用户名: 密码: 验证码:
矿井救灾机器人行走机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研发能替代或部分替代救护人员进入矿井灾区进行环境探测和搜救任务的煤矿救灾机器人,可提高救援效率,减少伤亡。因此,开展煤矿救灾机器人的研究对煤矿安全生产、灾害救护具有重大的现实意义与社会意义。煤矿井下灾后尤其是瓦斯煤尘爆炸事故后,井下空间受限的非结构化地形环境要求煤矿救灾机器人具有良好的越障性能,爆炸性气体环境要求救灾机器人具有防爆性能。使机器人顺利地进入矿井灾区是机器人救灾的首要任务,行走机构研究亦是煤矿救灾机器人技术研究的首要任务、重点与难点。本论文开展了对煤矿救灾机器人行走机构的研究工作。
     本文首先探讨了机器人进行救援或辅助救援的应用策略与应具备的功能,确定了其需要到达的井下巷道与区域,进而对需克服的非结构化地形环境进行研究,对其特征进行并提取与和简化地形特征,据此,提出了煤矿救灾机器人机械系统的性能要求与指标。采用分形插值与三次样条插值运算的方法模拟了三维真实地形,为机器人虚拟样机提供了试验场地,有利于其机械系统的动力学仿真与优化。在实验室内建设了参数可调的地形模拟试验架,包括沟道模拟试验架、起伏地形模拟试验架和台阶斜坡——组合试验架,与Optotrak Certus三维姿态捕捉系统共同组建了机器人机械性能试验平台,可以为用于机器人样机进行机械性能的综合测试与评价。
     为研究适合煤矿井下地形环境的机器人行走机构,建立了轮式、履带式行走机构的图示与命名规则,对履带式和轮式行走机构进行了推衍与图形拓扑,得出轮式与履带式行走机构的基本构型。并将履带行走机构引入摇杆式四轮机器人悬架中,推衍出了摇杆式履带行走机构的基本构型。为下一步研究的适应煤矿井下地形的机器人行走机构构型的研究做好准备。
     为了探讨履带式行走机构在煤矿救灾机器人上的应用,根据推衍出的基本构型,分别对双履带式(T型)、四履带双摆臂式(TA型)、六履带四摆臂式(T2A型)行走机构的动力学、运动学及其克服台阶、斜坡、沟道的越障机理与运动特性进行了分析研究。针对这对这三种构型设计、制作研制了五台样机,利用实验室的试验平台与室外地形环境,对样机的越障性能进行了测试与试验。并分析了光纤的释放对放缆通讯机器人质心位置与越障性能的影响。采用四履带双摆臂式行走机构设计了CUMT-IIA和CUMT-IIB型两款煤矿救灾机器人,分别采用中继通讯与光纤通讯,在徐州矿务局夹河煤矿矿井下进行了现场的性能测试。研究与试验表明:(1)履带式行走机构具有良好的克服台阶、沟道等规则地形的性能;(2)双履带式行走机构需具有足够大的外形尺寸,才能满足煤矿井下越障指标;(3)采用摆臂履带式行走机构的小型机器人具有机动灵活的运动特点,能够适应煤矿井下普通的地形环境,克服典型障碍;(4)小型履带式行走机构底盘低,在复杂地形上运行会出现卡阻现象,履带易进砂石异物,影响运转,很难克服杂乱、坎坷的复杂地形。
     为探讨适应井下复杂起伏地形的行走机构,弥补小型履带式行走机构的不足,对摇杆轮式机器人进行了研究。在机器人行走机构的推衍的基础上,探讨了摇杆式四轮机器人移动系统的组成与结构,研究了摇杆机器人差动机构的作用、特征与形式,提出了6种齿轮式差动机构,并进行了特点分析。对机器人虚拟样机进行了地形模型上的计算机仿真,对机器人样机试验进行了复杂实际地形的越障试验。仿真与试验表明,该机器人具有较好的被动适应不平整地形的性能和较强的越障能力,但摇杆式轮式机器人存在以下缺点:(1)跨越沟道的宽度受到轮径的制约;(2)四轮机器人很难攀爬连续台阶。
     结合了履带式行走机构与摇杆式四轮行走机构的优点,克服了两者的缺点,将履带式行走机构引入到摇杆式四轮行走机构中,形成了摇杆式履带行走机构。根据煤矿井下非结构化地形环境与爆炸性气体环境对机器人越障性能、结构的要求,选择了两种W形履带悬架作为研究对象:其一,采用一条履带利用改向轮改向形成W形构型(d5机构);其二,使用两条同步转动的履带的非对称W形履带机构(d7机构)。分析了W形其行走机构(车轮)——地面力学、差分驱动的运动与动力学模型。
     选用d5机构与NGWW型行星齿轮式差动机构设计并加工研制了机器人简易样机,文中分析其运动特性,并在机器人机械性能试验平台上进行了测试以及,在野外进行了复杂地形的越障试验。试验表明,该型机器人既具有履带式行走机构易克服规则地形的特点,又具有摇杆轮式机器人适应不平整地形的特点,但机器人履带下方的改向轮结构影响了机器人的越障性能。
     在此研究的基础上,采用d7机构和连杆式差动机构,设计研制了机器人样机,并采用有限元法对机器人的隔爆箱体和履带悬架进行了强度分析校验。分析了该型机器人的运动特性,利用机器人机械性能测试平台对其进行了性能测试,并在室外台阶地形、野外复杂地形进行了越障试验。性能分析与样机试验表明,该型摇杆式轮履结合机器人移动平台克服了d5机构构型存在的缺陷,具有良好被动地适应复杂的非结构环境的良好的自适应能力与越障性能,可攀爬320mm高台阶,下520mm高的台阶,攀爬高150mm、跨度为280mm的连续台阶,跨越490mm宽沟道,可满足井下地形环境对机器人运动性能的要求。
     最后,利用Optotrak Certus三维运动捕捉系统对机器人移动、越障时的三维坐标进行测量,获得了机器人运动过程中,机器人上各构件和特征点的位移、速度与加速度曲线。试验表明,机器人在克服障碍时,主车体的运动幅度及振动情况要小于机器人履带悬架,从而验证了机器人运行平稳的特点。
After coal mine disaster, rescue robots instead of the rescuers completely or partly enter into the mine disaster area to carry out environment exploring, searching and rescuing tasks, which are helpful to improve rescue efficiency and decrease casualties, and it’s grateful for realistic significance and social significance. After disaster, especially the gas and coal dust explosion accidence, the space-restricted, unstructured underground terrain environment and explosive gas atmosphere require coal mine rescue robots with good surmounting obstacle performance and explosion-proof property. The most important task of the rescue robot is access to the mine disaster area smoothly. Besides research on the mobile mechanisms of the coal mine rescue robot are principal, crucial and difficult, so the mobile mechanisms for the coal mine rescue robots was studied in this dissertation.
