用户名: 密码: 验证码:
基于电流预测控制的多脉波变拓扑相控整流器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是一种储量非常可观的绿色能源,对它的开发利用不仅可以缓解当前的能源危机,还可以有效减少对环境的污染。伴随着机组的大型化,单机功率在不断提高,全功率变流器需要处理的功率也越来越大,这对当前风电系统主流的变流器拓扑是一个巨大的挑战。多脉波相控整流器具有功率容量大、耐压等级高和输出电压可调的优点,将它引入风电系统可以解决机组大型化与变流器功率容量有限的矛盾。为了适应风力发电机大范围的工作电压要求,需要对多脉波相控整流器的拓扑结构进行适当的改进,由此产生了多脉波变拓扑相控整流器。基于电流预测控制策略,本文主要对多脉波变拓扑相控整流器(FTTR)的拓扑结构、控制策略和工程应用等方面展开研究。
     在对12脉波FTTR工作原理深入分析的基础上,提出了基于效率最优的拓扑切换策略及具体的拓扑切换条件。研究并联二极管对12脉波FTTR串联工作模式的影响,由于并联二极管的存在,12脉波FTTR工作于串联模式时与普通的12脉波串联相控整流器的特性不完全相同。当负载电压较高时,两者完全等价;当负载电压较低时两者不等价,表现在两者的电流THD值不同,详细分析了导致该现象的原因,从减小输入电流THD的角度出发提出12脉波FTTR的工作区间。为了获得快速的电流动态响应和平滑的拓扑切换过程,提出了平均值电流预测控制策略,并详细分析了预测控制策略的工作原理。与常规的PI控制器的对比实验表明电流预测控制器具有快速的电流动态响应能力和电流跟踪能力,在应对电流突变或拓扑结构改变的能力明显优于PI控制器。
     针对12脉波FTTR的不足和多相发电机相数逐渐增多的趋势,提出一种18脉波FTTR的拓扑结构。18脉波FTTR具有两个切换开关三种组合方式,因此具有三种工作模式:串联模式、并联模式、混合模式。与12脉波FTTR相比增加了一种工作模式,因此具有更宽的工作电压范围,并在轻载和重载时都能保持更低的电流THD和更高的功率因数。根据18脉波FTTR的拓扑结构特点,对串、并联两种模式设计了合适的拓扑切换策略,实现不同工作模式的切换。利用电压矢量的概念对串、并联模式的电感电压进行统一的研究。基于电流预测控制,18脉波FTTR在串、并联两种模式下具有快速的电流响应能力,并且两种模式之间的切换快速、平滑,仿真和实验验证了电流控制策略的有效性。考虑到工程实践的需要,研究了18脉波FTTR的容错能力,分别对其单组整流器故障和负载短路故障进行研究,表明18脉波FTTR具有较好的冗余度,可以应对常见的短路故障。
     提出了N脉波FTTR的一般结构,根据脉波数与移相变压器绕组数的关系可以确定移相角、二极管和辅助开关的个数。电流预测控制器根据电压矢量相位关系图在适当的时刻触发相应的晶闸管,实现电感电流的预测控制。深入研究了N脉波FTTR的拓扑切换过程,选择合适的切换时刻,不仅可以减小开关损耗,还可以减小切换的过渡过程时间。当拓扑切换恰好发生在晶闸管的自然换流点,则拓扑切换瞬间完成,拓扑切换的过渡过程时间约为零;当拓扑切换发生在电感电流上升或下降阶段,拓扑切换需要经历一段较短的时间才能完成工作模式的切换。
     针对电流预测控制算法对电感参数敏感的问题,提出利用最小二乘法在线辨识系统的电感及其内阻参数,并将辨识后的电感及其内阻代入电流预测控制器中参与电流预测。仿真和实验结果表明,使用最小二乘法校正后的电流预测控制器能够消除电流稳态误差。
     在对N脉波FTTR充分研究的基础上,将具有宽工作电压范围的N脉波FTTR应用于大功率风力发电系统中,提出新的风力发电系统拓扑:多相发电机和N脉波FTTR组成风力发电系统的前级,并联的三电平逆变器组成后级。针对正常工作和电网电压跌落两种情形分别研究了机侧变流器和网侧变流器的控制策略。结合风力发电的特点,提出了N脉波FTTR的拓扑切换策略并确定拓扑切换点的转速。最后讨论了N脉波FTTR追踪最大功率点的策略问题。以最优功率曲线为参考,将当前功率与最优曲线对应的功率进行比较,使当前功率不断接近最优功率,该方法可以在风速变化的情况下自适应地追踪最大功率点,具有很好的通用性。
Wind energy is a green energy with abundant storage, thus exploiting and utilizing it can not only alleviate the present energy crisis, but also effectively reduce the pollution to the environment. As the wind-turbine-generator system (WTGS) is developing towards the trends of large scale, and the power of the single generator is increasing continuously, those are big challenges to the present power converter used in the wind energy conversion system (WECS). Multi-pulse thyristor rectifier (MPTR) owns its advantages of high power capacity, high voltage and regulable output voltage, thus the problem of WTGS enlarging against the capacity restraint of the power converter can be solved if the MPTR is introduced in the WECS. In order to meet the requirement of wide voltage range of the wind generator, it is necessary to modify the MPTR and thereby a new converter topology named multi-pulse flexible-topology thyristor rectifier (MPFTTR) is generated. Based on the predictive current control strategy, this thesis concentrates on the research of the proposed MPFTTR, including the topology, the operating principle, the control strategy and the engineering application.
     First, a topology-switching strategy based on the optimal efficiency is proposed to the12-pulse FTTR after deeply analyzing its operating principle. Meanwhile, the effect of the diodes which are parallel with each rectifier is discussed. When the12-pulse FTTR operates in the series mode, the performance is a little different from that of the conventional12-pulse series thyristor rectifier due to the existence of diodes. This thesis studies the series mode in detail and then the operating range of the rectifier is proposed from the point of reducing the total harmonic distortion (THD) of the input current.
     In order to obtain fast current response and smooth transition between two operating modes, the predictive average-current control strategy is proposed to the12-pulse FTTR. Then the principle of the predictive current control strategy is illustrated in detail. The performance comparisons between the proposed control strategy and the conventional PI controller are carried out to demonstrate the fast response and tracking abilities. In the case of coping with sudden change of the load current or the topology switching, the proposed control strategy is better than the PI controller.
