用户名: 密码: 验证码:
供水管道泄漏自适应检测及定位信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
供水管道泄漏检测及定位是一项具有重大经济、社会和环境效益的工作。目前基于泄漏声信号处理的方法——以相关检漏仪为代表,被广泛应用于供水管道泄漏检测与定位中。相关检漏仪大多采用广义互相关时延估计算法,需要已知或估计信号与噪声的功率谱设计相应滤波器,谱估计的准确性直接关系到时延估计器的性能。在实际供水管道泄漏检测应用中,泄漏信号自身的谱特征因管道参数及埋设环境的不同而各异,同时泄漏信号的传播路径及环境中各种噪声干扰等多种复杂因素的影响,每次检测时其信号与噪声的功率谱实际难以获得,单一因素的差异即会导致谱估计的不准确,从而使整个泄漏检测失效。
     近几年来,作者所在的研究组将自适应时延估计方法引入地下管道的泄漏检测及漏点定位,实现对不同环境条件不同泄漏对象的自适应检测和定位。采用自适应滤波代替广义互相关算法,能够根据现场采集信号的实际特征实时更新和调整,通过自适应迭代由滤波器自身的参数直接得到泄漏声信号的最优相关结果,避免了相关检漏仪需要知道信号和噪声谱等先验知识的不足,使得泄漏检测仪器具有很好的跟踪和自适应能力,而且计算简便,能够实现在线操作,取得了显著的效果。但由于实际检漏环境复杂,自适应算法在复杂动态环境中的收敛状态难以用传统方法进行判断;泄漏水声的干扰因素很多,管道内在与外在多种环境噪声的叠加使得获取的泄漏信号信噪比较低,噪声引入的自适应有偏估计对可检测的信噪比极限及最优检测结果有影响;另外检测环境中各种突发干扰的发生,会影响自适应算法收敛解的位置。因此,论文提出了自适应收敛动态判断方法,自适应无偏时延估计以及突发干扰去除方法,相应解决自适应算法在低信噪比、非平稳干扰环境及其他恶劣工况检测条件下应用时遇到的实际问题,并改善泄漏检测定位的性能。
     论文的具体研究内容有:
     ①研究了基于自适应时延估计的供水管道泄漏检测定位方法,以及泄漏检测的定位误差和时延估计误差。通过研究指出自适应算法在实际复杂环境及恶劣工况条件下检测遇到的几个关键问题,如自适应算法在复杂动态噪声背景下的收敛判断,噪声引入的自适应有偏估计问题,以及突发干扰对自适应收敛解位置的影响等,为整个论文的研究工作打下基础。
     ②基于自适应滤波器工作在理想最优条件时的正交原理,推导出考虑梯度噪声影响时误差与输出实际近似正交的约束条件,根据每次迭代不断更新的期望、输出及误差信号的均方估计,在线实时判断自适应算法是否收敛,克服了传统判断方法的缺点,解决了自适应算法在复杂动态噪声背景下收敛状态的判断问题。同时,通过在线实时评估自适应解的质量,在收敛点处选取最优估计并停止迭代,保证了自适应检测结果的可靠性,还提高了迭代处理的效率。实验结果表明,动态判断收敛方法对平稳和非平稳检测环境均适用,相应检测条件下的自适应系统参数辨识及时延估计的方差因此得到较大改善。
     ③针对泄漏检测中噪声引入的自适应有偏估计,基于Treichler的γ-LMS算法提出一种无偏自适应时延估计方法。提出利用最佳逼近原理解释滤波器中各信号间的几何关系,借助传统自适应滤波器得到的期望输出信号来估计输入噪声功率,应用γ-LMS算法在迭代过程中逐步去除输入噪声的影响。该无偏估计算法利用自适应滤波器可以获得的信息去除噪声影响,使最优维纳解的真实峰值得到增强,改善了低信噪比环境下的自适应时延估计性能。实验表明,此自适应无偏估计算法使可检测的信噪比极限从原来的-16dB下降至-20dB,通过增强峰值,还能够抑制检漏环境中非平稳干扰的影响。
     ④研究了泄漏信号与非平稳干扰噪声的可分辨特征,根据二者产生机理的差别,以及突发干扰信号特有的局部时频特性,利用时频字典匹配搜索的方法来去除来自不同源的不可预测突发干扰噪声。构建恰当的时频字典表,自适应搜索混合信号与字典表中元素最佳匹配或相关的确定性干扰噪声成分,分离出该信号,恢复出平稳的随机性泄漏信号。通过同时去除多种突发干扰源,提高了检测定位系统在非平稳干扰环境下的抗干扰能力、鲁棒性,及检测结果的可靠性。
     ⑤在研究组基于泄漏声信号自适应时延估计方法构建的智能检漏定位仪器平台上,将论文中提出的信号处理方法分别应用于系统的实际泄漏检测,通过大量数据处理实验验证了方法在实际检测应用中的有效性。自适应解的实时动态自评估、无偏自适应估计方法和采集信号中自适应匹配搜索去除突发干扰的预处理方法,不仅解决了自适应系统在泄漏检测定位应用中遇到的主要问题,而且可以使检测定位系统的检测灵敏度,复杂多变噪声环境中定位的准确性和稳定性,以及对环境中突发噪声的抗干扰能力都有较大的提高。通过实时判优,实际迭代时间平均减少至原来将数据迭代完毕时所需时间的1/5,实际非平稳干扰环境下的泄漏检测定位误差在2米以内(大部分在1米以内),接近于平稳环境下的检测结果;自适应无偏估计算法不仅提高了实际的检测灵敏度,而且可以使自适应系统在多变检漏环境中的稳定性和检测性能都有明显提高;在去除突发干扰改善信号质量后,避免自适应系统收敛至多个稳态解,提高了系统检测结果的可靠性,使得稳定后定位误差范围减小至去噪前的1/30~1/2,系统的抗干扰能力和稳定性得到增强。上述多种方法综合运用于智能检漏定位系统中,使得仪器不受环境限制,整体定位误差在1米以内,有效提高了检漏系统在复杂噪声环境及恶劣工况条件下的检测性能。
Water pipe leak detection and location is such an important activity that it can have profound effects on our society, economy and environment. At present acoustic leak processing methods have been widely employed for detecting and locating the water pipe leakage. In particular, correlators are the most popular ones, which utilize the generalized cross correlation method to analyze the leak sound signal. A cross correlator needs a priori knowledge of the signal and noise spectra to design its proper filter before correlating the two measurements. Accurate spectra acquisition is crucial for the following correlating process and finally getting correct delay estimation. However, for practical water pipe leak detection, the leak sound varies with different pipe parameters and its buried soil environments, the different sound propagation paths and so on, and all kinds of interferences from the unpredictable noisy background differ all the time. It is very difficult to get accurate spectra of the signal and the noise seperately beforehand, and to design filters is not easy because there is no proper information provided for reference. Even one changing factor will make wrong estimates of the signal or noise spectra, and will lead to the failure of the whole detection.
