用户名: 密码: 验证码:
直驱永磁风力发电机设计关键技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的可再生能源,风力发电是最有效的风能利用方式。直驱永磁风力发电系统采用无刷无环的永磁同步发电机作为主发电机,取消了齿轮箱传动装置,具有结构简单、效率高、维护率和故障率低等特点,同时也具备了在恶劣环境下工作的能力,因此适合于海上大容量风力发电的发展方向,是符合风力发电技术发展趋势的一种机型。
     本文针对直驱永磁风力发机设计关键技术开展研究工作,主要包括以下几个方面:
     (1)介绍了当前典型的并网直驱永磁风力发电系统的基本结构,阐述了风轮机的基本原理与功率特性、直驱永磁风力发电机的数学模型、机侧变流器和网侧变流器的数学模型及其控制策略、直流母线环节的数学模型和直驱永磁风力发电机组功率控制方式以及最佳风能捕获原理,为后续各章节的研究工作奠定基础。
     (2)直驱永磁发电机通过一个背靠背全功率变流器与电网相连,电流和输出功率受到机侧变流器的控制,直驱永磁风力发电机的运行特性和设计方法具有其特殊性,因此准确分析变流器控制条件下直驱永磁风力发电机的运行特性,建立符合发电机运行特性的设计模型是直驱永磁风力发电机设计的关键问题。本文研究了直驱永磁风力发电机在变流器控制条件下的运行特性,推导了在机侧变流器isd=0矢量控制条件下发电机定子电压平衡方程、定子电压与直流母线电压之间的约束关系;研究了发电机定子电压、功率因数随电磁功率变化而变化的规律,阐明了直驱永磁风力发电机有功功率调节的基本原理;提炼了直驱永磁风力发电机在机侧变流器isd=0矢量控制条件下的重要运行特点,这将为下一章新的设计模型的提出奠定了理论基础。
     (3)分析了传统直接并网同步发电机设计分析方法在分析设计直驱永磁风力发电机时的缺陷和局限性。并将直驱永磁风力发电机矢量控制原理与经典电机设计“磁路计算”和“参数计算”有机结合起来,提出了基于变流器控制策略的直驱永磁风力发电机设计模型,该模型综合考虑了变流器电流矢量控制策略对发电机特性和性能的影响,能更准确的反应直驱永磁风力发电机的运行特性,并通过仿真和对比分析和试验研究的方式验证了本文提出的设计模型的准确性。
     (4)直驱永磁风力发电机转速低、体积庞大,其极数、极数/槽数匹配、永磁体尺寸等关键电磁参数具有很大的选择空间,因此准确分析各电机设计参数对电机性能和电机体积重量的影响是对电机进行优化设计的关键前提条件。本文研究了变流器控制条件下的直驱永磁风力发电机设计参数对性能和体积重量的影响,建立了直驱永磁风力发电机参数分析解析模型。利用该模型研究了发电机极数与发电机主要尺寸、电感参数和铁心损耗之间、极槽配合与发电机绕组系数、电动势波形之间、永磁体厚度和宽度与空载磁密、电动势、电感参数和铁心损耗之间、匝数和发电机性能之间的解析关系,得到了一系列有价值的结论,并通过直驱永磁风力发电机参数化电磁设计验证了上述结论。
     (5)齿槽转矩是永磁电机的固有特性,直接影响到直驱永磁风力发电系统的切入风速和能量捕获,因此如何降低齿槽转矩也是直驱永磁风力发电机设计的一个关键问题。本文分析了永磁电机齿槽转矩产生的机理,讨论了永磁电机设计参数与齿槽转矩之间的关系,介绍了选择合理极槽配合、改变电枢参数和改变永磁体参数来削弱永磁电机齿槽转矩的方法。通过研究不同极槽配合下单个永磁体和永磁电机总齿槽转矩之间的关系,提出了永磁电机基本齿槽单元的概念,整个电机永磁体可划分为若干个基本齿槽单元,每个基本齿槽单元产生的齿槽转矩在幅值和相位上完全相同。建立了基于齿槽单元的直驱永磁风力发电机永磁体移极齿槽转矩削弱方法,该方法运算简单,能有效的降低齿槽转矩,而且不会引入新的齿槽转矩谐波。
     (6)综合运用上述提出的直驱永磁风力发电机分析和设计方法,设计了一台2MW直驱永磁风力发电机,利用Ansoft和Matlab软件进行了电机本体的有限元仿真和系统的性能仿真。在湘电集团有限公司完成了电机的制造和测试,试验结果表明该电机各项性能指标均达到设计要求,试验数据与设计数据十分吻合,从而验证了本文所提出的直驱永磁风力发电机设计分析理论和方法的有效性与正确性。
The wind power is not only the fastest development but also with the most scales using and commercialization prospects of the renewable energy. And the wind power generation is the most effective way to using this energy. Cancelling the gearbox and using the permanent magnetic synchronous motor as the main generator, the direct drive permanent magnet wind generation system is attractive because of its simple construct. So the simply construct, high efficiency and low faults become the characteristics of this system. Because of having the able of working on severe environment, this system is suitable for large capacity offshore wind power.