     In this dissertation, the application and necessary function of coal mine rescue robots were discussed primarily. Underground roadway and regions where the robots would reach were determined. Unstructured terrain environments which the robots would overcome were studied, and the terrain features were extracted and simplified. According to above reasons, performance requirements and indexes of coal mine rescue robots were presented. The 3D real terrain was simulated by using operational methods of fractal interpolation and cubic spline interpolation, which could supply the experiment field for the robot virtual prototype, and beneficial for dynamic simulation and optimization of mechanisms. In the lab, some adjusted mechanism test platforms, including ditch simulation test platform, rugged terrain simulation test platform and step-slope combination simulation test platform were developed. These platforms combined with the motion capture system could be used to test and evaluate mechanism performance of the robot prototypes comprehensively.
     For studying on the robot mobile mechanisms which were suitable for the underground mine terrain environments, graphical representation and naming rules of the wheel type and track type mobile mechanism were suggested. The mechanism deductions and graph topology of the wheel and track type mechanisms were carried out, and the basic configurations were deducted. The tracks were introduced into the rocker-type robot mobile system, and then various configurations of the rocker-type track suspensions were obtained. This would prepare for studying on robot mobile mechanisms which were suitable for the underground mine terrain environments.
     For discussing the application of the track type mobile mechanism, according to the basis track type configurations, dynamics and kinetics of two tracks type (T type), four tracks with two arms type (TA type) and six tracks with four arms type (T2A type) were studied, and their performance and best capabilities of surmounting obstacles, including step and slope-climbing, channel-crossing were analyzed. Five prototypes were developed by using three mechanisms configurations. Adopting the TA type mechanism, CUMT-IIA and CUMT-IIB coal mine rescue robots were designed, which employed the relay communication and fiber communication respectively. The mechanical performance tests were carried out on the test platform and rough terrain. In JIAHE coal mine of XUZHOU coal mining bureau tested the CUMT-IIA and CUMT-IIB robots.
     Research and tests results were obtained. First, Track type mobile mechanism had good overcoming structured terrain such as steps and ditches. Second, it needed enough large external dimensions to meet the obstacle-surmounting index. Third, small-sized track type mechanism would be jammed on the rough terrain, because of its low chassis, and the robot would not run if the sand and little stone entered into the tracks.