     To overcome the traditional cross correlator’s weakness, our research group recently applies adaptive time delay estimation, which employs adaptive filtering instead of the generalized cross correlation method, into buried water pipeline leak detection. The adaptive filter can be updated iteratively by adapting to the actual acquired signal’s characteristics and get the correlation results directly from its own system parameters, which doesn’t need any prior knowledge of the signal or the noise thus it can track the changing detection targets and time-varying environment. Besides, the LMS time delay estimation is simple and easy to compute, and can be implemented on line as well. However, the practical detection environment is always complicated. It is difficult to use traditional ways to determine when the adaptive algorithm converges in a dynamic complex noisy background. Besides, the leaking sound is contaminated by many different interferences coming from the inside and the outside of the pipe, thus the acquired signals are always with very low Signal-Noise-Ratio(SNR). The noises not only introduce the biased estimates for the adaptive filter, but also have an effect on the system’s detectible SNR limit and its optimal detection result. Moreover, when it is mixed with nonstationary bursting noises, the location of the convergent adaptive solution varies with different signal characteristics at different time. To solve these problems confronted in the practical application of adaptive time delay estimation, several signal processing methods are proposed in this paper to dynamically determine when the adaptation process acctually converges, to elimate the noise influence with the bias-free adaptive algorithm, and to eradicate the unpredictable bursting interferences, in order to improve the adaptive leak detection and location performance for the water pipe in nonstationary, or low-SNR, or other abominable noisy environments. The detail of the work is described as follows:
     ①It is studied the leak location principle based on adaptive time delay estimation method, and its pinpointing error and the time delay estimation error. From the practical problems confronted with the leak detection in complicated and abominable noisy environments, it is pointed out three key issues to be solved when adaptive method is adopted: dynamic discrimination for the converging state of the adaptive process, biased estimation induced by the noises in the adaptive algorithm, and the influence of the interferences for the Wiener solution. All of these are the work foundation for the whole paper.
     ②Based on the principle of orthogonality, an on-line constraint of the adaptive detection system which can be used to dynamically determine the LMS algorithm’s convergence, is derived when the error and output get approximately orthogonal due to the gradient noise practically. The dynamic discriminant obtained through estimated mean-square values of the desired, output and error signals at each iteration, can be updated along with the adaptation. While avoiding the weakness of the traditional discrimination methods, it can dynamically evaluate quality of the adaptive solution and solves the first problem in practical detection. Through ending the iteration timely and accurately it can get the optimal estimation even with complicated nonstationary interferences. As a result, the performance and efficiency of time delay estimation are improved simultaneously while using adaptive algorithms. The experiment results show that it is applicable to adaptive detection systems in nonstationary as well as stationary environments, and the estimation variances of the adaptive parameter identification and time delay estimation applications are significantly decreased because of the dynamic convergence determination.
     ③For the measurement data of lower SNR with stationary noises, the biased Wiener solution induced by the input noise will result in deteriorated performance in LMS time delay estimator (LMSTDE). Then a modified bias-free scheme based on Treichler’s r -LMS algorithm is developed for eliminating the input noise iteratively, in which the input noise variance can be simply obtained from the steady output of the traditional adaptive filter by the geometric interpretation of the best approximation projection of relative signals. It utilizes available information from the adaptive filter itself without any a priori knowledge of the interference, to enhance the peak of the optimal Wiener solution, thus it can improve the performance of the LMSTDE in lower SNR environments. Simulation and real data application are both provided to validate its improved effectiveness: it not only makes the detectible SNR level to be reduced to -20dB from -16dB, but also can resist the nonstationary interferences in the actual leak detection to some degree.
     ④It is analyzed the distinctive features of leak sound and other interference noises. Due to the absolutely different mechanics of generation of these two types of signals, and the local time and frequency distribution property of the interferences in time-frequency plane, an application of matching pursuit with a Time-Frequency Dictionary is proposed to remove the unpredictable but determined interferences, which could come from many different sources. A proper time-frequency dictionary is built, then adaptive matching pursuit method is used to iteratively decompose the original mixture signal into a linear expansion of waveforms that are selected from the time-frequency dictionary. These waveforms are chosen in order to best match the signal structure. After the adaptive time-frequency transformation, the main determined interferences in the mixture signals are first extracted, while the leak signal is left behind and recovered at last. In the end, the signal quality is enhanced greatly after the removal of strong time-varying noises and the adaptive leak detector no longer convergences to multiple stable Wiener solutions. The detector is then much more immune to the influence of bursting interferences in practical complicated noisy environments, and more reliable and robust under nonstationary dynamic detection condition.
     ⑤An intelligent leak detection and location instrument is developed by our group based on the adaptive time delay estimation with leak sound. By applying the above signal processing methods into this leak detection instrument, lots of experiments are employed with practical acquired leak data to validate their effectiveness respectively. It shows that through the real-time dynamic convergence discrimination, the bias-free LMSTDE, and the burst interference removal, this adaptive system’s detection sensitiviry, location precision and stability in nonstationary noisy environment, and its interference resistance capability after the adaptation process enters its steady state, are all improved dramatically. The actual leak detection error in varying complicated environments can be controlled in less than 2 meters(mostly less than 1 meter) when using the dynamic discriminant, which are close to that in stationary background. And the adaptation process time can be reduced to 1/5 of the original time. The bias-free LMSTDE can not only reduce the detectible SNR limit level but also improve the reliablity and other detection performances of the adaptive system in changeable environments. And after the burst interference removal for practical measurements, the adaptive location error range when the filter enters its steady state can be reduced to 1/30 to 1/2 of the original case, the detection system’s robustness is thus enhanced. When all the above signal processing methods are applied into this intelliget leak detection and location instrument, the detector’s location error can be controlled in no more than 1 meter, and the system’s performance is improved in the dynamic complicated noisy environments.