     In this paper, the direct drive permanent magnet generator is taken as the main researching object. The main research of this paper as follow:
     (1)The basic structure of the direct drive permanent magnet(DDPM) wind turbine is introduced.The principle and power characteristic of the wind turbine is elaborated.And then the main work is on the mathematical model of the DDPM wind generator and inverter,the control strategy,the model of the DC bus and the theory of the maximum wind energy capture.All of these is the foundations for later research.
     (2)Since the DDPM wind generator is connect into grid by a full power inverter,the current and the output power is controlled by the inverter of the motor.Thus the design method of the DDPM wind generator is different from the previous generator.In order to analysing the operator characteristic of the DDPM wind generator accurately,the key problem is setting up a new model which is based on the control strategy of the inverter. In this paper,the stator voltage equation and the relationship between the stator voltage and the DC bus with the vector control motor inverter id=0are derived by analysing the operator characteristic on the condition of controlling of the inverter.The laws of the stator voltage and the power factor varies with the variation of the electromagnetic power are studied.The important operator features of the DDPM wind generetor with the vector control id=0are obtained.All of these research work are crucial to establish the new model in next chapter.
     (3)The limitations of the design method of the tradition sychronous generator which is connected into the grid directly is analysed.In this paper,combining the theory of the vector control and the classical "Calculation of magnetic circuit" and "Parameter calculation",the new design model based on the inverter vector control is proposed.Considering the influence of the inverter control strategy,this design model can reflect the practical opertation more accuracy. The correctness of the proposed model is approved by the simulation and the comparative analysis.
     (4)As the DDPM wind generator process low speed and big size,the chosen of its slot/poles combination and size of the permanent magnet have a lot of space.How to analysing the influence of the design parameters to the performance and the weight of the motor is the critical condition for optimal design.Accordingly in this chapter,this problem is analysied on the condition of the control of inverter.The analytic model of the parameter analysis of the DDPM wind generator is established.Taking use of this analytic model the follow relationships(pole number and the size, the inductance parameter and the iron-core loss,the slot/pole combination and the winding coefficient,the waveform of the electromotance,the thichness and width of the permanent magnet and the no-load flux density,electromotance,inductance parameter and the the iron-core,number of conductors and the performance of the motor) are discussed.Some valuable conclusions are gained.And all conclusions are approved by parameters of electromagnetic design of the DDPM wind generator.
     (5)The cogging torque is inherent in permanent motor.And it effects the cut-in speed and the energy captruce directly. So how to decreasing cogging torque is also a key problem in the design system.Firstly,the mechanism of the generation of the is analyzed. The relationship between the design parameter and the cogging torque is considered.The method that reasonable slot/pole combination,changing the amature parameters and changing the permanent magnet parameters are reviewed.The novel concept elementary cogging unit is proposed by analysing the relationship betweent the single permanent magnet and the general cogging torque of the motro on the different slot/pole combination.The permanent magnet can be divided into many elementary cogging unit.And the cogging torque generated by the each unit process the same amplitude and phase.A new method based on the elementary cogging unit is presented to reduce the cogging torque.This method is not only simple but also effective.And more,no additional cogging torque harmonic is bringed.
     (6)A2MW DDPM wind generator is designed by using the proposed model and methods.The simulation of finite element and the performance of the system are carried out by Ansoft and Matlab software. Manufacturing and test of the generator are finished in Xiangtan Machine Group Co., Ltd. The test results show that the performance of the motor can meet the design requirement perfectly. And the test data fit well with the design data. All of those indicate that the design model and the analysis methods proposed in this paper are effective and correct.
引文
[1]刘万琨,张志英,李银风等.风能与风力发电技术.北京:化学工业出版社,2007:19-38.
    [2]武鑫等.风能技术.北京:科学出版社,2007:2-3.
