用户名: 密码: 验证码:
月球重力异常特征与三维密度成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“嫦娥工程”总体目标之一是研究月球的起源和演化,特别是月球内部层圈结构的形成和演化。以新近的高分辨率高精度的月球卫星重力、地形地貌以及其它月球物理、月球化学探测资料为基础,通过分析和反演月球重力异常,可以更进一步地刻画月球内部结构,为研究月球演化提供依据。论文旨在利用嫦娥一号探测成果,采用新的方法获取月球全球布格重力异常,依据月球重力场特征,分析与识别月球质量瘤,并通过实现月球全球重力异常三维反演,探讨月球撞击盆地演化以及月陆、月海壳幔结构特征等科学问题,为实现我国“嫦娥工程”科学目标提供资料和知识积累。本文采用地球物理反演理论与行星地质科学问题相结合的思路,基于我国嫦娥一号地形模型CLTM-s01和日本SELENE最新月球重力模型SGM100h,研究探讨了月球内部结构及演化问题。
     论文首先从月球布格重力异常特征分析着手,根据布格异常的定义,运用球坐标系地形引力效应计算方法,进行了全球地形校正计算,获得了月球全球布格重力异常。通过分析对比质量瘤的异常特征,提出了用布格重力异常识别质量瘤的思想,认为Hertzsprung和Korolev撞击盆地并不具备质量瘤的特点,推断质量瘤撞击盆地高密度物质可能有不同的成因。统计显示,质量瘤盆地可分为平原类型和高地类型,面积较小的高地型质量瘤盆地的高密度物质主要分布在浅部,为充填的高密度玄武岩质岩石;平原型质量瘤盆地的高密度物质主要分布在深部,为上隆的高密度月幔物质。南极Aitken盆地存在与雨海类似的布格重力异常特征,因此本文将其列为月球最大的平原型质量瘤盆地。
     论文在分析目前国内外位场反演成像方法的基础上,系统地讨论了球坐标系统中位场反演问题,尤其是模型加权函数问题。依据Backus-Gilbert模型评价理论,给出了新的全球密度成像模型目标函数,通过分析直角坐标系统中模型深度加权函数,推导出了基于球坐标系统的模型深度加权函数,并成功地构建了全球卫星重力异常密度反演算法的技术流程;通过模型约束和评价来压制降低反演的非唯一性,获得了可信的密度成像结果。理论模型密度成像结果表明,算法稳定收敛。
     论文根据上述方法所得到月球布格重力异常,首先对雨海、澄海和东方海三个典型质量瘤撞击盆地的重力异常进行了反演成像,结果表明,质量瘤的异常源主要位于20-50km深度之间。其次,全球三维密度成像结果印证了局部密度成像结果,说明全球密度成像方法能获得合理的密度结构,且异常源之间有微弱连结。南极Aitken盆地下方的密度结构与正面质量瘤盆地类似,高密度物质同样集中在20-50km深度;在月球背面斜长岩高地区域,月球内部的径向密度极小值分布在10-50km深度。可以推测在50km深度之上,月球内部物质在球面和径向分布不均匀;而在50km之下,物质密度分布较均匀,斜长岩高地的月壳厚度可能达不到此前认为的100km。
     论文所采用的月球卫星重力异常反演和分析方法,为月球内部结构研究提供了定量化的手段,所提出的球坐标三维密度成像方法,可用于球体内部三维结构分析,为行星内部结构及演化研究提供了新的途径。
One of the objectives in "Chang'E project" is to study the origination and evolution of the Moon, especially the interior layered structures. Current satellite gravity and topography of the Moon, in presence of high resolution and accuracy, and other data from lunar physical or chemical investigation have provided useful information to interpreate the lunar internal structure. Gravity field is currently the best data set to study the planetary interior structures. The lunar gravity anomaly reveals the lateral heterogeneities of surface and interior substance. Gravity inversion is a valid method to investigate the density structure in the lunar interior. In this thesis, the lunar Bouguer gravity anomaly was calculated by using a method of terrain correction in spherical coordinates system. Inversion of lunar gravity data can be used to analyze the density distribution and origination of the mascons, and then to study the evolution of lunar impact basins and the crust-mantle structures.