     Second, an18-pulse FTTR is proposed to cover the shortage of12-pulse FTTR and meet the increasing trends of the phase numbers in the permanent magnet synchronous generator (PMSG). There are two switches in the18-pulse FTTR and these two switches have three combinations, corresponding to three operating modes: parallel mode, series mode and hybrid mode. The18-pulse FTTR has a wider range of operating voltage due to its additional operating mode, which contributes to mitigating the input current THD and improves the power factor when powering a light load. To achieve this aim, a topology-switching strategy is designed according to the topology characteristics of the18-pulse FTRR. The concept of voltage vector is used to deal with the voltage across the inductor, and the predictive average-current control strategy is also proposed to the rectifier. Based on the proposed control strategy, the fast current response as well as the smooth switching is also obtained, and simulation and experimental results verify the effectiveness of the control strategy. In view of the practical requirements, the fault-tolerant ability of the18-pulse FTTR is verified. Simulation results of the single-rectifier fault and short-circuit fault show the rectifier has good redundancy.
     Third, a general structure of the N-pulse FTTR is proposed based on the previous studies, and then the number of diodes and switches can be determined according to the relationship between pulse numbers and winding numbers. Therefore, the transition of the topology switching is studied. It is found that the topology switching which is carried out at appropriate instant will not only reduce the switch losses, but also reduce the duration time of the transition. Namely, if the topology switching occurs at the natural commutation point of the thyristor, it will be finished immediately, otherwise, the topology switching will be finished in a period of time.
     Fourth, as the predictive current control strategy presented in the thesis is sensitive to the variation of inductance, an on-line parameter correction method based on the least square method (LSM) is proposed to identify the inductance and the internal resistance of the dc-side inductor, and then the identified parameters are input to the predictive current controller to modify the current prediction. Simulation and experimental results demonstrate that the proposed LSM can modify the dc-side inductance and eliminate the current errors.
     Fifth, on the basis of sufficient studies, we try to apply the N-pulse FTTR to the high power WECS, which is composed of a multi-phase PMSG, the N-pulse FTTR and two three-level inverters in parallel. The control strategies of the generator-side and the grid-side converter are discussed respectively in terms of normal and faulty operations. Thus the topology switching strategy of the generator-side converter is proposed according to the characteristics of the WECS. After that, the maximal point power tracking method is discussed. This method can reach the maximal power point adaptively even in the presence of wind variations, thus it can be used in a variety of WECS.
引文
[1]张友新.《京都议定书》——让地球“退烧”[J].人民论坛,1998(03):49-50.
    [2]义高潮.联合国气候变迁框架公约及《京都议定书》[J].瞭望新闻周刊,2000(49):57.
    [3]李新烽,罗春华.朱镕基宣布中国已核准《京都议定书》[N].人民日报,2002-09-04.
    [4]薛桁,朱瑞兆,杨振斌,袁春红.中国风能资源贮量估算[J].太阳能学报,2001,22(02):167-170.
    [5]潘广德,张铁,林子超.浅谈风力发电及其发展[J].科技致富向导,2013(14):72.
    [6]Global Wind Report 2012-Annual market update[EB/OL]. Global Wind Energy Council: http://www.gwec.net/publications/global-wind-report-2/global-wind-report-20 12/.
    [7]祁和生.中国风能市场前景[J].机电设备,2013(02):16-19.
    [8]国家能源局.2012年风电发电量同比增41%[EB/OL].[2013-5-10].http://www.gov.cn/gzdt/2013-04/09/content_2373121.htm.
    [9]风电主力电源地位不容质疑[EB/OL].中国风力发电网:http://www.fenglifadian.com/china/314AB17K.html.
    [10]科技部《风力发电科技发展“十二五”专项规划》[J].风能,2012(05):8.
    [11]风电发展“十二五”规划[J].太阳能,2012(20):7-18.
    [12]田治江.为什么会“弃风”200亿千瓦时[N].现代物流报,2013-05-12.
    [13]黄宏平.“弃风”顽疾难治,风电场须从源头自救[N].中国高新技术产业导报,2013-04-22.
    [14]王旭辉.扩大消纳市场是解决弃风问题的根本途径[N].中国能源报,2013-04-15.
    [15]冯晓东.提高风电接入能力的大规模储能系统容量配置研究[硕士学位论文][D].长春:东北电力大学,2013.
    [16]秦海岩.消除弃风是实现风电“十二五”目标的前提[J].风能,2012(08):1.
    [17]胡丹梅,张志超,孙凯,张建平.风力机叶片流固耦合计算分析[J].中国电机工程学报,2013,33(17):98-104.
    [18]吉春明,朱庆东,葛新锋,郝俊涛.风力发电塔基础选型与设计优化[J].武汉大学学报(工学版),2012(S1):124-128.
    [19]文小军.风力发电叶片铺放机设计与仿真研究[D].武汉理工大学,2010.
    [20]韩玉清.大型风力发电叶片的计算机辅助设计[D].华北电力大学(河北),2008.
    [21]金利祥.基于一种半直驱式风力发电控制系统的研究[硕士学位论文][D].杭州:浙江大学,2013.
    [22]刘伟.无刷双馈变速恒频风力发电控制系统研究[硕士学位论文][D].西安:西安理工大学,2008.
    [23]李建林,许洪华.风力发电中的电力电子变流技术[M].机械工业出版社, 2008.
    [24]Zhe C, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for Wind Turbines[J]. Power Electronics, IEEE Transactions on, 2009,24(8):1859-1875.
    [25]Ganti V C, Singh B, Aggarwal S K, Kandpal T C. DFIG-Based Wind Power Conversion With Grid Power Leveling for Reduced Gusts [J]. Sustainable Energy, IEEE Transactions on,2012,3(1):12-20.
    [26]Ahuja H, Bhuvaneswari G, Balasubramanian R. Large scale wind energy conversion system using DFIG in sub-synchronous and super-synchronous speed ranges[C]. Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India,2010 Joint International Conference on,2010.
    [27]Kumar V, Joshi R R, Bansal R C. Optimal Control of Matrix-Converter-Based WECS for Performance Enhancement and Efficiency Optimization [J]. Energy Conversion, IEEE Transactions on,2009,24(1):264-273.
    [28]Ribrant J, Bertling L M. Survey of Failures in Wind Power Systems With Focus on Swedish Wind Power Plants During 1997-2005[J]. Energy Conversion, IEEE Transactions on,2007,22(1):167-173.
    [29]王凤翔.永磁电机在风力发电系统中的应用及其发展趋向[J].电工技术学报,2012,27(03):12-24.
    [30]马伟明,肖飞.风力发电变流器发展现状与展望[J].中国工程科学,2011,13(01):11-20.
    [31]李建林,许鸿雁,周谦,潘磊,赵斌,许洪华.适合于直接驱动型风力发电系统的交叉型Boost变流器[J].太阳能学报,2007,28(08):819-824.
    [32]Jianwu Z, Wei Q, Liyan Q. An isolated multiport DC-DC converter for simultaneous power management of multiple renewable energy sources [C]. Energy Conversion Congress and Exposition (ECCE),2012 IEEE,2012.