     In order to explore the mobile mechanisms those satisfy the complex mine rugged terrain, and compensate for the mobile mechanism of small size track, the rocker wheel type robot was studied. Based on the evolution of robot mobile mechanism, the components of rocker type four-wheel robot mobile mechanism were developed, and differential mechanism styles including six gear-type differential mechanisms were implemented. The experiment on terrain adaptability and surmounting obstacle performance of the robot prototype were carried out. Experiments results indicated that the prototype had good terrain adaptability and strong obstacle surmounting performance. However, the shortcomings of the rocker type wheel robots were as follows. First, the ditches width that the robot could cross was restricted by the wheels diameter. Second, the performance of stair-climbing was not well.
     Combining the advantages of track type and rocker type four wheels mobile mechanisms, surmounting their deficiencies, the tracks instead of wheels were introduced into rocker-type robot mobile system, and then various configurations of rocker-type track suspensions were obtained. According to the performance and structure requirements to the terrain environment and area environment after disaster, two W-shaped track suspensions were selected as study objects. The first one(d5 mechanism) adopted a whole track limited into W shape by using bend wheels. The second one(d7 mechanism) composed of two tracks, which formed W shape and rotated together, and the rear main tracks of the W-shaped tracks were longer than the front ones. The mobile mechanism-terrain mechanics, kinematics and dynamics of differential drive were analyzed.
     The rocker type track robot prototype was designed and developed by using d5 mobile mechanism and NGWW type planetary gear differential mechanism. The motion characteristics were analyzed, and the mechanical performance tests were carried out on the test platform and rough terrain in field. Experiment results indicated that the rocker-type track mobile platform had good passive adaptability to unstructured terrain environment and strong obstacles-surmounting capabilities; but the bend wheel structure influenced the obstacles-surmounting performance.
     On the basis of above research, the robot prototype was made by using d7 mechanism and link type differential mechanism. And the strength check of flameproof enclosure and track suspension were carried out. The prototype’s obstacles-surmounting capabilities including ditch-crossing, step and stairs-climbing were analyzed. Mechanical performance tests were carried out on the test platform and on the rough terrain in field. The capability analysis and prototype test results indicated that d7 mechanism overcame the shortcoming of d5 mechanism. The rocker-type W-shaped track mobile platform had excellent passive adaptability to unstructured terrain environment and strong obstacles-surmounting capability. The prototype could climb up a 320mm-high step, climb down a 520mm-high step, climb up a flight of 150mm×280mm stairs, cross a 490mm-wide ditch. The rocker-type W-shaped track mobile platform met obstacles-surmounting performance requirements to the unstructured terrain environment.
     At last, when the robot moving and surmounting obstacles, the 3D coordinate of the feature points on the robot platform were measured by using motion capture system. And the displacement, velocity and acceleration and their curves of the feature points and parts could be obtained. Tests results proved that the main body had lower motion amplitude and smaller vibration than the track suspensions on both side, and the robot could be operated smoothly and steadily.
引文
[1]林柏泉.我国煤矿安全现状分析[N],中国矿业报,2006-3-3.
    [2]安全监管总局统计司.安全分析(全国安全生产情况、安全生产的主要特点、安全生产统计简报),http://www.chinasafety.gov.cn/newpage/aqfx/aqfx.htm.
    [3]刘元,我国煤矿事故每年死者近万远超其他产煤国总数[N],中国青年报,2003-12-24.
    [4]宋元明,任锦彪.煤矿井下灾害调查与研究[J],矿山安全,2005.3.
    [5]安全监管总局政府网站.2003年全国特别重大事故盘点,http://www.chinasafety.gov.cn/newpage/Contents/Channel_4181/2004/0105/855/content_855.htm,2004-1-5.
    [6]关于贵州省六盘水市钟山区汪家寨镇尹家地煤矿“2.11”特大瓦斯爆炸事故的通报,煤安监调传真[2004]第03号,http://www.chinasafety.gov.cn/2004-02/12/content_2683.htm,2004-2-12.
    [7]煤矿监察二司.2004年黑龙江省鸡西市煤业集团穆棱公司百兴煤矿“2.23”特大瓦斯爆炸事故处理决定,http://www.chinasafety.gov.cn/newpage/Contents/Channel_5477/2004/0730/5450/content_5450.htm,2004-07-30.
    [8]煤矿监察二司.关于山西省吕梁地区交口县蔡家沟煤矿“5.18”特大煤尘爆炸事故的处理决定,http://www.chinasafety.gov.cn/newpage/Contents/Channel_5477/2005/0104/5449/content_5449.htm,2005-01-04.
    [9] 2004年6月3日:河北邯郸煤矿瓦斯爆炸事故,http://www.longhoo.net/gb/longhoo/news2004/special/gjgn/node11389/node11393/userobject1ai326014.html,2005-2-16.
    [10]河南省郑煤公司大平煤矿“2004.10.20”特大瓦斯爆炸事故,http://www.aqtd.cn/mkaq/HTML/124900.html,2007-8-14.