     By applying the geophysical inversion theory to solve the planetary science problem, I firstly studied and discussed the inner structure of the Moon based on the Chang'E-1 topography model, CLTM-s01, and the Japanese SELENE's newly gravity field model, SGM100h. Thesis proposed the different views of the mascons formation from the lunar Bouguer gravity anomaly and the classification of mascons. Secondary, in order to quantitatively interpret the Bouguer anomaly, I constructed a new density imaging method used in spherical coordinates. The synthetic models demonstrated that this method is feasible to the inversion of the gravity data in small area or in global scale. Then, I applied it to lunar gravity data and retrieved the global 3-D density structures of the Moon.
     I proposed that the masons should be identified from Bouguer gravity anomaly. In this study, the terrain correction for lunar free-air gravity anomaly is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1. According to the Bouguer gravity anomaly of the Moon, two impact basins, Hertzsprung and Korolev are lack of mascon features. The mascon basins seem to be classified into two types, Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust, which are associated with the basalt deposits. The other type, Type Plain, includes mascon basins whose major dense materials may be located deep at the litho-sphere, corresponding to the uplifted mantle. Further, the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon, and the feature of BGA in the basin implies the impacting direction.
     This study addressed the inversion issues in spherical coordinates system, especially the key one of weighting function. I derived a new model objective function in the light of the Backus-Gilbert model appraisal theory in geophysical inversion. Furthermore, the correct depth weighting function was also derived because the previous function was not applicable to spherical coordinates system. The new method can directly solve the inversion problem of global satellite gravity data. Reliable results of density imaging were obtained and the non-uniqueness was suppressed by using model constraints and Tikhonov curves.
     Lunar interior density distribution was retrieved by applying the new 3-D density imaging method. On the one hand, results from three mascons'gravity inversion indicated that the high density anomalies concentrated at the depth of 20-50km beneath the mascon basins. Their residual densities were larger than 0.3g/cm3 which are close to the density difference between lunar mantle and crust. Density structures along radial direction also demonstrated that the uplifted mantle dominates the origin of mascons'gravity anomalies. On the other hand, the global density imaging down to 100km depth of the Moon showed the similar features, which illustrated again that the lateral heterogeneities of interior density structures are mainly located above the depth of 50km.
引文
[1]Binder A B. Lunar prospector:Overview, Science,1998,281:1475-1476
    [2]Konopliv A S, Binder A B, Hood L L, et al. Improved gravity field of the Moon from Lunar Prospector. Science,1998,281:1476-1480
    [3]Konopliv A S, Asmar S W, Yuan D N. Recent gravity models as a result of the lunar prospector mission. Icarus,2001,150:1-18
    [4]平劲松,黄倩,鄢建国,等.基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01.中国科学G辑:物理学力学天文学,2008,38(11):1601-1612
    [5]Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT Laser Altimetry. Science,2009,323:897-900
    [6]黄倩,平劲松,苏晓莉,等.嫦娥一号CLTM-s01模型揭示和证认的月球地形新特征.中国科学G辑:物理学力学天文学,2009,39(10):1362-1370
    [7]Namiki N, Iwata T, Matsumoto K, et al. Farside gravity field of the Moon from Four-Way Doppler Measurements of SELENE (Kaguya). Science,2009,323:900-905
    [8]Matsumoto K, Goossens S and Ishihara Y. An improved lunar gravity field model from SELENE and historical tracking data:revealing the farside gravity features. J Geophys Res-Planet,2010, in press.