    [33]Yaramasu V, Bin W. Three-level boost converter based medium voltage megawatt PMSG wind energy conversion systems[C]. Energy Conversion Congress and Exposition (ECCE),2011 IEEE,2011.
    [34]Xiaotian T, Jingya D, Bin W. A novel converter configuration for wind applications using PWM CSI with diode rectifier and buck converter[C]. Electric Machines& Drives Conference (IEMDC),2011 IEEE International, 2011.
    [35]乔朝瑛.独立式小型风力发电机及其控制器的研究[硕士学位论文][D].西安:西安科技大学,2008.
    [36]Kawaguchi T, Sakazaki T, Isobe T, Shimada R. Offshore-Wind-Farm Configuration Using Diode Rectifier With MERS in Current Link Topology [J]. Industrial Electronics, IEEE Transactions on, 2013,60(7):2930-2937.
    [37]Hussein M M, Senjyu T, Orabi M, Wahab M A A, Hamada M M. Simple maximum power extraction control for permanent magnet synchronous generator based wind energy conversion system[C]. Electronics, Communications and Computers (JEC-ECC),2012 Japan-Egypt Conference on,2012.
    [38]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[博士学位论文][D].北京:北京交通大学,2008.
    [39]Thongam J S, Beguenane R, Okou A F, Tarbouchi M, Merabet A, Bouchard P. A method of tracking maximum power points in variable speed wind energy conversion systems[C]. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM),2012 International Symposium on,2012.
    [40]Shao Z, King-Jet T, Vilathgamuwa D M, Nguyen T D, Xiao-Yu W. Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators [J]. Industrial Electronics, IEEE Transactions on,2011,58(1):316-328.
    [41]Molina M G, Dos Santos E C, Pacas M. Advanced power conditioning system for grid integration of direct-driven PMSG wind turbines[C]. Energy Conversion Congress and Exposition (ECCE),2010 IEEE,2010.
    [42]Jun L, Bhattacharya S, Huang A Q. A New Nine-Level Active NPC (ANPC) Converter for Grid Connection of Large Wind Turbines for Distributed Generation[J]. Power Electronics, IEEE Transactions on,2011,26(3):961-972.
    [43]Goel P K, Singh B, Murthy S S, Kishore N. Parallel Operation of DFIGs in Three-Phase Four-Wire Autonomous Wind Energy Conversion System[J]. Industry Applications, IEEE Transactions on,2011,47(4):1872-1883.
    [44]Sharma S, Singh B. Variable speed stand-alone wind energy conversion system using synchronous generator[C]. Power and Energy Systems (ICPS), 2011 International Conference on,2011.
    [45]王仕韬.基于一种半直驱式风力发电装置的整流器研究[博士学位论文][D].杭州:浙江大学,2011.
    [46]彭国平,李帅,鱼振民,易萍虎.小型风电系统最大功率跟踪的研究[J].西安交通大学学报,2004,38(04):357-360.
    [47]李树江,蔡海锋,邓金鹏,孔丽新.自适应变步长最大风能捕获算法[J].控制工程,2012,19(01):69-72.
    [48]左广杰.电励磁双凸极风力发电机系统最大风能跟踪控制的研究[硕士学位论文][D].南京:南京航空航天大学,2011.
    [49]黄琦.直驱式永磁风力发电系统若干问题研究[硕士学位论文][D].杭州:浙江大学,2012.
    [50]付明晓,李守智.变速恒频风力发电系统最大风能追踪的控制[J].电力系统及其自动化学报,2013,25(01):74-78.
    [51]蔡海锋.交流励磁风力发电系统最大风能捕获[硕士学位论文][D].沈阳:沈阳工业大学,2011.
    [52]张秀玲,谭光忠,张少宇,窦春霞.采用模糊推理最优梯度法的风力发电系统最大功率点跟踪研究[J].中国电机工程学报,2011,31(02):119-123.
    [53]黄守道,佘峰,黄科元,孙延昭.三点比较法在风力发电系统中的应用[J].控制工程,2009,16(6):764-767.
    [54]程启明,程尹曼,汪明媚,王映斐.风力发电系统中最大功率点跟踪方法的综述[J].华东电力,2010,38(09):1393-1399.
    [55]熊立新,徐丙垠,高厚磊.一种开关磁阻风力发电机最大风能跟踪方法[J].电工技术学报,2009,24(11):1-7.
    [56]张小莲,殷明慧,蔡晨晓,邹云,叶星.基于风力发电的最大功率点跟踪 控制的改进爬山算法[P].中国专利:CN102242689A,2011-11-16.
    [57]陈益广,王志强,沈勇环.直驱式方波永磁同步风力发电机控制系统仿真[J].系统仿真学报,2009,21(18):5849-5853.
    [58]陈毅东.全功率变流器风机运行品质优化控制技术的研究[博士学位论文][D].秦皇岛:燕山大学,2012.
    [59]Subudhi B, Ogeti P S. Sliding mode approach to torque and pitch control for a wind energy system[C]. India Conference (INDICON),2012 Annual IEEE, 2012.
    [60]Pande V N, Mate U M, Kurode S. Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG[J]. Electric Power Systems Research,2013,100(0):73-81.
    [61]Benbouzid M, Beltran B, Mangel H, Mamoune A. A high-order sliding mode observer for sensorless control of DFIG-based wind turbines[C]. IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,2012.
    [62]Mesemanolis A, Mademlis C, Kioskeridis I. High-Efficiency Control for a Wind Energy Conversion System With Induction Generator[J]. Energy Conversion, IEEE Transactions on,2012,27(4):958-967.
    [63]Pahlevaninezhad M, Safaee A, Eren S, Bakhshai A, Jain P. Adaptive nonlinear maximum power point tracker for a WECS based on permanent magnet synchronous generator fed by a matrix converter[C]. Energy Conversion Congress and Exposition (ECCE),2009.
    [64]Zu H, Zhang G, Fei S. Enhanced model reference adaptive backstepping control of permanent magnet synchronous generator equipped wind energy conversion system with stator parameters varying[C]. Chinese Control and Decision Conference (CCDC),2011.
    [65]Delfino F, Pampararo F, Procopio R, Rossi M. A Feedback Linearization Control Scheme for the Integration of Wind Energy Conversion Systems Into Distribution Grids[J]. Systems Journal, IEEE,2012,6(1):85-93.
    [66]王利兵,毛承雄,陆继明,王丹.基于反馈线性化原理的直驱风力发电机组控制系统设计[J].电工技术学报,2011,26(07):1-6.
    [67]王伟,陈奇,纪志成.基于反馈线性化PMSG风力发电系统控制[J].系统仿真学报,2010,22(06):1397-1401.
    [68]林震.基于单周期控制的风力发电最大功率追踪控制策略研究[硕士学位论文][D].北京交通大学,2012.
    [69]杨文焕,倪凯峰.基于模糊控制的双馈风力发电最优控制策略[J].电工技术学报,2013,28(04):279-284.