引文
[1]宋序彤,钱琦,曹金清.中国城市供水未计量用水和漏损分析[C].管网漏损控制研讨会论文集,中国水协科技委管道专业委员会, 2001: 1-12.
    [2]刘志琪等. CJJ92-2002.城市供水管网漏损控制及评定标准[S].北京:中国建设工业出版社, 2002.
    [3]埃德尔.漏水监测-浅谈供水企业开展漏水检测工作的重要意义[EB/01]. http://www.adler.com.cn/info/2006719/200671990612.shtml, 2006-7-19/2007-3-12.
    [4]陈苏姿.管网漏损的规律、成因及对策[EB/01], http://www.chwater.com/tech/show.asp?id=16, 2006-8-16/2007-3-12.
    [5]冯健,张化光.管道监控技术现状与发展趋势[J].信息技术, 2003, 27(12): 41-43.
    [6] Fuchs H V, Riehle R. Ten years of experience with leak detection by acoustic signal analysis [J]. Applied Acoustics, 1991, 33(1): 1-19.
    [7]靳世久,唐秀家,王立宁等.原油管道泄漏检测与定位[J],仪器仪表学报, 1997, 18(4) : 343- 348.
    [8]唐秀家.不等温长输管道泄漏定位理论[J].北京大学学报, 1997, 33(5): 574-580.
    [9]郭亚军.压力管道泄漏检测与漏点定位算法研究与实现[D].硕士学位论文,南京:南京理工大学, 2003.
    [10]王勇.管道泄漏监测方法的研究[D].硕士学位论文,北京:清华大学, 2000.
    [11]王可非,王桂增,杨军.基于负压波的管道泄漏诊断[J].信息与控制, 1992, 21(4):217-221.
    [12]赵松龄,盛胜我,殷业.自来水管网声学检漏技术的研究[J].同济大学学报, 1997, 25(2): 171-175.
    [13]耿为民.给水管网漏损控制及其关键技术研究[D].博士学位论文,上海:同济大学,2004.
    [14]孟子厚.自来水管网相关检漏技术中时延估计方法的选择与综合[J ].声学技术, 1995, (1) : 15-21.
    [15]靳世久,孙家鼐,姜弘彦,唐秀家.强环境噪声下地下管道泄漏检测[J].天津大学学报,1994,27 (6):782-787.
    [16]凌振宝,潘志伟,穰瑜等.城市自来水管道漏点检测仪的设计[J].吉林大学学报(信息科学版), 2005, 23(3): 263-266.
    [17]孙中.地下自来水管道测漏仪检测电路的设计[D].硕士学位论文,吉林:吉林大学, 2002.
    [18]孙忠.地下自来水管道测漏仪检测系统的改进与实现[D].硕士学位论文,吉林:吉林大学, 2002.
    [19]闫红美.地下输水管道漏水信号特征分析[D].硕士学位论文,长春:长春科技大学,1999.
    [20]闫新海.地下输水管道漏水相关检测技术研究[D].硕士学位论文,长春:长春科技大学,2000.
    [21]夏开新.相关测量及弱信号检测在管网漏点定位系统中的应用研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2004.
    [22]佟凯.相关分析法在管道漏点定位系统中的试验研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2005.
    [23]何峰.管道漏点定位系统及相关问题的研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学, 2005.
    [24]贺强.给水管网定位和测漏设备应用研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2005.
    [25] Wen Yu-mei, Li Ping, Yang Jin and Zhou Zhang-min. Information processing in buried pipeline leak detection system[C]. Proceedings of 2004 International Conference on Information Acquisition, 2004: 489-493.
    [26] Wen Yu-mei, Li Ping, Na Xin, Yang Jin. Mobile instrument for intelligent leak detection and location on underground water supply pipelines[C]. Proceedings of SPIE Smart Structures & Materials and Nondestructive Evaluation for Health Monitoring & Diagnostics Symposium, 2005: 156-167.
    [27]李羡清.管道检测技术现状与动向(一) [J].管道技术及设备, 1994, (4): 37-40.
    [28]张连文.管道泄漏检测技术及评价[J].油气田地面工程, 2003, 22(4): 1-3.
    [29]付道明,孙军,贺志刚等.国内外管道泄漏检测技术研究进展[J].石油机械, 2004, 32(3): 48-51.
    [30]陈华敏,师学明,张云姝等.管道泄漏检测技术进展[J].安全与环境工程, 2003, 10(3): 58-61.
    [31]薛燕,胡娜.输油管道泄漏检测技术及应用探讨[J].石油与天然气化工, 2002, 31 (2) : 106- 109.
    [32]姚岚,余海湖,姜德生.一种新型光纤湿度敏感元件[J ],传感器技术, 2001, 20 (2) : 9- 11.
    [33]孙立国,郝英杰.氢气示踪法在检验新建管道中的应用[J].地下管线管理, 2001, (6): 53-55.
    [34] Isermann R. Process fault detection based on modeling and estimation methods: a survey[J]. Automatic, 1984, 20 (4):387-404.
    [35] Wade, W R, Rachford, H H. Detecting leaks in pipe lines using SCADA information[J]. Pipe Line Industry.1988, 68(1):64-66.
    [36] Ferrante M, Brunone B. Harmonic analysis of pressure signal during transients for leak detection in pressurized pipes[C]. Proceedings of the 4th Int Conf on Water Pipeline Systems. York, UK: BHR Group Limited, 1999. 259-267.
    [37] Digernes T. Real time failure detection and identification applied to supervision of oil transport in pipeline[J]. Modeling, Identification and Control, 1980, (1):39-49.
    [38] Billmann L, Isermann R. Leak detection methods for pipelines[J]. Automatica, 1987, 23(3): 381-385.
    [39] Benkherouf A, Allidina A Y. Leak detection and location in gas pipelines[J]. Proceedings of the IEEE, March, 1988, 135(2):142-148.
    [40] Wang G Z, Fang C Z, Wang K F. State estimation and leak detection and location in pipeline[C]. Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, IECON '91. 1991.155-160 vol.1, 1991.
    [41] Siebert H. A simple method for detecting and locating small leaks in gas pipelines[J]. Process Automation, 1981, 90-95.
    [42]秦泗肇,王桂增,陶洛文,方崇智.长输管道的泄漏故障诊断[C].工业过程模型化及控制,中国自动化学会第二届过程控制科学报告会论文集.上海:华东化工学院出版社, 1988.
    [43]靳世久.瞬态负压波结构模式识别法原油管道泄漏检测技术[J].电子测量与仪器学报, 1998, 12(1): 19-23.