    [3]窦林琪等.世界可再生能源产业的发展趋势山西能源与节能,2010
    [4]CHEN Z, BLAABJERG F:'Wind energy-the world's fastest growing energy source', IEEE Power Electron. Soc. Newsl.,2006,18, (3), pp.15-19
    [5]Global Wind Energy Council. Global wind report 2011.2012
    [6]2011年全球风电装机容量实现21%增长.网址:http://www.21cbh.com/HTML/2012-2-7/yNNDE3XzM5OTkyNg.html
    [7]中国超越美国成为世界第一风电大国.网址:http://finance.china.com.cn/roll/20120904/996530.shtml
    [8]2012中国并网风电量首次超越美国成为世界第一网址:http://www.gcjx.ibicn.com/news/d764499.html
    [9]国家中长期科学和技术发展规划纲要(2006-2020年).网址:http://www.most.gov.cn/yw/t20060209_28601_O.doc.
    [10]新能源:异军突起创造中国奇迹.网址:http://finance.sina.com.cn/stock/hyyj/20121105/104613577095.shtml
    [11]H. Li Z. Chen, Overview of different wind generator systems and their comparisons. IET Renew. Power Gener.,2008, Vol.2, No.2, pp.123-138
    [12]宋卓彦,王锡凡,滕予非,等.变速恒频风力发电机组控制技术综述.电力系统自动化,2010(10):8-17.
    [13]凌禹,张同庄.变速风力发电系统控制技术综述.电力自动化设备,2008,28(3):122-125.
    [14]杨俊华,吴捷,杨金明等.现代控制技术在风能转换系统中的应用.太阳能学报,2004,25(4):530-539.
    [15]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2006:51-75.
    [16]卫蜀作,蔡邠.中国电网高速发展与可再生能源发电的关系.电网技术,2008,32(5):26-30.
    [17]许洪华,倪受元.独立运行风电机组的最佳叶尖速速比控制.太阳能学报,1998,19(1):30-35.
    [18]S.A. Saleh M.A.S.K. Khan M.A. Rahman. Steady-state performance analysis and modeling of directly driven interior permanent magnet wind generators. IET Renew. Power Gener.,2011, Vol.5, Iss.2, pp.137-147
    [19]C. Patsios, A. Chaniotis, E. Tsampouris, and A. Kladas. Particular Electromagnetic Field Computation for Permanent Magnet Generator Wind Turbine Analysis. IEEE TRANSACTIONS ON MAGNETICS, VOL.46, NO.8, AUGUST 2010,pp 2751-2754
    [20]Salem Alshibani, Vassilios G Agelidis, Rukmi Dutta. Application of Particle Swarm Optimization in the Design of Large Permanent Magnet Synchronous Generators for Wind Turbines.2012 IEEE International Conference on Power and Energy 2-5 December Malaysia pp:162-167
    [21]M. H. J. Bollen, L. D. Zhang. Different Methods for Classification of Three-Phase Unbalanced Voltage Dips due to Faults. Electric Power Systems Research,2003,66(1):59-69.
    [22]S.M. Muyeen, R. Takahashi, T. Murata, J. Tamura, M.H. Ali, Y. Matsumura, A. Kuwayama, T. Matsumoto, et al. Low voltage ride through capability enhancement of wind turbine generator system during network disturbance. IET Renewable Power Generation,2009,3(1):65-74.
    [23]H. Song, K. Nam. Dual Current Control Scheme for PWM Converter Under Unbalanced Input Voltage Conditions. IEEE Transactions on Industrial Electronics,1999,46(5):953-959
    [24]国家电网公司,风电场接入电网技术规定(修订版),2009年2月
    [25]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景.电机与控制应用.2008,35(4):1-5,21
    [26]黄守道,孙延昭,黄科元.风电机组并网问题研究.电力科学与技术学报,2008,23(2):13-18.