    [9]欧阳自远,李春来,邹永廖.绕月探测工程的初步科学成果.中国科学:地球科学,2010,40(3):261-280
    [10]姜景山.专题:微波月亮.中国科学D辑:地球科学,2009,39(8):1028-1028
    [11]梁青,陈超,黄倩,等.基于嫦娥一号地形数据的月球布格重力异常与撞击盆地演化.中国科学G辑:物理学力学天文学,2009,39(10):1379-1386
    [12]陈超,陈波,平劲松,等.月球亚平宁山脉重力异常解释.中国科学G辑:物理学力学天文学,2009,39(10):1371-1378
    [13]Wilhelms D E. The geologic history of the Moon. Washington DC:U.S. Government Printing Office, U.S. Geol. Surv. Prof. Pap.1348,1987
    [14]Muller P M, Sjogren W L. Mascons:Lunar mass concentrations. Science,1968,161: 680-684
    [15]欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展,2004,19(3):351-358
    [16]Howard K A, Wilhelms D E, Scott D H. Lunar basin formation and highland stratigraphy. Reviews of Geophysics and Space Physics,1974,12:309-327
    [17]Solomon S C, Head J W. Lunar mascon basins:Lava filling, tectonics, and evolution of the lithosphere. Reviews of Geophysics and Space Physics,1980,18:107-141
    [18]Arkani-Hamed J. The lunar mascons revisited. J Geophysl Res-planets,1998,103(E2): 3709-3739
    [19]Wieczorek M A, Jolliff B L, Khan A, et al. The Constitution and Structure of the Lunar Interior. In Reviews in Mineralogy & Geochemistry,2006,60, pp.221-364
    [20]Stoffler D, Ryder G, Artemieva B A I, et al. Cratering history and lunar chronology. Reviews in Mineralogy & Geochemistry,2006,60:519-596
    [21]王文睿,李斐,鄢建国,等.月球重力异常的小波多尺度分析.地球物理学报,2009,52(7):1693-1699
    [22]Watters W A, Zuber M T, Hager B H. Thermal perturbations caused by large impacts and consequences for mantle convection. J Geophys Res-Planet,2009,114, E02001, doi:10.1029/2007JE002964
    [23]Hiesinger H, Head J W. Lunar mare basalt flow units:Thicknesses determined from crater size-frequency distributions. Geophysical Research Letters,2002,29(8),89, doi: 10.1029/2002GL014847
    [24]Ono T, Kumamoto A; Nakagawa H, et al. Lunar radar sounder observations of subsurface layers under the nearside maria of the Moon. Science,2009,323(5916):909-912
    [25]Hiesinger H; Head J W; Wolf U, et al. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res-Planets, 2003,108(E7),5065, doi:10.1029/2002JE001985
    [26]Haruyama J, Ohtake M, Matsunaga T, et al. Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science,2009,323(5916):905-908
    [27]Ghods A, Arkani-Hamed J. Impact-induced convection as the main mechanism for formation of lunar mare basalts. J Geophys Res,2007,112:E03005
    [28]Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the Moon from the Clementine Mission. Science,1994,266:1839-1843
    [29]Neumann G A, Zuber M T. The lunar crust:Global structure and signature of major basins. J Geophys Res,1996,101(E7):16841-16843
    [30]Wieczorek M A, Phillips R J. Potential anomalies on a sphere:Applications to the thickness of the lunar crust. J Geophys Res-Planet,1998,103 (E1):1715-1724
    [31]Hikida H, Wieczorek M A. Crustal thickness of the Moon:New constraints from gravity inversions using polyhedral shape models. Icarus,2007,192(1):150-166
    [32]von Frese R, Tan L, Potts L V. Lunar crustal analysis of Mare Orientale from topographic and gravity correlations. J Geophys Res-Planet,1997,102(E11):25657-25675
    [33]Potts L V, von Frese R. Comprehensive mass modeling of the Moon from spectrally correlated free-air and terrain gravity data. J Geophys Res-Planet,2003,108(E4),5024, doi:10.1029/2000JE001440
    [34]Potts L V, von Frese R. Crustal attributes of lunar basins from terrain-correlated free-air gravity anomalies. J Geophys Res-Planet,2003,108(E5),5037, doi:10.1029/2000JE001446
    [35]李斐,柯宝贵,王文睿,等.利用重力地形导纳估计月壳厚度.地球物理学报,2009,52(8):2001-2007,doi:10.3969./j.issn.0001-5733.2009.08.07
    [36]丰海,李建成,张守建,等.利用重力场与地形数据反演月壳厚度.大地测量与地球动力学,2009,29(3):131-134
    [37]Backus G E and Gilbert J F. Numerical application of a formalism for geophysical inverse problems. Geophys J R Astr Soc,1967,13:247-276