    [44]邓鸿英,杨振坤,王毅.基于负压波的管道泄漏检测与定位技术研究[J].计算机测量与控制, 2003, 11(7): 481-489.
    [45]李光海,王勇.基于声发射技术的管道泄漏检测系统[J].自动化仪表, 2002, 23(5): 20-23.
    [46]崔建.管道泄漏声发射检测方法及系统研究[D].北京:清华大学, 2000.
    [47] Hunaidi O, Chu W T. Acoustical characteristics of leak signals in plastic water distribution pipes [J]. Applied Acoustics, 1999, 58 (3): 235-254.
    [48] Hunaidi O, Chu W T, Wang A, Guan W. Detecting leaks in plastic water distribution pipes[J]. Journal of the American Water Works Association, 2000, 92 (2): 82-94.
    [49] Hunaidi O, Wang A, Bracken M, et al. Acoustic methods for locating leaks in municipal water pipe networks[C]. International Water Demand Management Conference, 2004: 1-14.
    [50] Miller Ronnie K, Pollock A , Finkel P , et al . Development of Acoustic Emission for Leak Detection and Location in Liquid-filled, Buried Pipelines[M]. ASTM Special Technical Publication ,1998. 67-78.
    [51]王继华.相关测漏技术的基本理论与新成果[D].硕士论文.桂林工学院.2003.
    [52]毛汉领,黄文,包家福,龙芋宏.自来水管网泄漏检测的两种方法[J].控制与测量. 2002, 1: 35-47.
    [53]王潜龙,冯全科,屈展,帕娜尔汗.基于声发射与小波包理论的压力管道泄漏检测[J].西安交通大学学报. 2003, 37(5):515-518.
    [54]焦敬品,何存富,吴斌,费仁元.基于模态分析和小波变换的声发射源定位新算法研究[J].仪器仪表学报. 2005,5:482-485.
    [55]谷小红,张光新,侯迪波,周泽魁.小波包分解与能量特征提取相结合的水管泄漏位置的确定[J].四川大学学报. 2005, 37(6):145-149.
    [56]杨进,文玉梅,李平.基于声信号的供水管网自适应泄漏检测定位仪器系统[J].测控技术, 2005, 24(10): 47-51.
    [57] Wan Q, Koch D B, Morris K. Multichannel spectral analysis for tube leak detection[J]. Proceeding of the IEEE. 2003, 1: 4.
    [58]郭亚军,聂荣伟,朱继南等.基于3个传感器的管道泄漏相关定位算法[J].南京理工大学学报, 2003, 27(6): 682-685.
    [59]张立.基于多声学传感器的声发射检测技术的应用研究[D].浙江大学硕士论文. 2006.
    [60]唐秀家,颜大椿.基于神经网络的管道泄漏检测方法及仪器[J].北京大学学报(自然科学版), 1997, 33(3): 319-327.
    [61]黄文,毛汉领,包家福等.管道泄漏检测用人工神经网络技术[J].无损检测, 2002, 24 (8) : 128- 131.
    [62] Roy K J. Leak noise correlator apparatus [P]. United States Patent 5922942, July 13, 1999.
    [63] Roy K J. Detecting leaks in pipes [P]. United States Patent 6647762, November 18, 2003.
    [64] Gurcharan Singh Chana. Method and system for localizing and correlating leaks in fluid conveying conduits[P]. United States, US Patent 6530263, March 11, 2003.
    [65]德国Seba公司[Z]. Seba DynaCorr相关仪说明书.
    [66]李立光,李文建.相关检漏仪的原理及应用[J].地下管线管理, 1998, (3): 37-40.
    [67]杨进,李平,文玉梅,周彰敏,周志坤.地下管网泄漏检测定位智能仪器系统[C].大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集, 2004.
    [68]杨进,李平,文玉梅,郑敏.自适应供水管网泄漏检测定位仪器系统[J].仪器仪表与传感器, 2005(2): 14-17.
    [69]杨进.供水管道泄漏检测定位中的信号分析及处理研究[D].博士学位论文,重庆:重庆大学,2007.
    [70]周彰敏,文玉梅.泄漏检测应用中突发干扰对LMS时延估计性能的影响[J].声学技术, 2004, 23(3): 168-172.
    [71]周彰敏.管道泄漏检测中的时延估计技术应用研究[D].硕士学位论文,重庆:重庆大学, 2004.
    [72]周志坤,文玉梅,李平等.自来水管道泄漏相关检测定位系统研究[J].仪器仪表学报,2004, 25 (z3), 241-244.
    [73]文静.供水管网泄漏检测定位中的泄漏信号处理研究[D].博士学位论文,重庆:重庆大学, 2007.
    [74] Wu Hui-juan, Li Ping, Wen Yu-mei. Optimal identification and estimation in practical noisy environments[C]. Proceedings of the 9th International Conference on Control, Automation, Robotics & Vision (ICARCV 2006), 2006: 1275-1280.
    [75]吴慧娟,文玉梅,李平.被动检测系统中自适应算法收敛的动态判断[J].仪器仪表学报, 2007, 28(3): 414-420.
    [76] Wu Hui-juan, Wen Yu-mei, Ping Li. Dynamic discrimination of convergence of the LMS time delay estimation in complicated noisy environments[J]. Applied Acoustics, 2007, 68 (6): 628-641.
    [77] Hunaidi O, Giamou P. Ground - penetrating radar for detection of leaks in buried plastic water distribution pipes[C]. Proceedings of the 7th Internnational Conference on Ground - Penetrating Radar, 1998: 783-786.
    [78]雷林源.城市地下管线探测与测漏[M].北京:冶金工业出版社, 2003.
    [79]蒋峰,李景华等.给水管道检漏工作的新进展[J].化工给排水设计, 1994, (1): 39-43.
    [80]常贵林,刘吉东等.工业泄漏与治理[M].北京:中国石化出版社, 2001.
    [81] Muggleton J M, Brennan M J. Leak noise propagation and attenuation in submerged plastic water pipes[J]. Journal of Sound and Vibration, 2004, 278: 527-537.
    [82] Muggleton J M, Brennana M J, Pinnington R J. Wavenumber prediction of waves in buried pipes for water leak detection[J]. Journal of Sound and Vibration, 2002, 249(5): 939-954.
    [83] Gao Y, Brennana M J, Josepha P F, et al. A model of the correlation function of leak noise in buried plastic pipes[J]. Journal of Sound and Vibration, 2004, 277(1-2): 133-148.