    [11]煤矿监察二司.山西3起特大事故63名责任人受处分,http://www.chinasafety.gov.cn/newpage/Contents/Channel_5477/2005/0302/5447/content_5447.htm,2005-03-02.
    [12]事故调查司.国家煤矿安全监察局对河南省平顶山市新生煤矿南店非法矿井“11.11”特别重大瓦斯煤尘爆炸事故作出处理决定,http://www.chinasafety.gov.cn/2005-07/21/content_140403.htm,2005-07-21.
    [13]安全监管总局政策法规司.河南鹤壁“10.3”特别重大瓦斯爆炸事故基本情况及处理结果,http://www.chinasafety.gov.cn/2006-12/21/content_211531.htm,2006-12-21.
    [14]安全监管总局政策法规司.黑龙江七台河东风煤矿“11.27”特别重大煤尘爆炸事故基本情况及处理结果,http://www.chinasafety.gov.cn/2006-12/21/content_211574.htm,2006-12-21.
    [15]安全监管总局政策法规司.河北唐山恒源实业有限公司“12.7”特别重大瓦斯煤尘爆炸事故,http://www.chinasafety.gov.cn/2007-05/11/content_236880.htm,2007-05-/11.
    [16]安全监管总局政策法规司.西延安子长县瓦窑堡镇煤矿“4.29”特别重大瓦斯爆炸事故,http://www.chinasafety.gov.cn/2007-05/11/content_236879.htm,2007-05-11.
    [17]煤矿安监局事故调查司.贵州省毕节地区威宁县东风镇非法采煤窝点“5.2”特大瓦斯爆炸事故11名责任人受处分,http://www.chinasafety.gov.cn/zuixinyaowen/2006-12/20/content_211400.htm,2006-12-20.
    [18]安全监管总局政策法规司.辽宁阜新五龙煤矿“6.28”特别重大瓦斯爆炸事故基本情况及处理结果,http://www.chinasafety.gov.cn/2006-12/21/content_211641.htm,2006-12-21.
    [19]安全监管总局政策法规司.山西同煤集团轩岗煤电公司焦家寨煤矿“11.5”特别重大瓦斯爆炸事故,http://www.chinasafety.gov.cn/2007-05/11/content_236877.htm,2007-05-11.
    [20]安全监管总局政策法规司.山西省晋中市灵石县王禹乡南山煤矿“11.12”特别重大火灾事故,http://www.chinasafety.gov.cn/2008-01/25/content_272235.htm,2008-07-21.
    [21]安全监管总局政策法规司.云南曲靖富源县后所镇昌源煤矿“11.25”特别重大瓦斯爆炸事故,http://www.chinasafety.gov.cn/2007-05/11/content_236875.htm,2007-05-11.
    [22]安全监管总局政策法规司.国务院批复河南省平顶山市宝丰县周庄镇王庄煤矿“4?16”特别重大瓦斯爆炸事故处理结果,http://www.chinasafety.gov.cn/newpage/Contents/Channel_5477/2008/0729/5431/content_5431.htm,2008-07-29.
    [23]安全监管总局政策法规司.山西省临汾市蒲县蒲邓煤矿“5.5”重大瓦斯爆炸事故,http://www.chinasafety.gov.cn/2008-01/25/content_272232.htm,2008-01-25.
    [24]安全监管总局政策法规司.国务院批复贵州省毕节地区纳雍县群力煤矿“11.8”特别重大煤与瓦斯突出事故处理结果,http://www.chinasafety.gov.cn/gongzuodongtai/2008-07/21/content_284994.htm,2008-07-21.
    [25]安全监管总局政策法规司.2008年1月21日-27日安全生产的主要特点,http://www.chinasafety.gov.cn/anquanfenxi/2008-01/28/content_272362.htm,2008-01-28.
    [26]四川两起重大煤矿事故责任人受到处理,http://news.21cn.com/domestic/difang/2009/01/19/5773987.shtml,2009-01-19.
    [27]安全生产统计简报(2009年第2期),http://www.chinasafety.gov.cn/newpage/Contents/Channel_6478/2009/0408/56332/content_56332.htm,2009-04-08.
    [28]安全监管总局统计司.云南昭通地区茶山煤矿发生瓦斯爆炸事故10人死亡,http://www.chinasafety.gov.cn/newpage/Contents/Channel_4314/2009/0518/60125/content_60125.htm,2009-05-18.
    [29]煤矿安监局事故调查司.国家安全监管总局国家煤矿安监局关于重庆市松藻煤电有限公司同华煤矿“5·30”特别重大煤与瓦斯突出事故的通报,http://www.chinasafety.gov.cn/newpage/Contents/Channel_5330/2009/0605/61941/content_61941.htm,2009-6-5.