    [38]Backus G E and Gilbert J F. The resolving power of gross earth data. Geophys J R Astr Soc, 1968,16:169-205
    [39]Backus G E and Gilbert J F. Uniqueness in the inversion of inaccurate gross earth data. Phil-Roy Soc, London,1970,266:123-192
    [40]Tikhonov A N and Arcsenin V Y.不适定问题的解法.王秉忱译.北京:地质出版社,1979
    [41]Constable S C, Parker R L and Constable C G. Occam's Inversion:a practical inversion method for generating smooth models from electromagnetic sounding data. Geophysics, 1987,52(3):289-300
    [42]Li Y and Oldenburg D W.3-D Inversion of magnetic data. Geophysics,1996,61:394-408
    [43]Li Y and Oldenburg D W.3-D Inversion of gravity data. Geophysics,1998,63:109-119
    [44]Pilkington M.3-D magnetic imaging using conjugate gradients. Geophysics,1997,62(4): 1132-1142
    [45]Portniaguine O and Zhdanov M S. Focusing geophysical inversion images. Geophysics, 1999,64:874-887
    [46]Camacho A G, Montesinos F G, and Vieira R. Gravity inversion by means of growing bodies, Geophysics,2000,65(1):95-101
    [47]Camacho A G, Montesinos F G, and Vieira R. A 3-D gravity inversion tool based on exploration of model possibilities, Computers & Geosciences,2002,28:191-204
    [48]Camacho A G, Nunes J C, Ortiz E, et al. Gravimetric determination of an intrusive complex under the Island of Faial (Azores):some methodological improvements, Geophys J Int, 2007,171:478-494
    [49]徐世浙,曹洛华,姚敬金.重力异常三维反演——视密度成像方法技术的应用.物探与化探,2007,31(1):25-28
    [50]郭良辉,孟小红,石磊,等.重力和重力梯度数据三维相关成像.地球物理学报,2009,52(4):1098-1106
    [51]Bosch M, Meza R, Jimenez R, et al. Joint gravity and magnetic inversion in 3D using Monte Carlo methods, Geophysics,2006,71:G153-G156
    [52]Krahenbuhl R and Li Y. Inversion of gravity data using a binary formulation, Geophysical Journal International,2006,167(2):543-556
    [53]玄松柏,申重阳,孙少安,等.地下密度变化三维反演的遗传算法研究.大地测量与地球动力学,2008,28(1):36-40
    [54]罗红明.量子遗传算法及其在地球物理反演中的应用研究.中国地质大学(武汉)博士论文,2007
    [55]姚长利,郑元满,张聿文.重磁异常三维物性反演随机子域法方法技术.地球物理学报,2007,50(5):1576-1583
    [56]张世晖.海洋卫星测高重力数据处理方法研究及在冲绳海槽的应用.中国地质大学(武汉)博士论文,2003
    [57]Widiwijayantia C, Tiberic C, Deplusa C, et al. Geodynamic evolution of the northern Molucca Sea area (Eastern Indonesia) constrained by 3-D gravity field inversion. Tectonophysics,2004,386:203-222
    [58]方剑.利用卫星重力数据计算地球内部密度异常.地球物理学进展,1994,9(3):60-65
    [59]Wieczorek M A, Phillips R J. Lunar multiring basins and the cratering process. Icarus,1999, 139:246-259
    [60]Zheng Y C, Ouyang Z Y, Li C L, et al. China's Lunar Exploration Program:Present and future, Planet Space Sci,2008,56(7):881-886
    [61]Ouyang Z Y, Jiang J S, Li C L, et al. Preliminary scientific results of Chang'E-1 Lunar Orbiter:Based on payloads detection data in the first phase, Chin J Space Sci,2008,28(5): 361-369
    [62]Wieczorek M A, Le Feuvre M. Did a large impact reorient the Moon? Icarus,2009,200(2): 358-366, doi:10.1016/j.icarus.2008.12.017
    [63]Taylor S R. Does the lunar composition retain a memory from the early solar nebula?. Meteoritics & Planetary Science,2001,36(12):1567-1569
    [64]Anderson E G. The effect of topography on solutions of Stokes'problem. Unisurv S-14, Rep, School of Surveying, University of New South Wales, Kensington,1976
    [65]Heck B, Seitz K. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling. J Geodesy,2007,81:121-136
    [66]Wild-Pfeiffer F. A comparison of different mass elements for use in gravity gradiometry. J Geodesy,2008,82:637-653
    [67]Wieczorek M A. Gravity and Topography of the Terrestrial Planets. In Treatise on Geophysics,2007,165-206
    [68]Chambat F and Valette B. A stress interpretation scheme applied to lunar gravity and topography data. J. Geophys. Res.,2008,113, E02009, doi:10.1029/2007JE002936.