    [70]李兴鹏,石庆均,江全元.双模糊控制法在光伏并网发电系统MPPT中的应用[J].电力自动化设备,2012,32(08):113-117.
    [71]Kaur K, Chowdhury S, Chowdhury S P, Mohanty K B, Domijan A. Fuzzy logic based control of variable speed induction machine wind generation system[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE,2008.
    [72]Jiawei C, Jie C, Chunying G. New Overall Power Control Strategy for Variable-Speed Fixed-Pitch Wind Turbines Within the Whole Wind Velocity Range[J]. Industrial Electronics, IEEE Transactions on, 2013,60(7):2652-2660.
    [73]Lee C, Chen P, Shen Y. Maximum power point tracking (MPPT) system of small wind power generator using RBFNN approach[J]. Expert Systems with Applications,2011,38(10):12058-12065.
    [74]Whei-Min L, Chih-Ming H, Ting-Chia O, Fu-Sheng C. MRAS-based sensorless wind energy control for wind generation system using RFNN[C]. Industrial Electronics and Applications (ICIEA),2010 the 5th IEEE Conference on,2010.
    [75]Thongam J S, Bouchard P, Ezzaidi H, Ouhrouche M. Artificial neural network-based maximum power point tracking control for variable speed wind energy conversion systems[C]. Control Applications, (CCA) & Intelligent Control (ISIC),2009.
    [76]Al-Saedi W, Lachowicz S W, Habibi D, Bass O. Power flow control in grid-connected microgrid operation using Particle Swarm Optimization under variable load conditions [J]. International Journal of Electrical Power & Energy Systems,2013,49(0):76-85.
    [77]戴巨川.大型变桨距直驱式风电机组系统建模与控制策略研究[博士学位论文][D].长沙:中南大学,2012.
    [78]廖勇,庄凯,姚骏,李辉,何金波.直驱式永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009,29(33):76-82.
    [79]郭洪澈.兆瓦级风力发电机组变桨距系统控制技术研究[博士学位论文][D].沈阳:沈阳工业大学,2008.
    [80]高峰.风力发电机组建模与变桨距控制研究[博士学位论文][D].北京:华北电力大学(北京),2009.
    [81]杨清宇,张冉.风电机组变桨距模糊遗传控制算法研究[J].计算机工程与应用,2013,49(07):217-220.
    [82]姚骏,陈西寅,夏先锋,廖勇,黄嵩.含飞轮储能单元的永磁直驱风电系统低电压穿越控制策略[J].电力系统自动化,2012,36(13):38-44.
    [83]李国庆,钱叶牛,刘旻序.基于滑动模态控制的双馈风电机组低电压穿越控制策略的研究[J].电力系统保护与控制,2012,40(01):5-11.
    [84]李建林,徐少华.直接驱动型风力发电系统低电压穿越控制策略[J].电力自动化设备,2012,32(01):29-33.
    [85]曾翔君,张宏韬,李迎,杨永兵,杨旭.基于多相PMSG和三电平变流器的风电机组低电压穿越[J].电力系统自动化,2012,36(11):23-29.
    [86]李辉,付博,杨超,赵斌,唐显虎.双馈风电机组低电压穿越的无功电流分配及控制策略改进[J].中国电机工程学报,2012,32(22):24-31.
    [87]中国电力科学研究院,龙源电力集团股份有限公司,南方电网科学研究院有限责任公司,中国电力工程顾问集团公司.风电场接入电力系统技术规定[S].国家质检总局,2011.
    [88]许建兵,江全元,石庆均.基于储能型DVR的双馈风电机组电压穿越协调控制[J].电力系统自动化,2013,37(04):14-20.
    [89]蔚芳,刘其辉,谢孟丽,张建华.适应多类型故障的双馈风电机组低电压穿越综合控制策略[J].电力系统自动化,2013,37(05):23-28.
    [90]王鹿军.分布式发电中三相三电平并网逆变器的若干关键技术研究[博士学位论文][D].杭州:浙江大学电气工程学院,2013.
    [91]Erika T, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J]. Power Electronics, IEEE Transactions on, 2003,18(3):888-895.
    [92]Papavasiliou A, Papathanassiou S A, Manias S N, Demetriadis G. Current Control of a Voltage Source Inverter Connected to the Grid via LCL Filter[C]. Power Electronics Specialists Conference (PESC), Orlando, FL,2007.
    [93]Guoqiao S, Xuancai Z, Min C, Dehong X. A New Current Feedback PR Control Strategy for Grid-Connected VSI with an LCL Filter[C]. Applied Power Electronics Conference and Exposition (APEC),24th Annual IEEE, Washington, DC,2009.
    [94]Teodorescu R, Blaabjerg F, Liserre M, Loh P C. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. Electric Power Applications, IEE Proceedings-,2006,153(5):750-762.
    [95]陈东.并网逆变器系统中的重复控制技术及其应用研究[博士学位论文][D].杭州:浙江大学,2013.
    [96]Judewicz M, Fischer J, Herran M, Gonzalez S, Carrica D. A Robust Model Predictive Control For Grid-Connected Voltage-Source Inverters[J]. Latin America Transactions, IEEE (Revista IEEE America Latina), 2013,11(1):27-33.
    [97]Cortes P, Rodriguez J, Silva C, Flores A. Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter[J]. Industrial Electronics, IEEE Transactions on,2012,59(2):1323-1325.
    [98]IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems[J]. IEEE Std.519-1992,1993:1.
    [99]电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)[S].2013.
    [100]Singh B, Gairola S, Singh B N, Chandra A, Al-Haddad K. Multipulse AC-DC Converters for Improving Power Quality:A Review[J]. Power Electronics, IEEE Transactions on,2008,23(1):260-281.
    [101]Villablanca M E, Nadal J I, Cruzat F A, Rojas W C. Harmonic improvement in 12-pulse series-connected line-commutated rectifiers[J]. Power Electronics, IET,2009,2(4):466-473.
    [102]Baghramian A, Cross A, Forsyth A. Interactions within heterogeneous systems of uncontrolled rectifiers for aircraft electrical power systems [J]. Electrical Systems in Transportation, IET,2011,01(01):49-60.
    [103]Kocman S, Kolar V, Trung Vo T. Eighteen-pulse rectifiers for harmonic mitigation[C]. Harmonics and Quality of Power (ICHQP),14th International Conference on,2010.
    [104]Singh B, Bhuvaneswari G, Garg V. Eighteen-Pulse AC-DC Converter for Harmonic Mitigation in Vector Controlled Induction Motor Drives[C]. Power Electronics and Drives Systems (PEDS), International Conference on,2005.
    [105]Chung-Ming Y, Ming-Hui C, Chien-Hsiang L, Der-Chun S. A Novel Active Interphase Transformer Scheme to Achieve Three-Phase Line Current Balance for 24-Pulse Converter[J]. Power Electronics, IEEE Transactions on, 2012,27(4):1719-1731.