    [30]安全监管总局统计司. 2009年6月1日-7日安全生产的主要特点,http://www.chinasafety.gov.cn/newpage/Contents/Channel_4178/2009/0608/62116/content_62116.htm2009-06-08.
    [31]彭桂剑.浅谈处理瓦斯爆炸事故的技术要点和难点[J].煤矿安全,2004(11) :29-30.
    [32]金佩煌,王道清.关于预防矿山救护指战员自身伤亡的建议[J].煤矿安全,1996(8):36-39.
    [33]梁永明.对救护队自身伤亡事故的探讨[J].煤矿安全,2003(11):46-48.
    [34]国家安全生产监督管理总局政府网站事故查询系统,http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp.
    [35]河北承德煤矿两次特大爆炸事故是怎样发生的,http://www.people.com.cn/GB/shehui/47/20020128/657534.html,2002-01-28.
    [36]新华社西安6月17日电,陕西黄陵煤矿瓦斯爆炸16人死亡,每日新报,http://news.sohu.com/2004/06/18/16/news220591686.shtml,2006-06-18.
    [37]顾立林,郭久辉.河南渑池发生煤矿爆炸矿山救护队4名队员殉职.新华网,2005-01-08.
    [38]安全监管总局政策法规司.国务院批复河南省平顶山市宝丰县周庄镇王庄煤矿“4?16”特别重大瓦斯爆炸事故处理结果[EB/OL].http://www.chinasafety.gov.cn/newpage/Contents/Channel_5477/2008/0729/5431/content_5431.htm,2008-07-29.
    [39]安全监管总局网站.国家安全监管总局、国家煤矿安监局关于山西省临汾市洪洞县瑞之源煤业有限公司“12.5”特别重大瓦斯爆炸事故的通报[EB/OL].www.gov.cn/gzdt/2007-12/10/content_829983.htm,2007-12-10.
    [40]江西煤矿救援指挥中心组织召开宜春市矿山救护队“3.15”伤亡事故分析会[EB/OL].http://www.jxmkaqjc.gov.cn/2009-5/2009518145756.htm,2009-05-18.
    [41]河南平顶山矿难死亡人数上升至67人[EB/OL]. http://www.feloo.com/news/show.php?id=341, 2009-09-30.
    [42] Rapid Response Investigation of Robots for Post-Accident Safety Assessment[EB/OL]. http://robotics.sandia.gov/minerobot.html,2008-01-17.
    [43] Rescue Robot Demonstrated for Mine Disasters, crasar.csee.usf.edu,2003-08.
    [44] C. Baker, A. Morris, D. Ferguson, etc. A Campaign in Autonomous Mine Mapping. in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, 2004.
    [45] Mobile Robot Development-groundhog[EB/OL]. www.ri.cmu.edu, 2003-01-17.
    [46] Mine Rescue Robot[EB/OL]. http://www.msha.gov/SagoMine/robotdetails.asp.
    [47]我国首台矿用抢险探测机器人在唐山市研制成功,http://www.most.gov.cn/gnwkjdt/200906/t20090605_71141.htm,2009-6-8.
    [48]王争.井下探测机器人控制系统研制及其运动性能分析[D].哈尔滨:哈尔滨工业大学,2007.
    [49]董晓坡.煤矿搜救机器人描述方法研究及其探测模块开发[D].成都:成都理工大学,2007.
    [50]柴汇.履带式井下探测机器人底层控制系统研究与设计[D].济南:山东大学,2007.
    [51]桑玲玲.适合煤矿救援机器人的矿山地理信息系统研究[D].西安:西安科技大学,2008.
    [52] http://mpfwww.jpl.nasa.gov/MPF/rovercom/pix.html.
    [53] Pedersen L, Wagner M, Apostolopoulos D, Whittaker W. Autonomous robotic meteorite identification in Antarctica[A]. Proceedings-IEEE International Conference on Robotics and Automation[C] , v 4, 2001, p 4158-4165.
    [54] Shamah Ben, Apostolopoulos Dimi, etc. Field validation of Nomad's robotic locomotion[A]. Proceedings of SPIE-The International Society for Optical Engineering[C], v 3525, 1998, p 214-222.
    [55] K.Schilling, C.Jungius. Mobile robots for planetary exploration[J]. Control Engin-Bering Practice, 1996, v4: 513-524.
    [56] Lamboley M., Proy C., etc. Marsokhod: autonomous navigation tests on a Mars-like terrain[J]. Autonomous Robots, v 2, 1995: 349-351.
    [57] Tunstel E. Evolution of autonomous self righting behaviors for articulated manrovers [A]. Proceedings of Fif th International Sym2 posium on Artificial Intelligence, Robotics and Automation in Space (ESA SP2440) [C], 1999:341-346.