    [69]Strom R G., Malhotra R, Ito T, et al. The origin of planetary impactors in the inner solar system. Science,2005,309:1847-1849
    [70]冯刚顶,陈超,张明皓,等.对月球重力场特征的理解.地球物理学进展,2007,22(3):729-736
    [71]Shevchenko V V, Chikmachev V I, Pugacheva S G. Structure of the South Pole-Aitken lunar basin. Solar System Research,2007,41(6):447-462
    [72]Garrick-Bethel I, Zuber M T. Elliptical structure of the lunar South Pole-Aitken basin, Icarus,2009,204(2):399-408, doi:10.1016/j.icarus.2009.05.032
    [73]Schultz P H, Crawford D A. Consequences of forming the South-Pole-Aitken basin. Lunar Planet Sci,2008, Abstract XXXIX:2451
    [74]张赤军,骆鸣津.用地表重力能否推求地球内部的密度分布——对“统一引力场表示理论”的看法.中国科学D辑:地球科学,2009,39(4):443-447
    [75]王家映.地球物理反演理论.第二版.北京:高等教育出版社,2002,pp.65-71
    [76]De Peter I and Lissauer J. Planetary sciences.2nd edition. The Edinburgh Biulding, Cambridge CB2 8RU, UK:Cambridge University Press,2010, pp.267
    [77]占伟,李斐.月球内部构造研究综述.地球物理学进展,2007,22(3):737-742.
    [78]Chenet H, Lognonne Ph, Wieczorek M, Mizutani H. Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth and Planetary Science Letters,2006,243: 1-14, doi:10.1016/j.epsl.2005.12.017
    [79]Ishihara Y S, Goossens K, Matsumoto H, et al. Crustal thickness of the Moon:Implications for farside basin structures. Geophys. Res. Lett.,2009,36:L19202, doi:10.1029/ 2009GL039708
    [80]柯宝贵,李斐,王文睿,等.应用Lane-Emden方程分析下月幔厚度与月核半径大小.地球物理学报,2009,52(5):1208-1213,doi:10.3969/j.issn.0001-5733.2009.05.009
    [81]Zhao D P, Lei J S, Liu L. Seismic tomography of the Moon. Chinese Science Bulletin,2008, 53(24):3897-3907
    [82]Driscoll J R and Healy D M. Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics,1994,15:202-250
    [83]Liang Q, Chen C, Du J S, et al. Calculation of lunar Bouguer gravity anomaly using Chang'E-1 topography data:Interpretation for mascons. Eos Trans. AGU,2009,90(52):Fall Meet. Suppl., Abstract P33D-O1
    [84]Ohtake M, Matsunaga T, Haruyama J, et al. The global distribution of pure anorthosite on the Moon. Nature,2009,461:236-240
    [85]Wessel P, Smith W H F. Free software helps map and display data. Eos Trans, AGU,1991, 72(41):441-441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700