    [27]Keyuan Huang, Shoudao Huang, Feng She. A Control Strategy for Direct-drive Permanent-magnet Wind-power Generator Using Back-to-back PWM Coverter[C]. The 11th International Conference on Electrical Machines and Systems, Wuhan,2008
    [28]发明专利:复合式电机,200610032244.3
    [29]Andrea Cavagnino, Mario Lazzari, Francesco Profumo. A Comparison Between the Axial Flux and the Radial Flux Structures for PM Synchronous Motors. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.38, NO.6, NOVEMBER/DECEMBER 2002,pp:1517-1524
    [30]Sang-Ho Lee, Su-Beom Park, Soon-O Kwon. Characteristic Analysis of the Slotless Axial-FluxType Brushless DC Motors Using Image Method. IEEE TRANSACTIONS ON MAGNETICS, VOL.42, NO.4, APRIL 2006 Pp:1327-1330
    [31]Metin Aydin, Surong Huang, Thomas A. Lipo. Design, Analysis, and Control of a HybridField-Controlled Axial-Flux Permanent-Magnet Motor. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.57, NO.1, JANUARY 2010 pp:78-87
    [32]郑文鹏,江建中,李永斌,等.基于三维磁网络法E型铁心横向磁场电机的设计与研究[J].中国电机工程学报,2004,24(8):138-141.
    [33]褚文强,辜承林.新型横向磁通永磁电机磁场研究[J].中国电机工程学报,2007,24(8):58-62
    [34]樊叔维.电磁场数值计算方法——等效磁网络方法中参数的求解[J].光学精密工程,1999,7(3):23-27.
    [35]章跃进.旋转电机磁场计算数值解析结合法研究[D].博士学位论文:上海大学,2005.
    [36]周洁,谢卫,汪国梁.用等效磁网络法与有限元法计算永磁电机参数的比较[J].西安交通大学学报,1998,32(4):23-26.
    [37]Campbell P, Chari M, D'Angelo J. Three-dimensional finite element solution ofpermanent magnet machines [J]. IEEE Transactions on Magnetics,1981, 17(6):2997-2999.
    [38]Pavlik D, Garg V K, Repp J R, et al. A finite element technique for calculating themagnet sizes and inductances of permanent magnet machines [J]. IEEE Transactionson Energy Conversion,1988,3(1):116-122.
    [39]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [40]李钟明,刘卫国,刘景林,等.稀土永磁电机[M].北京:国防工业出版社1999.
    [41]王秀和等永磁电机[M].北京:中国电力出版社,2005
    [42]张兆强,MW级直驱永磁同步风力发电机设计,硕士学位论文,上海交通大学,2007
    [43]李春林.5 M W直驱永磁风力发电机的电磁设计与计算.湖南工程学院学报,2013,3(1):12-14
    [44]刘婷,直驱永磁同步风力发电机的设计研究,硕士学位论文,湖南大学,2009
    [45]王俊成1.5MW半直驱永磁同步风力发电机设计及关键技术研究硕士学位论文,山东大学,2010
    [46]Henk Polinder, Frank F. A. van der Pijl, Gert-Jan de Vilder. Comparison of Direct-Drive and Geared Generator Concepts for Wind Turbines. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL.21, NO.3, SEPTEMBER 2006 pp:725-732
    [47]曹江华,杨向宇,姚佳,双转子永磁同步风力发电机设计与应用.2008年41卷第8期65-67
    [48]2MW双定子直驱永磁同步风力发电机的设计。刘婷,黄守道,欧阳红林,微特电机,2012年第40卷第9期,16-19
    [49]邓秋玲,黄守道,刘婷,双定子轴向磁场永磁同步风力发电机的设计.湖南大学学报(自然科学版)第39卷2012第2期54-59
    [50]Saeid Javadi, Mojtaba Mirsalim. Design and Analysis of 42-V Coreless Axial-Flux Permanent-Magnet Generators for Automotive Applications. IEEE TRANSACTIONS ON MAGNETICS, VOL.46, NO.4, APRIL 2010 PP:1015-1023
    [51]黄碧斌.分段式模块化直驱型永磁同步风力发电机的磁场分析.天津大学:硕士学位论文:2007
    [52]Hui Li, Zhe Chen, Henk Polinder, Optimization of Multibrid Permanent-M ag-netWind Generator Systems. IEEE TRANSACTIONS ON ENERGY CONVER-SION, VOL.24, NO.1, MARCH 2009 82-92
    [53]Hui Li, Zhe Chen, Design Optimization and Comparison of Large Direct-drive Permanent Magnet Wind Generator Systems. Proceeding of International Conference on Electrical Machines and Systems 2007, Oct.8~11, Seoul, Korea
    [54]李镕耀,永磁直驱风力发电机的优化设计与系统性能评估,硕士学位论文.湖南大学。2011
    [55]刘万平,赵祥,任修明等.不同整流系统对直驱永磁风力发电机的性能影响及选型评估,电机与控制应用。2009,36(12)PP:17-21
    [56]何庆领,王群京.低速永磁风力发电机的参数分析及优化设计。合肥工业大学学报(自然科学版),第34卷第9期2011年9月1317-1320
    [57]李伟力,袁世鹏,霍菲阳.磁极不等厚对兆瓦级永磁直驱风力发电机的影响,大电机技术2011.4 30-34
    [58]张岳,王凤翔,周浩.极槽匹配对直驱式永磁风力发电机性能的影响.电工技术学报2009年6月第24卷第6期12-16
    [59]Wang D H,Wang X H,Qiao D W,et al.Reducing Cogging Torque in Surface Mounted Permanent-Magnet Motors by Nonuniformly Distributed Teeth Method. Magnetics,IEEE Transactions on,2011,49(9):2231-2239
    [60]Breton C, Bartolome J, Benito J A, et al. Influence of machine symmetry on reduction of cogging torque in permanent magnet brushless motors. IEEE Transactions on Magnetics,2000,36(5):3819-3823.