    [58] Hirose Shigeo, Ootsukasa Naritoshi, Shirasu Takaya, Kuwahara Hiroyuki, Yoneda Kan . Fundamental considerations for the design of a planetary rover[A]. Proceedings - IEEE International Conference on Robotics and Automation[C], v 2, 1995, p 1939-1944.
    [59] Donald Bickler. Articulated Suspension System [P]. US Patent: US4840394A1, 1989-06-20.
    [60] Bickler, D. The Mars Rover Mobility System[J]. Mechanical Engineering, 1997, (12).
    [61] Lindemann R A, Voorhees C J. Mars Exploration Rover Mobility Assembly Design[A], Test and Performance [C]. 2005 IEEE International Conference on Man and Cybernetics, Systems 2005(10): Vol.1: 450- 455.
    [62]王其.中国首辆月球车首次亮相[J].科学大观园,2006(24):79、80.
    [63] Semi-Autonomous Rover Operations Investigation[EB/OL]. http://www.msss.com/mar/index.html.
    [64]胡明,邓宗全,王少纯,等.月球探测车移动系统的关键技术分析[J].哈尔滨工业大学学报,2003,35(7):795-798.
    [65] Iagnemma Karl, Rzepniewski Adam, Dubowsky Steven, Pirjanian Paolo, Huntsberger Terrence, Schenker Paul. Mobile robot kinematic reconfigure ability for rough-terrain[A]. Proceedings of SPIE-The International Society for Optical Engineering[C], v 419, 2000, p 413-420.
    [66] Iagnemma Karl, Rzepniewski Adam, Dubowsky Steven, Schenker Paul. Controlof robotic vehicles with actively articulated suspensions in rough terrain[J]. Autonomous Robots, v 14, n 1, 2003, P 5-16.
    [67] Siegwart Roland, Lamon Pierre, Estier Thomas, Lauria Michel, Piguet Ralph. Innovative design forwheeled locomotion in rough terrain[J]. Robotics and Autonomous Systems, v 40, n 2-3, Aug 31, 2002, P 151-162.
    [68] Kubota T, Kuroda Y, Kunii Y, et al.Micro planetary rover "Micro5"[A]. 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS 99)[C], JUN 01-03, 1999,373-378.
    [69]江磊,姚其昌,何亚丽,张学明,韩宇石.星球车行走系统和它的研制者们——俄罗斯篇[J].机器人技术与应用,2008,(03):17-19.
    [70] Van Winnendael M, Visenti G, Bert rand R , rieder R. Nanokhod micro2rover heading to2 wards mars [ A ] . Proceedings of Fif th Inter2 national Symposium on Artificial Intelli2 gence, Robotics and Automation in Space ( ESA SP2440) [C], 1999 ,69276.
    [71]据美国《防务周刊》网站11月27日报道.http://post.baidu.com/f?kz=154223317.
    [72]日本:搜救机器人“木槿”复杂环境畅行无阻[EB/OL].http://vsearch.cctv.com/play_plgs.php?- ref=CCTVNEWS_20060607_1726985,2006-6-7.
    [73] Saranli Uluc, Buehler Martin, Koditschek Daniel E. RHex: A simple and highly mobile hexapod robot[J]. International Journal of Robotics Research, v 20, n 7, 2001, p 616-631.
    [74] Finally a Robot That Can Take Abuse[EB/OL].http://conceptpop.com/ finally-a-robot-that-can-take- -a-robot -that-can-take-abuse,2008-3-21.
    [75]多功能排险机器人,中国科学院沈阳自动化研究所机器人学重点实验室,rlab.sia.ac.cn.
    [76]杨汝清,宋克威.“勇士号”遥控移动式作业机器人[J],高技术通讯,1997(2).
    [77]中国研制出核电领域水下异物打捞机器人,北京科普之窗,www.bjkp.gov.cn,2006-01-16.
    [78]我国用于核电领域的首台水下异物打捞机器人诞生,中国科学院,www.cas.ac.cn,2006-01-12.
    [79]常州宝盾消防制造的灭火机器人首次亮相,新华社,2004.3.26.
    [80]李允旺,葛世荣,朱华.煤矿救灾机器人应用探讨[J].煤矿机械,2009,(01):164-167.
    [81]胡千庭.芦岭煤矿“5.13”瓦斯煤尘爆炸事故分析[J].劳动保护,2005,(03):58-60.
    [82]芦岭:86个生命的倾诉[EB/OL],http://www.grrb.com.cn/ template/10002/file.jsp?aid=132125,2003.
    [83]何聪.芦岭煤矿5.13特大瓦斯爆炸事故发生以后[EB/OL].http://www.people.com.cn/GB/shehui/47/20030515/993338.html,2003.