    [84] Gao Y, Brennana M J, Josepha P F, et al. On the selection of acoustic/vibration sensors for leak detection in plastic water pipes[J]. Journal of Sound and Vibration, 2005, 283(3-5): 927-941.
    [85] Muggleton J M, Brennan M J, Pinnington R J, Gao Y. A novel sensor for measuring the acoustic pressure in buried plastic water pipes[J]. Journal of Sound and Vibration, 2006, 295(3-5): 1085-1098.
    [86]梁建文,赵新华,肖笛等.一种城市供水管网爆管故障在线检测系统[P].中国:发明专利,申请号: 02100405.6.
    [87]冯继东.埋地供水管漏损的声信号特征及检漏系统仿真系统[D].硕士论文,华中科技大学, 2004.
    [88]唐秀家.供水管网泄漏检测定位方法及仪器[J].水利学报, 1997, (9): 19-26.
    [89]李光海,刘时风,耿荣生,沈功田.声发射源特征识别的最新方法[J].无损检测, 2002, 24 (12): 534-538.
    [90] Savic M. Detection of leaks in pipelines[P]. United States Patent 5416724, May 16, 1995.
    [91] Toshitaka Sato and Akira Mita. Leak detection using the pattern of sound signals in water supply systems[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. Proc. of SPIE vol. 6529.
    [92]焦敬品,何存富,吴斌,费仁元,王秀彦.管道声发射泄漏检测技术研究进展[J].无损检测. 2003, 25(10): 519-523.
    [93]焦敬品,何存富,吴斌,费仁元.基于导波理论的管道泄漏声发射定位新技术研究[J].机械工程学报. 2004, 40(10):77-81.
    [94]王继华,张致付,雷林源.灰色系统在地下管道泄漏定位中的应用[J].桂林工学院学报, 2003, 23(1):46-49.
    [95] Liu Shifeng, Li Luming, Cui Jian, Li Tie. Acoustic Emission Detection of Underground Pipeline Leakage[C].15th World Conference on Nondestructive Testing Roma, 15-21 October 2000.
    [96]龚斌,包日东,金志浩,闻邦椿.压力管道泄漏点的新型声发射定位研究[J].化工机械. 2005, 32(5):291-293.
    [97] Youn H, Ahmed N. An overview on the time delay estimate in active and passive systems for target localization[J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1981, 29(3): 527-533.
    [98] Strobel N, Rabenstein R. Classification of time delay estimates for robust speaker localization [C]. Proceedings of the IEEE International Conference of Acoustics, Speech, and Signal Processing, 1999, 6: 3081-3084.
    [99] Viola F, Walker W F. A comparison of the performance of time-delay estimators in medical ultrasound[J]. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(4): 392-401.
    [100] Helstrom C W. Statistical Theory of Signal Detection[M]. New York: Pergamon, 1968: 274-319.
    [101] Woodward P M. Probability and Information Theory with Applications to Radar[M]. New York: Pergamon, 1953: 81-99.
    [102] Wahlen D A. Detection of Signals in Noise[M]. New York: Academic Press, 1971: 337-339.
    [103] Hahn W R. Optimum signal processing for passive sonar range and bearing estimation[J]. Journal of Acoustics Society of Arnerica, 1975, 58: 201-207.
    [104] Schultheiss P M. Locating a passive source with array measurements-A summary result[C]. Proceedings of IEEE International Conference of Acoustics, Speech, and Signal Processing, Washington D.C., 1979: 967-970.
    [105] Tomlinson G and Sorokowsky J. Accuracy prediction report, Raploc error model[Z]. IBM, Manassas, VA, 1977: B1-B7.
    [106] MacDonald V H, Schultheiss P M. Optimum passive bearing estimation in a spatially incoherent noise environment [J]. Journal of Acoustics Society of America, 1969, 46: 37-43.
    [107] Chan Y T, Riley J M, Plant J B. Modeling of time delay and its application to estimation of nonstationary delays [J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1981, 29 (3): 577-581.
    [108] Knapp C H, Carter G C. The generalized correlation method for estimation of time delay[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1976, 24(4): 320-327.
    [109] Hassab C, Boucher R E. Optimum estimation of time delay by a generalized correlator[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1979, 27: 373-380.
    [110] Azaria M, Hertz D. Time delay estimation by generalized cross correlation methods[J], IEEE Trans. Acoustics, Speech, and Signal Process, 1984, 32 (2), 280-285.
    [111] Gao Y, Brennan M J, Joseph P F. A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes[J]. Journal of Sound and Vibration, 2006, 292(3-5): 552-570.
    [112] Youn D, Ahmed N, Carter G C. On using the LMS algorithm for time delay estimation[J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1982, 30(5): 798-801.
    [113] Reed F A, Feintuch P L, Bershad N L. Time delay estimation using the LMS adaptive filter-static behavior[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1981, 29(3): 561-571.
    [114] Krolik J, Joy M, Pasupathy S, Eizenman M. A comparative study of the LMS adaptive filter versus generalized correlation method for time delay estimation[C]. Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Process. New York: IEEE Press, 1984: 652-655.
    [115] Etter D M, Stearns S D. Adaptive estimation of time delays in sampled data[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1981, 29(3): 582-587.
    [116] Youn D H, Ahmed N. Comparison of two adaptive methods for time delay estimation[J]. IEEE Trans. Aerospace and Electronic Systems, 1984, 20(5): 617-623.
    [117] Ho K C, Chan Y T, Ching P C. Adaptive time-delay estimation in nonstationary signal and/or noise power environments[J]. IEEE Transactions on Signal Processing, 1993, 41(7): 2289-2299.
    [118] Ho K C, Ching P C, Chan Y T. Adaptive time delay estimation in noisy environments[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE Press, 1991: 1461-1464.
    [119]陈昶,陈玮,邓则名,张小花.管道泄漏检测中自适应时间延迟估计方法的设计[J].工业仪表与自动化装置,2003(6):25-27.
    [120]文玉梅,李平,杨进.自适应时延估计中的信号自相关函数估计[J].信号处理, 2006, 22(6): 774-777.
    [121] Kusuda T, Nishiwaki N. Method of detecting leak of fluid from a long pipeline[P]. United States Patent 3930556, January 6, 1976.
    [122] Young J D, Caldecott R. Underground pipe detector[P]. United States Patent 3967282, June 29, 1976.