    [106]Madhan Mohan D, Singh B, Panigrahi B K. Harmonic optimised 24-pulse voltage source converter for high voltage DC systems[J]. Power Electronics, IET,2009,2(5):563-573.
    [107]Xigeng M, Chao L, Lina B, Ying L. Analysis and Matlab Simulation of 30-Pulse Rectification System Based on Stretch Triangle Transformer[C]. Electrical and Control Engineering (ICECE),2010 International Conference on,2010.
    [108]方昌始,方华,赖玉斌.48脉波整流电路的研究[J].大功率变流技术,2009(3):16-19.
    [109]熊辉.等效36脉波多重化整流的NPC/H桥逆变器研究[硕士学位论文][D].镇江:江苏大学,2009.
    [110]孟凡刚,杨世彦,杨威.多脉波整流技术综述[J].电力自动化设备,2012,32(02):9-22.
    [111]金孝忠.基于抽头变换方法的多脉波整流技术研究[硕士学位论文][D].哈尔滨:哈尔滨工业大学,2009.
    [112]Paulillo G, Guimaraes C A M, Policarpo J, Abreu G, Oliveira R A. T-ADZ-a novel converter transformer[C]. Harmonics and Quality of Power,9th International Conference on, Orlando, FL,2000.
    [113]Xiao-hua W, Peng-peng C, Xiao-bin Z. Design and Analysis of an Autotransformer Based 24-Pulse Rectifier[C]. Electrical and Control Engineering (ICECE), International Conference on,2010.
    [114]Fernandes R C, Da Silva Oliveira P, de Seixas F J M. A Family of Autoconnected Transformers for 12-and 18-Pulse Converters-Generalization for Delta and Wye Topologies[J]. Power Electronics, IEEE Transactions on, 2011,26(7):2065-2078.
    [115]Kang M, Byeong O W, Enjeti P N, Pitel I J. Auto-connected electronic transformer (ACET) based multi-pulse rectifiers for utility interface of power electronic systems [C]. Industry Applications Conference, Thirty-Third IAS Annual Meeting,1998.
    [116]Sewan C, Bang S L, Enjeti P N. New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives[J]. Industry Applications, IEEE Transactions on,1997,33(2):531-541.
    [117]Singh B, Garg V, Bhuvaneswari G. Design and Development of Autotransformer Based 24-Pulse AC-DC Converter fed Induction Motor Drive[C]. Power Electronics and Drive Systems (PEDS),7th International Conference on,2007.
    [118]Singh B, Sanjay G, Chandra A, Al-Haddad K. Power Quality Improvements in Isolated Twelve-Pulse AC-DC Converters Using Delta/Double-Polygon Transformer[C]. Power Electronics Specialists Conference (PESC),2007.
    [119]Singh B, Garg V, Bhuvaneswari G. Polygon-Connected Autotransformer-Based 24-Pulse AC & DC Converter for Vector-Controlled Induction-Motor Drives[J]. Industrial Electronics, IEEE Transactions on, 2008,55(1):197-208.
    [120]Singh B, Bhuvaneswari G, Garg V. Scott-Connected Autotransformer Based Multipulse AC-DC Converters for Power Quality Improvement In Vector Controlled Induction Motor Drives[C]. Power Electronics and Drives Systems (PEDS), International Conference on,2005.
    [121]Singh B, Gairola S, Chandra A, Al-Haddad K. Design and development of T-connected transformer based 24-pulse AC-DC rectifier[C]. Power Electronics Specialists Conference (PESC),2008.
    [122]Singh B, Garg V, Bhuvaneswari G. A Novel T-Connected Autotransformer-Based 18-Pulse AC/DC Converter for Harmonic Mitigation in Adjustable-Speed Induction-Motor Drives[J]. Industrial Electronics, IEEE Transactions on,2007,54(5):2500-2511.
    [123]Singh B, Bhuvaneswari G, Garg V. T-connected autotransformer-based 24-pulse AC-DC converter for variable frequency induction motor drives [J]. Energy Conversion, IEEE Transactions on,2006,21(3):663-672.
    [124]Vorfolomeev G N, Evdokimov S A, Schurov N I, Malozyomov B V. Optimum multi pulse rectifiers based on the scheme of Charles Scott[C]. Electronic Instrument Engineering,7th International Conference on Actual Problems of, Novosibirsk, Russia,2004.
    [125]Guimaraes C, Olivier G, April G E. High current AC/DC power converters using T-connected transformers[C]. Electrical and Computer Engineering, Canadian Conference on, Montreal, Que.,1995.
    [126]Singh B, Gairola S, Chandra A, Al-Haddad K. Zigzag connected autotransformer based controlled AC-DC converter for pulse multiplication[C].2007 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, PROCEEDINGS,2007.
    [127]Raja D, Muraly N, Vijayavelan V, Selvaganesan N. A 24-Pulse AC-DC Converter for improving power quality using fork connected transformer[C]. Control, Automation, Communication and Energy Conservation (INCACEC), 2009 International Conference on,2009.
    [128]Singh B, Gairola S. A fork connected auto-transformer based 24-pulse AC-DC converter[C]. Power Electronics,2006. IICPE 2006. India International Conference on,2006.
    [129]Sewan C, Enjeti P N, Hoag-Hee L, Pitel I J. A new active interphase reactor for 12-pulse rectifiers provides clean power utility interface [J]. Industry Applications, IEEE Transactions on,1996,32(6):1304-1311.
    [130]Tanaka T, Koshio N. A method for harmonic reduction on the source side of a parallel-connected thyristor converter having an interphase reactor[J]. ELECTRICAL ENGINEERING IN JAPAN,1997,121(1):82-90.
    [131]Peterson M, Singh B N. Multipulse AC-DC Thyristor Converter with DC Bus Current Shaper[C]. Power Engineering Society General Meeting,2007.
    [132]Peterson M, Singh B N. A Novel Load Compensator for a 12-pulse Diode Converter[C]. Power Electronics, Drives and Energy Systems (PEDES'06), International Conference on,2006.
    [133]Arrillaga J, Villablanca M E. Pulse doubling in parallel convertor configurations with interphase reactors[J]. Electric Power Applications, IEE Proceedings B,1991,138(1):15-20.
    [134]Singh B, Bhuvaneswari G, Garg V, Gairola S. Pulse multiplication in AC-DC converters for harmonic mitigation in vector-controlled induction motor drives[J]. Energy Conversion, IEEE Transactions on,2006,21(2):342-352.
    [135]Arrillaga J, Liu Y H, Perera L B, Watson N R. A current reinjection scheme that adds self-commutation and pulse multiplication to the thyristor converter[J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2006,21(3):1593-1599.