    [84]彭桂剑.浅谈处理瓦斯爆炸事故时的技术要点和难点[J].煤矿安全,2004,(11):29、30.
    [85]国家安全生产监督管理总局.2009年版煤矿安全规程[M].北京:煤炭工业出版社,2009.
    [86]东兆星,吴士良.井巷工程[M].徐州:中国矿业大学出版社,2004.
    [87]孙本壮.采矿概论[M].北京:冶金工业出版社,2004.
    [88] Seraji, Homayoun. Fuzzy Traversability Index: A new concept for terrain-based navigation[J]. Journal of Robotic Systems, v17, n2, Feb, 2000, p 75-91.
    [89] Byoung S.Choi, Shin Min Song. Fully automated obstacle-crossing gaits for walking machines[A]. IEEE Transactions on System, Man and Cybernetics[C], 1998, 18(6): 955-956.
    [90]仝光.基于ADAMS月球车仿真平台的研究[D].吉林:吉林大学,2007.
    [91]柯正谊,何建邦,池天河.数字地面模型[M].北京:中国科学技术出版社,1993.
    [92]李爽,姚静.基于分形的DEM数据不确定性研究[M].北京:科学出版社,2007.
    [93]徐青.地形三维可视化技术[M].北京:测绘出版社,2003.
    [94]黄永安,李文成,高小可.Matlab 7.0/Simulink 6.0应用实例仿真与高效算法开发[M].北京:清华大学出版社,2008.
    [95]孙洪泉.分形插值曲面的MATLAB程序[J].苏州科技学院学报,2006,(19):18-21,38.
    [96]孙洪泉,谢和平.分形插值曲面及其维数定理[J].中国矿业大学学报,1998,(27):217-220.
    [97] GB 3836.2-2000.爆炸性气体环境用电气设备第2部分:隔爆型“d”[S].
    [98] GB 3836.5-2004.爆炸性气体环境用电气设备第5部分:正压外壳型“p”[S].
    [99] GB 3836.4-2000.爆炸性气体环境用电气设备第4部分:本质安全型“i”[S].
    [100]龚振邦,汪勤悫,等.机器人机械设计[M],北京:电子工业出版社,1995.
    [101]王良曦,王红岩,等.车辆动力学[M],北京:国防工业出版社,2008.
    [102]李岩,杨相东,陈恳.履带式移动机器人动力学模型及其反馈控制[J],清华大学学报(自然科学版),2006,46(8):1377-1380.
    [103]孙斌.便携式地面移动机器人运动分析及控制[D].长沙:国防科学技术大学,2006.
    [104] Liu J, Wang Y, Ma S, Li B. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot [A]. Proceedings of the IEEE International Workshop on Safety,Security and Rescue robotics[C], Kobe, 2005: 36-41.
    [105]李允旺,葛世荣,朱华,刘建.四履带双摆臂机器人越障机理及越障能力研究[J].机器人,2010,32(2):157-165.
    [106] XIN Jian-guo, LI Xiao-fan, WANG Zhong. Performance analysis of track-leg mobile robot in unstructured environment[J]. Robt, 2004(01):35-39.
    [107]葛世荣,李允旺,朱华.用于煤矿井下搜救作业的隔爆型机器人平台[P].中国专利:200820033257.7,2009-01-14.
    [108]葛世荣,李允旺,朱华.具有封闭履带特征的煤矿搜救机器人[P].中国专利:200820033326.4,2009-04-08.
    [109]李允旺,葛世荣,朱华.煤矿救灾机器人隔爆壳体的设计与加工[J].煤矿机械,2009(02):104-106.
    [110] GB 3836.1-2000,爆炸性气体环境用电气设备第1部分:通用要求[S].
    [111]蔡敏,刘涛健,吕书泉.ZL401铸铝合金隔爆面的加工[J].煤矿机电,1999,01:26-28.
    [112]丁根宝.铸造工艺学(上册)[M].北京:机械工业出版社,1985.
    [113]徐正飞,杨汝清,王韬.关节移动机器人的越障运动[J].中国机械工程,2003(12):1052-1055.
    [114] LI Yun-wang, Ge Shi-rong, FANG Hai-feng, et al. Effects of the Fiber Releasing on Step-climbing Performance of the Articulated Tracks Robots[A]. ROBIO 2009[C], Guilin, China. 2009: 818-823.
    [115] Chen C, Trivedi MM. Reactive locomotion control of articulated-tracked mobile robots for obstacle negotiation[A]. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], 1993: 1349-1356.
    [116]许世范.工业机器人在矿山应用前景展望[J].煤矿自动化,1993(1):28-31.