    [61]Kim S I, Lee J Y, Kim Y K, et al. Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method.IEEE Trans. on Magnetics,2005,41 (4):1796-1799
    [62]Kioumarsi A,Moallem M,Fahimi B.Mitigation oftorque ripple in interior permanent magnet motors by optimal shape design.IEEE Trans. on Magnetics,2006,42(10):3706-3711
    [63]Qian W Z,Panda S K,Xu J X.Torque ripple minimization in PM synchronous motors using iterative learning control.IEEE Trans. on Power Electronics,2004,19(2):272-279
    [64]Bianchi N, Bolognani S, Cappello A D F. Reduction of cogging force in PM linear motors by pole-shifting.IEE Proceedings-Electric Power Applications,2005,152(3):703-709.
    [65]Breton C, Bartolome J, Benito J A, et al. Influence of machine symmetry on reduction of cogging torque in permanent magnet brushless motors. IEEE Transactions on Magnetics,2000,36(5):3819-3823.
    [66]Lin D, Ho S L, Fu W N. Analytical prediction of cogging torque in surface-mounted permanent-magnetn motors.IEEE Trans. on Magnetics, 2009,45(9):3296-3302
    [67]Mohammad S I,Sayeed M,Tomy S.Issues in reducing the cogging torque of massproduced permanent-magnet brushless DC motor.IEEE Trans. on Industry Applications,2004,40(3):813-820
    [68]孟庆和.风力发电技术[J].风力发电,2002,65(2):24-29
    [69]耿华,杨耕,崔杨等.并网型风力发电系统的现状与发展.东方汽轮评论,2006,20(2):1-7
    [70]刘细平,林鹤云.风力发电机及风力发电控制技术综述.大电机技术,2007(3):17-20,55
    [71]许大中,贺益康.电机控制.杭州:浙江大学出版社.2001
    [72]Santiago Arnaltes, Juan Carlos Burgos. Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid Chinchilla. IEEE Transaction on Energy Conversion,2006,21(1):130-135.
    [73]Pinghua Tang, Guijie Yang, Min Luo, etal. A Current Control Scheme with Tracking Mode for PMSM System.1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin,2006,872-876
    [74]R.K.Sharma, V.Sanadhya, L.Behera, etal. Vector control of a permanent magnet synchronous motor. INDICON 2008, Kanpur, India,2008,81-86
    [75]陈顺.直驱风力发电网侧变流器的同步方法与控制策略研究[硕士学位论文],长沙:湖南大学,2010.04:48-49.
    [76]Vincenti D, Hua Jin. A Three Phase Regulated PWM Rectifier with on-line Feed-forward Input Unbalance Correction. IEEE Trans, on Industry Electronics, 1994,41(5):526-532
    [77]Monica Chinchilla, Santiago Arnaltes, Juan Carlos Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion,2006,21(3): 130-135
    [78]Shigeo Morimoto, Hajime Kato,Masayuki Sanada,Yoji Takeda. Output Maximization Control for Wind Generation System with Interior Permanent Magnet Synchronous Generator, in:Industry Applications Conference,41st IAS Annual Meeting. Tampa, FL.2006:503-509.
    [79]Pinghua Tang, Guijie Yang, Min Luo, etal. A Current Control Scheme with Tracking Mode for PMSM System.1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin,2006,872-876
    [80]Kelvin Tan,Syed Islam. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Transactions On Energy Conversion,2004,19(2):392-399.