    [136]Sewan C, Junyong O, Junggoo C. Multi-pulse converters for high voltage and high power applications[C]. International Power Electronics and Motion Control Conference (IPEMC),2000.
    [137]Jun-Keun J, Seung-Ki S. Operation analysis and new current control of parallel connected dual converter system without interphase reactors [C]. The 25th Annual Conference of the IEEE Industrial Electronics Society (IECON), 1999.
    [138]Che H S, Levi E, Jones M, Duran M J, Hew W P, Rahim N A. Operation of a Six-Phase Induction Machine Using Series-Connected Machine-Side Converters[J]. Industrial Electronics, IEEE Transactions on, 2014,61(1):164-176.
    [139]李伟力,高晗璎,张奕黄等.多相永磁高压风力发电机及其系统[P].中国专利:CN102638116A,2012-08-15.
    [140]Xiang-Jun Z, Yongbing Y, Hongtao Z, Ying L, Luguang F, Xu Y. Modelling and control of a multi-phase permanent magnet synchronous generator and efficient hybrid 3L-converters for large direct-drive wind turbines[J]. Electric Power Applications, IET,2012,06(06):322-331.
    [141]Damiano A, Gatto G, Marongiu I, Serpi A. A multi-phase PM synchronous generator torque control for direct-drive wind turbines [C]. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM),2012 International Symposium on,2012.
    [142]包广清,李战明,施进浩.一种新型组合式横磁通永磁风力发电机[J].中国电机工程学报,2012,32(03):83-88.
    [143]刘文斌,张晓华,刘文涛,吕宝春.采用多相发电机和多电平变换器的兆瓦级变速风电机组[P].中国专利:CN201388064,2010-01-20.
    [144]梁之龙,崔杨.基于多相发电机和级联式变流器的风力发电装置[P].中国专利:CN101702582A,2010-05-05.
    [145]刘文斌,张晓华,曾翔君,房鲁光,刘文涛.一种大功率风力发电机组专用多相永磁同步发电机[P].中国专利:CN101860154A,2010-10-13.
    [146]王晋.多相永磁电机的理论分析及其控制研究[博士学位论文][D].武汉:华中科技大学,2010.
    [147]Zhang Y, Wang F. Performance study of multi-phase permanent magnet generator in wind generation[C]. Electric Information and Control Engineering (ICEICE),2011 International Conference on,2011.
    [148]Abo-Elyousr F K, Rim G H. Performance evaluation of AC/DC PWM converter for 12-phase stand-alone PMSG with maximum power extraction[C]. Electrical Machines and Systems (ICEMS),2010 International Conference on,2010.
    [149]包广清,郑文鹏,毛开富.基于横磁通发电机的永磁直驱风力发电系统[J].电机与控制学报,2012,16(11):39-44.
    [150]温春雪,李建林,许洪华.多脉波整流电路在直驱式风力发电中的应用[J].电力电子技术,2008,42(05).
    [151]陈杰,龚春英,陈家伟,张方华,严仰光.多脉波整流技术在风力发电中的应用[J].电工技术学报,2012,27(04):131-137.
    [152]吕征宇,王仕韬,潘式正,姚文熙,郑家龙.一种多发电机机组多脉整流方法[P].中国专利:CN101882880A,2010-11-10.
    [153]Zargari N R, Yuan X, Bin W, A multilevel thyristor rectifier with improved power factor [J]. Industry Applications, IEEE Transactions on, 1997,33(5):1208-1213.
    [154]Luo F L, Hill R J. Fast Response and Optimum Regulation in Digitally Controlled Thyristor Converters [J]. Industry Applications, IEEE Transactions on,1986,IA-22(1):10-17.
    [155]Ohmae T, Matsuda T, Suzuki T, Azusawa N, Kamiyama K, Konishi T. A Microprocessor-Controlled Fast-Response Speed Regulator with Dual Mode Current Loop for DCM Drives[J]. Industry Applications, IEEE Transactions on,1980,IA-16(3):388-394.
    [156]Drake D, Lindon P. Improvement of current loop response of thyristor DC drive by time-domain approximation[J]. Electric Power Applications, IEE Proceedings B,1988,135(5):261-268.
    [157]Ruixiang H, Zheng T Q, Xiaojie Y, Wenjie G. Development and Experiment Research of High-Power Arc Heater Power Supply Utilizing Thyristor Converter[C]. Industrial Electronics and Applications (ICIEA),2nd IEEE Conference on,2007.
    [158]Suh Y, Lee Y, Steimer P K.A Comparative Study of Medium-Voltage Power Converter Topologies for Plasma Torch Under Dynamic Operating Conditions [J]. IEEE Transactions on Industrial Electronics, 2009,56(06):2150-2161.
    [159]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2007.
    [160]席裕庚,李德伟,林姝.模型预测控制——现状与挑战[J].自动化学报,2013,39(03):222-236.
    [161]Cortes P, Kazmierkowski M P, Kennel R M, Quevedo D E, Rodriguez J. Predictive Control in Power Electronics and Drives [J]. Industrial Electronics, IEEE Transactions on,2008,55(12):4312-4324.
    [162]Thielemans S, Vyncke T J, Jacxsens M, Melkebeek J A. FPGA implementation of online finite-set model based predictive control for power electronics[C]. Predictive Control of Electrical Drives and Power Electronics (PRECEDE),2011 Workshop on,2011.
    [163]Acuna P, Moran L, Rivera M, Dixon J, Rodriguez J. Improved Active Power Filter Performance for Renewable Power Generation Systems[J]. Power Electronics, IEEE Transactions on,2013(Available in the website of IEEE).
    [164]Acuna P, Moran L, Rivera M, Rodriguez J, Dixon J. Improved active power filter performance for distribution systems with renewable generation[C]. IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,2012.
    [165]叶洪伟.有源电力滤波器的电流预测控制研究[硕士学位论文][D].成都:西南交通大学,2011.
    [166]Bhattacharya A, Chakraborty C. A Shunt Active Power Filter With Enhanced Performance Using ANN-Based Predictive and Adaptive Controllers [J]. Industrial Electronics, IEEE Transactions on,2011,58(2):421-428.
    [167]Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O. Adaptive Dead-Time Compensation for Grid-Connected PWM Inverters of Single-Stage PV Systems[J]. Power Electronics, IEEE Transactions on, 2013,28(6):2816-2825.
    [168]Kui-Jun L, Byoung-Gun P, Rae-Young K, Dong-Seok H. Robust Predictive Current Controller Based on a Disturbance Estimator in a Three-Phase Grid-Connected Inverter[J]. Power Electronics, IEEE Transactions on, 2012,27(1):276-283.
    [169]Villarroel F, Espinoza J R, Rojas C A, Rodriguez J, Rivera M, Sbarbaro D. Multiobjective Switching State Selector for Finite-States Model Predictive Control Based on Fuzzy Decision Making in a Matrix Converter[J]. Industrial Electronics, IEEE Transactions on,2013,60(2):589-599.