    [123] Beaver R C. Pipeline leak detector[P]. United States Patent 3974680. August 17, 1976.
    [124] Tilburg V A, Robert C. Lohman.Apparatus for inspecting a pipeline for leaks[P]. United States Patent 4172379, October 30, 1979.
    [125] Dau G J (Palo Alto, CA). Method of detecting and monitoring a leak caused by a through wall crack in a high pressure fluid system[P]. United States Patent 4201092, May 6, 1980.
    [126] Covington M T (Houston, TX). Liquid pipeline leak detection[P]. United States Patent 4308746, January 5, 1982.
    [127] Heide G. Method for leak detection in a pipeline system and a measuring well for use in a pipeline system in the method for leak detection[P]. United States Patent 4361030, November 30, 1982.
    [128] Muraviev G A, Kublanovsky L B. Automatic fault locating apparatus for a pressurized pipeline[P]. United States Patent 4372151, Febrary 8, 1983.
    [129] Hogan W M. Method and device for detecting and locating leaks in pipelines[P]. United States Patent 4402213, September 6, 1983.
    [130] Williams B N. Line leak detector and method[P]. United States Patent 5201212, April 13, 1993.
    [131] Farmer E J. Method for locating leaks in a fluid pipeline and apparatus therefore[P]. United States Patent 5272646, December 21, 1993.
    [132] Kupperman D S, Spevak L. Leak locating microphone, method and system for locating fluid leaks in pipes[P]. United States Patent 5349568, September 20, 1994.
    [133] Papoulis A. Probability, Random Variables and Stochastic Processes[M]. New York: McCraw-Hill, 1965.
    [134] Stewart T L. Pipeline leak detection[P]. United States Patent 4280356, July 28, 1981.
    [135] Claytor T N. Method and means of passive detection of leaks in buried pipes[P]. United States Patent 4289019, September 15, 1981.
    [136] Dickey J W, Moore P M, Powell L E. Acoustic leak detector[P]. United States Patent 4327576, May 4, 1982.
    [137] Levesque P N, Lavado N M. Fluid flow control device for monitoring the fluid flow in a conduit for leakage of fluid[P]. United States Patent 4355654, October 26, 1982.
    [138] Victor R, Johnson J. System for detecting leaks from liquid-containing reservoirs and conduits[P]. United States Patent 4404516, September 13, 1983.
    [139] Fuchs H V, Schupp G, Voigtsberger C. Method and apparatus for locating leakages in pipes and similar conduits[P]. United States Patent 4435974, March 13, 1984.
    [140] Huebler J E, Craig J M. Sonic detection of gas leaks in underground pipes[P]. United States Patent 4455863, June 26, 1984.
    [141] Jackle E. Method and apparatus for locating pipeline damage[P]. United States Patent 4557163, March 31, 1982.
    [142] Sugiyama S. Method of detecting a leakage of fluid[P]. United States Patent 4543817, March 31 1983.
    [143] Chana G S. Method and system for localizing and correlating leaks in fluid conveying conduits[P]. United States Patent 6530263, March 11, 2003.
    [144] Fujii N, Nishimura T. Pipe leak detector[P]. United States Patent 4571986, February 25, 1986.
    [145] Rose H B, Maxwell T D. Fluid leak detector[P]. United States Patent 4785659, November 22, 1988.
    [146] Bseisu A A, Kingman J E, Cornette H M. Acoustic vibration detection of fluid leakage from conduits[P]. United States Patent 5038614, August 13, 1991.
    [147] Marziale M L, Paradis S J. Acoustic leak detection system[P]. United States Patent 5101774, April 7, 1992.
    [148] Saitoh S, Taniguchi S, Enomoto A, et al. Water-leakage detecting apparatus and method which are little influenced by noise[P]. United States Patent 4958296, September 18, 1990.\
    [149] Allen T J. Method and apparatus for detecting leaks in pipelines using cross-correlation techniques[P]. United States Patent 5205173, April 27, 1993.
    [150] Lande P, Saltzstein W E. Method for detecting leaks in pipelines[P]. United States Patent 5974862, November 2, 1999.
    [151] Yang Bao-Wen, Recane M. Method and apparatus for pattern match filtering for real time acoustic pipeline leak detection and location[P]. United States Patent 6389881, May 21, 2002.
    [152] Recane M. Pattern matching for real time leak detection and location in pipelines [P]. United States Patent 6668619, December 30, 2003.
    [153] Baumoel J. High-precision leak detector and locator [P]. United States Patent 5548530, August 20, 1996.
    [154] Coulter J E, Evans R S, Robertson M. Acoustic emission leak source location[P]. United States Patent 4858462, August 22, 1989.
    [155] Benesty J, Chen Jing-dong, Huang Yiteng. Time-delay estimation via linear interpolation and cross correlation[J]. IEEE Trans. Speech and Audio Processing, 2004, 12(5): 509-519.
    [156] Chan Y T, Riley J M, Plant J B. A parameter estimation approach to time-delay estimation and signal detection[J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1980, 28(1): 8-16.
    [157] Widrow B, Stearns S D. Adaptive signal processing[M]. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1985.
    [158] Cowan C F N, Grant P M. Adaptive filters[M]. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1985: 46-48.
    [159] Farhang-Boroujeny B. Adaptive Filters: Theory and Applications[M]. New York: Wiley, 1998.
    [160] Allie M C, Popovich S R. Active adaptive control system with spectral leak[P]. European Patent EP0661807, November 7, 2001.
    [161] Shindoi T, Hirai T, et al. Plant equipment diagnosis by sound processing[C]. Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE Press, 1999: 1020-1026.
    [162] Billmann L, Isermann R. Leak detection methods for pipelines[J]. Automatica, 1987, 23(3): 275-286.
    [163] Bailey D S. Leak detector and locator utilizing adaptive threshold and analog comparison[P]. Great Britain Patent GB2269717.
    [164] Emara-Shabaik H E, Khulief Y A, Hussaini I. A non-linear multiple-model state estimation scheme for pipeline leak detection and isolation[C]. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems & Control Engineering, 2002: 497-512.
    [165] Ianniello J P. Time delay estimation via cross-correlation in the presence of large estimation errors[J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1982, 30(6): 998-1003.
    [166]靳世久,孙家鼐,姜弘彦,唐秀家.强环境噪声下地下管道泄漏检测[J].天津大学学报,1994,27 (6):782-787
    [167] Fuller A R, Fahy F J. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid[J]. Journal of Sound and Vibration, 1982, 81: 501-518.