    [117]郝继飞,潘伟,李响.多超声波传感器的工作空间识别[J].中国矿业大学学报,2000,29(4):373-376.
    [118] Rapid Response Investigation of Robots for Post-Accident Safety Assessment[EB/OL] / www.sandia.gov, 2004-11-22.
    [119] Baker C, Morris A, Ferguson D, et al. A Campaign in Autonomous Mine Mapping[A]. in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)[C], New Orleans, LA, 2004.
    [120] Mine Rescue Robot[EB/OL], http://www.msha.gov/Sago Mine/ robotdetails.asp.
    [121] Joe Rooney, John D.Hobbs. Towards kinematic classification schemes for planetary surface locomotion systems[J]. Mechatronics 13:153–174, 2003.
    [122] Lindemann R A, Voorhees C J. Mars Exploration Rover Mobility Assembly Design, Test and Performance [A]. 2005 IEEE International Conference on Man and Cybernetics [C], Systems 2005(10): Vol. 1, 450- 455.
    [123] Miller D P, Hunt T, Roman M, et al. Experiments With a Long-Range Planetary Rover[A]. International Conference on Robotics & Automation [C], Taipei, 2003: 2436-2441.
    [124] T. Estier, Y. Crausaz, B. Merminod, M. Lauria, R.Piguet, R. Siegwart. An innovative Space Rover with Extended Climbing Alilities [A]. Proceedings of Space and Robotics 2000 [C], Albuquerque, USA, February 27-March 2, 2000.
    [125] D. P. Miller, R. S. Desai, E. Gat, R. Ivlev, and J. Loch. Reactive navigation through rough terrain: Experimental results [A]. In Proceedings of the 1992 National Conference on Artificial Intelligence [C], San Jose, CA, 1992: 823-828.
    [126] Lindemann R A, Voorhees C J. Mars exploration rover mobility assembly design, test and performance [A]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics[C]. Piscataway, NJ, USA, 2005: 450-455.
    [127] Shang Jiangzhong, Luo Zirong, Zhang Xingfan. Two kinds of wheeled lunar rover suspension scheme & their virtual prototype simulation[J]. China Mechanical Engineering, 2006, 17(1): 49-52.
    [128] Miller D.P, Li Tan, Swindell S. Simplified navigation and traverse planning for a long-range planetary rover[A]. Proceedings. ICRA '03. IEEE International Conference on Robotics and Automation[C], 2003, vol.2: 2436- 2441.
    [129] Tao Jian-guo, Meng Xian-wei, Deng Zong-quan, et al. Modeling and simulation on the differential balancing mechanism of lunar rover[J]. Journal of Machine Design, 2007, 24(3): 16-18, 67.
    [130]李允旺,葛世荣,朱华.摇杆式移动机器人的齿轮式差动机构研究[J].机器人,2009,31(3):235-241.
    [131]杨廷栋.渐开线齿轮行星传动[M].成都:成都科技大学出版社,1986.
    [132]王洪欣.机械设计工程学Ⅰ[M].徐州:中国矿业大学出版社,2001.
    [133]饶振纲.行星传动机构设计[M].北京:国防工业出版社,1994.
    [134]李允旺,葛世荣,朱华.行星齿轮式差动平衡机构[P].中国专利:ZL200820034725.2,2009-02-08.
    [135] LI Yun-wang, Ge Shi-rong, ZHU Hua. Mobile Platform of Rocker-Type Coal Mine Rescue Robot[J]. Mining Science and Technology, 2010, Vols. 20 (3): 466-471.
    [136]李允旺,葛世荣,朱华.摇杆式四轮机器人[P].中国专利:200810023553.3,2009-04-08.
    [137]朱华,李允旺,葛世荣.由普通微型电机改造成的微型隔爆电机[P].中国专利:ZL200820033242.0,2008-12-31.
    [138]李允旺,葛世荣,朱华.锥齿轮式差动装置[P].中国专利:200820033120.1,2008-12-10.
    [139]仝光.基于ADAMS月球车仿真平台的研究[D].吉林:吉林大学,2007.
    [140]徐德,邹伟.室内移动式服务机器人的感知、定位与控制[M].北京:科学出版社,2008-06.
    [141]李允旺,葛世荣,朱华.摇杆式轮履结合机器人[P].中国专利:201186680[P],2009-01-28.
    [142]李允旺,葛世荣,朱华.摇杆式履带悬架的构型推衍及其在煤矿救灾机器人上的应用[J].机器人,2010,32(1):25-33.
    [143] LI Yun-wang, Ge Shi-rong, ZHU hua. Mobile Platform of a Rocker-type W-shaped Track Robot [J]. Key Engineering Materials Vols. 419-420 (2010): 609-612.
    [144]李兵,何正嘉,陈雪峰.ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社,2008-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700