    [81]Monica Chinchilla, Santiago Arnaltes, Juan Carlos Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion,2006,21(3): 130-135
    [82]M'onica Chinchilla, Santiago Arnaltes, and Juan Carlos Burgos, "Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid," IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL 21, NO,1, MARCH 2006.
    [83]A.D.Hansen, G.Michalke. Multi-pole permanent magnet synchronous generator wind turbines'grid support capability in uninterrupted operation during grid faults. IET.Renew.Power Gener,2009,vol 3.pp:333-348
    [84]J.Svensson. Synchronization methods for grid-connected voltage source converters. IEE Proc.-Gener. Transm. Distrib.,2001,148(3):229-235
    [85]孙延昭.永磁直驱风电变流系统控制策略研究.[湖南大学硕士论文],湖南长沙,湖南大学,2009
    [86]高平,王辉,佘岳等.基于Matlab/Simulink的风力机性能仿真研究[J].能源研究与信息.2006,22(2):79-84
    [87]卞松江,潘再平,贺益康.风力机特性的直流电机模拟[J].太阳能学报,2003,24(6):360-364
    [88]王丰收,沈传文,刘伟.风力发电系统控制策略研究.电气传动自动化,2006,28(5):1-5.
    [89]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究.大电机技术,2006(6):51-55.
    [90]R.J. Wai, C.Y. Lin. Implementation of Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System without Mechanical Sensors. IEEE Robotics, Automation and Mechatronics,2006:1-6
    [91]R.J. Wai, C.Y. Lin, Y.R. Cheng. Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System. IET Electr. Power Appl, 2007,1(2):275-283.
    [92]Jian Gao;Jining Lu; Keyuan Huang;Ying Zhang;Shoudao Huang. A novel variable step hill-climb search algorithm used for direct driven PMSG.2009 Internal Conference on Environment Technology.
    [93]李树江 蔡海锋 邓金鹏。自适应变步长最大风能捕获算法.控制工程,2012.1(19):
    [94]黄守道卢季宁黄科元等。优化爬山算法在直驱永磁风力发电系统中的应用。控制理论与应用,2010,8(27):1221-1226
    [95]许实章电机学北京:机械工业出版社1997
    [96]陈世坤电机设计北京:机械工业出版社1995
    [97]陈丕璋.电机电磁场理论与计算.北京:科学出版社,1994,160-194
    [98]汤蕴璎 电机学北京:机械工业出版社2003
    [99]辜承林 电机学武汉:华中科技大学出版社2007
    [100]Jian Gao; Yanan Yu, Shoudao Huang. Winding Layers and Slot Pole Combination in Fractional Slot Pole PMSM--Effects on Motor Performance. The 12th international conference on electrical machines and systems,ICEMS 2009.
    [101]Liu Ting, Huang Shoudao, Qiuling Deng. Effect of the number of slots per pole on performance of permanent magnet generator direct-driven by wind turbine[C] Electrical Machines and Systems (ICEMS),2011 International Conference on, beijing,2011:1-4
    [102]Jian Gao, Shoudaohuang, Rongyao Li.Comparison of Control Performance of PMSM of Different Rotor Structure.The 2010 IEEE Vehicle Power and Propulsion Conference
    [103]董少波,程小华.无刷直流电动机转矩脉动及其抑制方法综述.微电机,2010,43(8):83-86
    [104]Netter D, Leveque J, Rezzoug A.PMSM Cogging Torque Reduction: Comparison between different shapes of magnet.Applied Superconductivity, IEEE Transactions on,11(1)2011:2248-2251
    [105]方淑丹.永磁电机磁极形状的特殊设计.微特电机,2002,30(1):12-14
    [106]辛懋,韩力.削角磁极抑制永磁电动机齿槽转矩的研究.微特电机,2008,36(9):4-7
    [107]王秀和.基于磁极分段的齿槽转矩削弱方法研究.第十届全国永磁电机学术交流会.2010年
    [108]Liu Ting, Huang Shoudao, Gao Jian. Optimal design of the direct-driven high power permanent magnet generator turbine by wind[C]. Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives. Torremolinos (Mlaga), Spain. May 2011: 1-5
    [109]刘婷,黄守道,邓秋玲等.2MW双定子直驱永磁同步风力发电机的设计[J].微特电机.2012,40(9):16-19.
    [110]Jian Gao, Jiancheng Liu, Shoudao Huang. Optimum Design of Permanent Magnet Synchronous Motor Based on Gene Handling Genetic Algorithms.2010 International Conference on Electrical and Control Engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700