    [168] Miller R K, Pollock A A, Finkel P, et al. The development of acoustic emission for leak detection and location in liquid-filled, buried pipelines[J]. Acoustic Emission: Standards and Technology Updates, 1999: 67-78.
    [169] Fantozzi Marco, Fontana Emilio. Acoustic emission technique: the optimum solution for leakage detection and location on water pipelines[C]. In: Proceedings of the 15th World Conference on Non-Destructive Testing in Roma, 2000.
    [170]费业泰.误差理论与数据处理[M].机械工业出版社, 1999.
    [171]游雪峰,文玉梅,李平.以太网分布式数据采集同步和实时传输研究[J].仪器仪表学报, 2006, 27(4): 384-388.
    [172] Chan Y T, Yansouni P, Crozier S. Time delay estimation with low signal to noise ratios[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE Press, 1984: 616-619.
    [173] Youn D H, Ahmed N, Carter G C. An adaptive approach for time delay estimation of band-limited signals [J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1983, 31(3): 780-784.
    [174] Krolik J, Eizenman M, Pasupathy S. Time delay estimation of signals with uncertain spectra [J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1988, 36 (12): 1801-1811.
    [175] Ianniello J P. Lower bounds on worst case probability of large error for two channel time delay estimation[J]. IEEE Trans. Acoustics, Speech, and Signal Process, 1985, 33(5): 1102-1110.
    [176] Treichler J. Transient and convergent behavior of the adaptive line enhancer[J]. IEEE Trans. Acousttics, Speech, and Signal Process, 1979, 27 (1): 53-62.
    [177] Wu W R, Chen P C. Adaptive AR modeling in white Gaussian noise[J]. IEEE Trans. Signal Processing, 1997, 45 (5): 1184-1191.
    [178] Zheng Wei-xing. Transfer function estimation from noisy input and output data[C]. International Journal of Adaptive Control Signal Process. New York: IEEE Press, 1998: 365-380.
    [179] Zheng Wei-xing. Autoregressive Parameter Estimation from Noisy Data[J]. IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, 2000, 47(1): 71-75.
    [180] Zhang Ying, Wen Chang-yun, and Soh Yeng-Chai. Unbiased LMS filtering in the presence of white measurement noise with unknown power[J]. IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, 2000, 47(9): 968-972.
    [181] So H C. LMS-based algorithm for unbiased FIR filtering with noisy measurements[J]. Electronics Letters, 2001, 37 (23): 1418-1420.
    [182] So H C. Unbiased FIR system identification in the presence of input and output interference[C]. Proceedings of the 42nd Midwest Symposium on Circuits and Systems. New York: IEEE Press, 1999: 696-699.
    [183] So H C. Modified LMS algorithm for unbiased impulse response estimation in nonstationary noise[J]. Electronics Letters, 1999, 35(70):791-792.
    [184] So H C. Least mean square algorithm for unbiased impulse response estimation[C]. Proceedings of the IEEE, 2002, 2: II 164- II 167.
    [185] So H C and Chan Y T. Analysis of an LMS algorithm for unbiased impulse response estimation[J]. IEEE Trans. Signal Processing, 2003, 51(7): 2008-2013.
    [186] So H C. LMS algorithm for unbiased parameter estimation of noisy autoregressive signals[J]. Electronics Letters, 2001, 37( 8): 536-537.
    [187] So H C. Noisy input-output system identification approach for time delay estimation[J]. Signal processing, 2002, 82(10): 1471-1475.
    [188] So H C. Analysis of an Adaptive algorithm for unbiased multipath time delay estimation[J]. IEEE Trans. Aerospace and Electronic Systems, 2003, 39(3): 777-785.
    [189] Rao Y N, Erdogmus D, Principe J C. Error whitening criterion for adaptive filtering: theory and algorithms[J]. IEEE Trans. Signal Processing, 2005, 53 (3): 1057-1069.
    [190] Rao Y N, Erdogmus D, Principe J C. Principe. Error whitening criterion for linear filter estimation[C]. Proceedings of IEEE International Conference on Neural Networks, 2003: 1447-452.
    [191] Rao Y N, Erdogmus D, Principe J C. Accurate linear parameter estimation in colored noise [J]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 5(29): I689- I692.
    [192] Rao Y N, Erdogmus D, Rao G Y, Principe J C. Principe. Fast error whitening algorithmsfor system identification and control with noisy data [J]. Neurocomputing, 2005, 69: 158-181.
    [193] Rao Y N, Erdogmus D, Rao G Y, Principe J C. Stochastic error whitening algorithm for linear filter estimation with noisy data[J]. Neural Networks, 2003, 16: 873-880.
    [194] Cedervall M, Stoica P. System identification from noisy measurements by using instrumental variables and subspace fitting[C]. Proceedings of the IEEE, 1995, 3: 1713-1716.
    [195] Inouye Y, Suga Y. Identification of linear systems with noisy input using fourth-order cumulants[C]. Proceedings of IEEE Signal Processing Workshop on Higher-Order Statistics, South Lake Tahoe, 1993: 9-13.
    [196] Tugnait J K. and Ye Yi-song. Stochastic system identification with noisy input-output measurements using polyspectra[J]. IEEE Trans. Automatic Control, 1994, 40(4): 670-683.
    [197] Widrow B, Glover J R, McCool J M, et al. Adaptive noise cancelling: principles and applications[J]. Proceedings of the IEEE, 1975, 63 (12): 1692-1716.
    [198] Aubin J P. Applied functional analysis[M]. John Wiley & Sons, Inc., 1979.
    [199]张鸣歧.应用泛函分析引论[M].北京:北京理工大学出版社, 1989: 174-185.
    [200] Eweda E. Transient performance degradation of the LMS, RLS, sign, signed regressor, and sign–sign algorithms with data correlation[J]. IEEE Trans. Circuits and Systems-Analog and Digital Signal Processing, 1999, 46(8): 1055-1062.
    [201] Stoica. Transient performance degradation of the LMS adaptive algorithm[C]. In: Proceedings of International Symposium on Signals, Circuits and Systems, 2003, 2(10-11): 513-516.
    [202]何振亚.自适应信号处理[M].北京:科学出版社, 2002: 21-38.
    [203] Nehorai A, Malah D. On the stability and performance of the adaptive line enhancer[C]. Proceeedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE Press, 1980: 478-481.