    [170]Ahmed S K M, Iqbal A, Abu-Rub H, Cortes P. Model predictive control of a three-to-five phase matrix converter[C]. Predictive Control of Electrical Drives and Power Electronics (PRECEDE),2011 Workshop on,2011.
    [171]Villarroel F, Espinoza J, Rojas C, Molina C, Espinosa E. A multiobjective ranking based finite states model predictive control scheme applied to a direct matrix converter[C]. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society,2010.
    [172]Lim C, Abd Rahim N, Hew W, Levi E. Model Predictive Control of a Two-Motor Drive with Five-Leg Inverter Supply [J]. Industrial Electronics, IEEE Transactions on,2012,60(01):54-65.
    [173]Davari S A, Khaburi D A, Fengxiang W, Kennel R M. Using Full Order and Reduced Order Observers for Robust Sensorless Predictive Torque Control of Induction Motors[J]. Power Electronics, IEEE Transactions on, 2012,27(7):3424-3433.
    [174]牛里,杨明,刘可述,徐殿国.永磁同步电机电流预测控制算法[J].中国电机工程学报,2012,32(06):131-137.
    [175]Vyncke T J, Thielemans S, Dierickx T, Dewitte R, Jacxsens M, Melkebeek J A. Design choices for the prediction and optimization stage of finite-set model based predictive control[C]. Predictive Control of Electrical Drives and Power Electronics (PRECEDE),2011 Workshop on,2011.
    [176]Rodriguez J, Bin W, Rivera M, Wilson A, Yaramasu V, Rojas C. Model predictive control of three-phase four-leg neutral-point-clamped inverters[C]. International Power Electronics Conference (IPEC),2010.
    [177]Geyer T. Model Predictive Direct Current Control for multi-level converters[C]. IEEE Energy Conversion Congress and Exposition (ECCE), 2010.
    [178]Iqbal A, Abu-Rub H, Ahmed S K M, Cortes P, Rodriguez J. Finite state model predictive current control of a three-level five-phase NPC voltage source inverter[C]. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society,2010.
    [179]Iqbal A, Abu-Rub H, Cortes P, Rodriguez J. Finite control set model predictive current control of a five-phase voltage source inverter[C]. Industrial Technology (ICIT),2010 IEEE International Conference on,2010.
    [180]Hu J, Yuan X. VSC-based direct torque and reactive power control of doubly fed induction generator[J]. Renewable Energy,2012,40(1):13-23.
    [181]Talaeizadeh V, Kianinezhad R, Seyfossadat S G, Shayanfar H A. Direct torque control of six-phase induction motors using three-phase matrix converter[J]. Energy Conversion and Management,2010,51(12):2482-2491.
    [182]Preindl M, Bolognani S. Model predictive direct speed control with finite control set of PMSM-VSI drive systems [C]. Workshop on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Munich, Germany, 2011.
    [183]Carraro M, Zigliotto M. Hierarchical direct predictive control of PMSM drives[C]. Predictive Control of Electrical Drives and Power Electronics (PRECEDE),2011 Workshop on,2011.
    [184]瞿博,洪小圆,吕征宇.模糊控制在三相PWM整流器无差拍控制中的应用[J].中国电机工程学报,2009,29(15):50-54.
    [185]Kennel R M, Kazmierkowski M, Rodriguez J, Cortes P. Predictive control in power electronics and drives[C]. Industrial Electronics (ISIE),2008 IEEE International Symposium on,2008.
    [186]Nowicki E P, Dewan S B, Sedra A S. Improved transient performance of a 3-phase controlled rectifier using predictive control[C]. Applied Power Electronics Conference and Exposition (APEC), Sixth Annual Conference of, Dallas, TX,1991.
    [187]Kovacic Z, Bogdan S, Ban Z, Cmosija P. Adaptive time optimal control of thyristor converter current[C]. Power Electronics and Applications, Fifth European Conference on,1993.
    [188]Collings T D, Wilson W J. A fast-response current controller for microprocessor-based SCR-DC motor drives[J]. Industry Applications, IEEE Transactions on,1991,27(5):921-927.
    [189]Se-Jong J, Seung-Ho S. Improvement of Predictive Current Control Performance Using Online Parameter Estimation in Phase Controlled Rectifier [J]. Power Electronics, IEEE Transactions on,2007,22(5):1820-1825.
    [190]Srdic S, Nedeljkovic M. Predictive Fast DSP-Based Current Controller for Thyristor Converters[J]. Industrial Electronics, IEEE Transactions on, 2011,58(8):3349-3358.
    [191]陈威.DC-DC变流器的柔性变拓扑研究[博士学位论文][D].杭州:浙江大学,2009.
    [192]顾亦磊.集成模块电源拓扑标准化的研究[博士学位论文][D].杭州:浙江大学,2008.
    [193]Arsov G L, Mircevski S. Quo vadis, thyristor?[C]. Power Electronics and Motion Control Conference (EPE/PEMC),2010 14th International,2010.
    [194]徐政,卢强.电力电子技术在电力系统中的应用[J].电工技术学报,2004,19(08):23-27.
    [195]汤广福,贺之渊,邓占锋.基于器件物理特性的晶闸管阀串联机制系统化研究[J].中国电机工程学报,2006,26(12):39-44.
    [196]李亮,邹振宇,江全元,曹一家.SVC和TCSC控制器间交互分析[J].江南大学学报,2006,5(1):78-81.
    [197]胡超凡,王锡凡,曹成军,罗俊华.柔性分频输电系统可行性研究[J].高电压技术,2002,28(03):16-18.
    [198]Zamora-Cardenas E A, Fuerte-Esquivel C R, Contreras-Aguilar L. Application of dynamic sensitivity theory to assess the Thyristor-Based FACTS controllers' effect on the transient stability of power systems[C]. PowerTech,2009 IEEE Bucharest,2009.
    [199]Chang Y C. Fitness Sharing Particle Swarm Optimization Approach to FACTS Installation for Transmission System Loadability Enhancement[J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013,8(1):31-39.
    [200]汪选胜.基于SG3524的直流电动机双闭环调速系统的研究与设计[J].机械制造与自动化,2012,41(6):190-193.
    [201]蒋静坪.可控硅直流调速系统的数字控制器[J].浙江大学学报1982(1):138-148.
    [202]罗先知,孟晓凤.可控硅直流调速系统的电流断续模型及电流自适应控制[J].重庆大学学报(自然科学版),1988(6):57-64.
    [203]杨熔,易德生.灰色预测控制在可控硅直流调速系统中的实现[J].武汉工学院学报,1991(3):13-20.
