V.V., Shpirt, M.Y.,1995. Metalliferous coals:a new potential source of valuable trace elements as by-products. In:Pajares, J.A., Tascon, J.M.D. (Eds.), Coal Science and Technology. Elsevier, pp.1649-1652.
    Spears, D.A., Zheng, Y.,1999. Geochemistry and origin of elements in some UK coals. International Journal of Coal Geology,38,161-179.
    Sun, R., Liu, G., Zheng, L., Chou, C.-L.,2010. Characteristics of coal quality and their relationship with coal-forming environment:A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy,35,423-435.
    Sun, R., Liu, G., Zheng, L., Chou, C.-L.,2010. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. International Journal of Coal Geology,81, 81-96.
    Sun, S., McDonough, W.,1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J. Eds..Magmatism in Ocean Basins. Geol. Soc. Spec. Publ., London, pp.313-345.
    Swaine, D.J.,1990. Trace Elements in Coal. Butterworths, London.
    Tan, J., Ju, Y., Yuan, W., Hou, Q., Pan, J., Fan, J.,2011. Thermochronological and structural evolution of the Huaibei coalfield in eastern China:Constrains from zircon fission-track data. Radiation Measurements,46,183-189.
    Taylor, S.R., McLennan, S.M.,1985. The Continental Crust:Its Composition and Evolution. Blackwell, Oxford, pp.312.
    Valentim, B., Guedes, A., Rodrigues, S., Flores, D.,2011. Case study of igneous intrusion effects on coal nitrogen functionalities. International Journal of Coal Geology, doi: 10.1016/j.coal.2011.02.008.
    Ward, C. R..2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology 50,135-168.
    Yang, M., Sun, R., Liu, G., Chou, C.-L., Zheng, L.,2012. Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. International Journal of Coal Geology,94,283-295.
    Zheng, L., Liu, G., Chou, C.-L., Qi, C, Zhang, Y.,2007. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. Journal of Asian Earth Sciences,31, 167-176.
    Zhou, Y., Bohor, B.F., Ren, Y.,2000. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International Journal of Coal Geology,44,305-324.
    陈德潜,陈刚,1990.实用稀土元素地球化学.北京:冶金工业出版社.
    陈如冰,钱琴芳,杨亦男,等.1985.我国107个煤矿中微量元素浓度分布.科学通报,30,27-29.
    代世峰,2002.煤中伴生元素德地质地球化学习性与富集模式[D]:[博士].北京:中国矿业大学.
    代世峰,任德贻,李生盛,2002.煤及顶板中稀土元素赋存状态及逐级化学提取.中国矿业大学学报,31(5),349-353.
    代世峰,任德贻,李生盛,Chou, C.L.,2006鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现.地质学报,80,294-300.
    董宇,兰昌益,曾庆平,杨本才,1994.两淮晚石炭世至晚二叠世初期岩相古地理.煤田地质与勘探,22(6),9-12.
    韩德馨,1996.中国煤岩学.徐州:中国矿业大学出版社.
    韩树棻,1990.两淮地区成煤地质条件及成煤预测.北京:地质出版社.
    黄维清周俊杰郑荣华,2007.济宁煤田金乡矿区岩浆活动及对煤层煤质的影响.中国煤炭地质,5:16-17.
    黄文辉,杨起,汤达祯等,1999.华北古生代煤中稀土元素呢地球化学特征.地质学报,73,360-369.
    兰昌益.1989.两淮煤田石炭二叠纪含煤岩系沉积特征及沉积环境.淮南矿业学院学报,3,9-22.
    黎彤,1992.地壳元素丰度的若干统计特征.地质与勘探,28(10),1-7.
    刘丙祥,刘春平,孙明聪,刘桂建,2010.淮南煤田朱集井田岩浆侵入特征研究.中国煤炭地质,3:13-16.
    任德贻,赵峰华,代世峰,张军营,雒昆利,2006.煤的微量元素地球化学.北京:科学出版社.
    劭靖邦,曾凡桂,王宇林等,1997.平庄煤田煤中稀土元素地球化学特征.煤田地质与勘探,25,13-15.
    孙景信,Jervis, R.E.,1986煤中微量元素及其在燃烧过程中的分布特征.中国科学(A辑),12,1287-1291.
    孙若愚,2010.淮南朱集井田煤中微量元素含量分布规律及其应用[D]:[硕士].合肥:中国科学技术大学.
    唐修义,黄文辉,2002.煤中微量元素及其研究意义.中国煤田地质,14(增刊),1-4.
    唐修义,黄文辉.2004.中国煤中微量元素.北京:商务印刷馆.
    王远泉,任德贻,1994.煤中微量元素研究的进展.煤田地质与勘探,22(4),16-20.
    王运泉,任德贻,雷加锦等,1997.煤中微量元素分布特征初步研究.地质科学,32,65-73.
    王志波.1999.民用型煤环境影响与公众健康危害评价.北京:原子能出版社.
    王中刚,于学元,赵振华.1989.稀土元素地球化学.北京:科学出版社.
    吴海鸥,陈儒庆,林刚.1994.煤的稀土元素地球化学.桂林冶金地质学院学报,14,284-294.
    杨守山,兰昌益.1992.淮南煤田颍凤区山西组沉积环境.中国煤田地质,4(2),6-9.
    扬起,1999.中国煤的叠加变质作用.地质前缘,6(增刊):1-8.
    赵志根.2002.含煤岩系稀土元素地球化学研究.北京:工业出版社.
    赵峰华,1997.煤中有害微量元素分布赋存机制及燃烧产物淋滤实验研究.北京:中国矿业大学北京研究生部,1997.
    张军营,1999a.煤中潜在毒害微量元素富集规律及其污染性抑制研究.北京:中国矿业大学,1999.
    张军营,任德贻,许德伟,1999b.黔西南煤层主要伴生矿物中汞的分布特征.地质论评,45(5):539-542.
    朱善金.1989.淮南煤田新集井田二叠纪系煤第Ⅰ,Ⅱ含煤段沉积环境初步分析.淮南矿业学院学报,2,13-20.
    周义平,1974.论述锗在煤层中分布的两种类型.地质科学,(2):182-188.
    周义平,1983.云南某些煤中砷的分布及控制因素.煤田地质与勘探,11(3):2-8.
    周义平,1994.老厂矿区煤中汞的成因类型和赋存状态.煤田地质与勘探,22(3):17-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700