    [204] Widrow B, Kamenetsky M. On the statistical efficiency of the LMS family of adaptive algorithms[C]. Proceeedings of IEEE International Joint Conference on Neural Networks. New York: IEEE Press, 2003: 2872-2880.
    [205] Farhang-Boroujeny B. On the statistical efficiency of the LMS algorithm in system modeling[J]. IEEE Trans. Signal Processing, 1993, 41(5): 1947-1951.
    [206] Widrow B, Walach E. On the statistical efficiency of the LMS algorithm with nonstationary inputs[J]. IEEE Trans. Information Theory, 1984, 30: 211-221.
    [207] Widrow B, McCool J M, Larimore M G, et al. Stationary and nonstationary learning characteristics of the LMS adaptive filter[C]. In: Proceedings of the IEEE, 1976, 64(8): 1151-1162.
    [208] Frenze R, Hennecke M E. Using prewhitening and stepsize control to improve the performance of the LMS algorithm for acoustic echo compensation[C]. Proceedings of IEEE International Conference on Circuits and Systems. New York: IEEE Press, 1992: 1930-1932.
    [209] Duttweiler D. A twelve-channel digital echo canceler[J]. IEEE Trans. Communications, 1978, 26(5): 647-653.
    [210] Haykin S. Adaptive filter theory, Fourth Edition[M]. Beijing: Publishing House of Electronics Industry, 2002: 94-108.
    [211]张贤达.现代信号处理,第二版[M].北京:清华大学出版社, 2002: 171-174.
    [212] Assefi T. Stochastic processes and estimation theory with applications[M]. John Wiley & Sons, Inc., 1979.
    [213] Davisson L D. Steady-state error in adaptive mean-square minimization[J]. IEEE Trans. Information Theory, 1970, 16(4): 382-385
    [214] Bellanger, C. Evci. An efficient step size adaptation technique for LMS adaptive filters[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE Press, 1985: 1153-1156.
    [215] Chandra M G, Narasimhan S V. Exponential power estimation (EPE) based adaptive equalization for stationary and time varying channels[J]. Signal Processing, 1996, 54(1): 49-58.
    [216] Mallat S G, Zhang Zhi-feng. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans. Signal Process, 1993, 41(12): 3397-3415.
    [217] Fu11er C R, Fahy F J. Characteritics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid[J]. Journal of Sound and Vibration, 1982, 81(4): 501-508.
    [218] Muggleton J M, Brennan M J, Pinnington R J. Wavenumber prediction buried pipes for water leak detection[J]. Journal of Sound and of waves in Vibration, 2002, 249(5): 939-954.
    [219] Muggleton J M, Brennan M J. Leak noise propagation and attenuation in submerged plastic water pipes[J]. Journal of Sound and Vibration, 2004, 278(3): 527-537.
    [220] Muggleton J M, Brennan M J, Linford P W. Axisymmetric wave propagation in fluid-filled pipes: wavenumber measurements in in vacuo and buried pipes[J]. Journal of Sound and Vibration, 2004, 270(1-2): 171-190.
    [221] Long R, Vine K, Lowe M J S, Cawley P. Monitoring acoustic wave propagation in buried cast iron water pipes[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2001, 20: 1202-1209.
    [222] Long R, Vine K, Lowe M J S, Cawley P. The effect of soil properties on acoustic wave propagation in buried iron water pipes[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2002, 21: 1310-1317.
    [223] Long R, Cawley P, Lowe M J S. Acoustic wave propagation in buried iron water pipes[C]. Proceedings of Royal Society, Mathematical, Physical and Engineering Sciences, 2003: 2749-2770.
    [224] Ko H, Arozullah M. Background noise suppression for signal enhancement by novelty filtering[J]. IEEE Trans. Aerospace and Electronic Systems, 2000, 36(1): 102-113.
    [225] Schreiber T. Signal separation by nonlinear projections: The fetal electrocardiogram[J]. Physical Review E, 1996, 53(5): R4326-R4329.
    [226] Lindgren A C, Johnson M T, Povinelli R J. Speech recognition using reconstructed phase space features[C]. Proceedings of IEEE International Conference of Acoustics, Speech, and Signal Processing. New York: IEEE Press, 2003: I-60 - I-63.
    [227] Wan Xiao-hong, Iwata Kazuki, Riera Jorge, Ozaki Torh. Artifact reduction for EEG/fMRI recording: Nonlinear reduction of ballistocardiogram artifacts[J]. Clinical neurophysiology, 2006, 117: 668-680.
    [228] Liang Hua-lou, Lin Zhi-yue, Yin Fu-liang. Removal of ECG contamination from diaphragmatic EMG by nonlinear filtering[J]. Nonlinear analysis, 2005, 63: 745-753
    [229] Liang Juan, Wan Xin-wang. Nonlinear Noise Reduction in Reconstructed Phase Space Based on Self-organizing Map[J]. Proceedings of the IEEE, 2005, 3: 1870-1874.
    [230] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Trans. Information Theory, 1990, 36(5): 961-1005
    [231] Rioul O, Vetterli M. Wavelets and signal processing[J]. IEEE Signal Processing Magazine, 1991, 8(4): 14-38.
    [232] Torresani B. Wavelets associated with representations of the affine Weyl-Heisenberg group[J]. Journal of Mathematics Physics, 1991, 32(5): 1273-1279.
    [233] Bultan Aykut. A four-parameter atomic decomposition of chirplets[J]. IEEE Trans. Signal Process, 1999, 47(3): 731-745.
    [234] Bultan Aykut, Akansu Ali N. A novel time-frequency exciser in spread spectrum communications for chirp-like interference[J]. Proceedings of the IEEE, 1998, 47(3): 3265-3268.
    [235]刘建平,杨世勇,郑崇勋.一种高分辨率的时频分析方法用于睡眠脑电图梭形波识别的研究[J].生物医学工程学杂志, 2000, 17(1): 50-55.
    [236]游雪峰.分布式检测系统的网络通信研究[D].硕士学位论文,重庆:重庆大学, 2006.
    [237]石燕嵩.供水管道泄漏检测信号采集系统研究[D].硕士学位论文,重庆:重庆大学, 2007.
    [238]颜小云.供水管道泄漏声信号数据采集系统研究[D].硕士学位论文,重庆:重庆大学, 2007.
    [239]邵煜,葛传虎,叶昊等.基于负压波的管道泄漏检测与定位系统评价[J].油气储运. 2008, 27(4): 5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700