    [204]Wiechmann E P, Burgos R P, Holtz J. Sequential connection and phase control of a high-current rectifier optimized for copper electrowinning applications [J]. Industrial Electronics, IEEE Transactions on, 2000,47(4):734-743.
    [205]Acuna P, Moran L, Dixon J. Current harmonics compensation for electrolytic processes using a series active scheme [J]. Power Electronics, IET, 2012,5(8):1254-1261.
    [206]何卫国,胡静,童文胜.高效可控硅整流系统在铜电解节能降耗中的应用[J].电工技术,2010(5):51-52.
    [207]郑荣波,许鹏,丁晓雷,齐继宇.电镀锡机组软熔系统自动控制[J].冶金自动化,2006(4):24-27.
    [208]全吉男,焦文良,郭站君,徐景辉.新型晶闸管电镀电源控制电路研究[J].煤矿机械,2000(2):33-34.
    [209]Ladoux P, Postiglione G, Foch H, Nuns J. A comparative study of AC/DC converters for high-power DC arc furnace [J]. Industrial Electronics, IEEE Transactions on,2005,52(3):747-757.
    [210]Wenjie G, Fei L, Xiaojie Y, Zheng T Q. Analysis of Nonlinear Control for High Power Arc Heater Utilizing Thyristor Converter[C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006.
    [211]王琰.交流电弧炉电弧模型研究及其应用[博士学位论文][D].沈阳:东北大学,2009.
    [212]Sewan C, Chungyen W, Youngseok K, Chanki K. High-pulse conversion techniques for HVDC transmission systems[J]. Generation, Transmission and Distribution, IEE Proceedings-,2003,150(3):283-290.
    [213]Mohan D M, Singh B, Panigrahi B K. A two-level 24-pulse Voltage Source Converter based HVDC system for active and reactive power control[C]. International Conference on Power, Control and Embedded Systems (ICPCES),2010.
    [214]Choi S W, Oh J, Cho J. Multi-pulse converters for high voltage and high power applications[C]. International Power Electronics and Motion Control Conference (IPEMC),2000.
    [215]Fukuda S, Hiei I. Auxiliary-supply-assisted phase-controlled 12-pulse rectifiers with reduced input current harmonics[C]. Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005,2005.
    [216]Gibbs I A, Kimmel D S. Active current balance between parallel thyristors in multi-bridge AC-DC rectifiers [J]. Energy Conversion, IEEE Transactions on, 2001,16(4):334-339.
    [217]Rendusara D A, Von Jouanne A, Enjeti P N, Paice D A. Design considerations for 12-pulse diode rectifier systems operating under voltage unbalance and pre-existing voltage distortion with some corrective measures[J]. Industry Applications, IEEE Transactions on, 1996,32(6):1293-1303.
    [218]Peterson M, Singh B N. Multipulse controlled ac-dc converters for harmonic mitigation and reactive power management[J]. Power Electronics, IET, 2009,2(4):443-455.
    [219]王仕韬,吕征宇,张德华,张达敏.一种高功率因数的晶闸管多脉整流器[J].电力系统自动化,2012,36(24):74-78.
    [220]Townsend C D, Summers T J, Betz R E. Multigoal Heuristic Model Predictive Control Technique Applied to a Cascaded H-bridge StatCom[Jj. Power Electronics, IEEE Transactions on,2012,27(3):1191-1200.
    [221]Zhonghan S, Xuegui C, Weiwei W, Xi T, Na Y, Hao M. Predictive Digital Current Control of Single-Inductor Multiple-Output Converters in CCM With Low Cross Regulation[J]. Power Electronics, IEEE Transactions on, 2012,27(4):1917-1925.
    [222]Yaramasu V, Wu B, Rivera M, Rodriguez J, Wilson A. Cost-function based predictive voltage control of two-level four-leg inverters using two step prediction horizon for standalone power systems[C]. Applied Power Electronics Conference and Exposition (APEC),2012 Twenty-Seventh Annual IEEE,2012.
    [223]王仕韬,张达敏,吕征宇,张德华.具有快速电流动态响应的晶闸管整流控制器[J].浙江大学学报(工学版),2012(2):189-193.
    [224]杨勇,阮毅,叶斌英,汤燕燕.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009,29(33):40-46.
    [225]孙向东,任碧莹,钟彦儒,松井彦.滤波电感在线估计方法在预测电流控制中的应用[J].电工技术学报,2009,24(7):150-156.
    [226]Corteletti R, Barros P R, Lima A M N. Parameters estimation of induction motor using subspace methods[C]. Industrial Electronics (ISIE),2003 IEEE International Symposium on,2003.
    [227]Peterson M, Singh B N. Modeling and Analysis of Multipulse Uncontrolled/Controlled AC-DC Converters[C]. International Symposium on Industrial Electronics,2006.
    [228]Eltamaly A M. Novel Third Harmonic Current Injection Technique for Harmonic Reduction of Controlled Converters[J]. JOURNAL OF POWER ELECTRONICS,2012,12(6):925-934.
    [229]Maswood A I, Firmansyah E. Current injection in a controlled rectifier under unbalanced supply and variable line and load inductances [J]. IET POWER ELECTRONICS,2009,2(4):387-397.
    [230]Saied B M, Zynal H I. Harmonic current reduction of a six-pulse thyristor converter[C]. Electrical Machines and Power Electronics (ACEMP), International Aegean Conference on,2007.
    [231]徐海波,朱忠尼,陈元娣,王永攀.带多脉波整流的级联逆变器研究[J].空军雷达学院学报,2012,26(5):361-363.
    [232]毛浪,陈乾宏,蒋磊磊.航空用40kW18脉冲自耦型变压整流器的研究[J].电力电子技术,2011,45(7):114-116.
    [233]Arvindan A N, Guha A. Novel topologies of 24-pulse rectifier with conventional transformers for phase shifting[C]. International Conference on Electrical Energy Systems (ICEES),2011.
    [234]Nakhaee S, Jalilian A. Simulation of 24-pulse autotransformer based AC-DC converter employing pulse multiplication with direct torque controlled induction motor drive load[C]. Power Electronics, Drive Systems and Technologies Conference (PEDSTC),2011.
    [235]Singh B, Gairola S. A 44-Pulse AC-DC Converter Based on Hybrid of Multiphase and Phase Shifting Techniques[C]. Power System Technology and IEEE Power India Conference,2008. POWERCON 2008. Joint International Conference on,2008.
    [236]胡文华,宋平岗,Cheng George.新型双18脉波整流器的拓扑结构特性[J].高电压技术,2010,36(5):1299-1304.
    [237]Wiechmann E P, Aqueveque P, Morales A S, Acuna P F, Burgos R. Multicell High-Current Rectifier [J]. Industry Applications, IEEE Transactions on, 2008,44(1):238-246.
    [238]Hao R X, Zheng T Q, You X J, Guo W J. Development and experiment research of high-power arc heater power supply utilizing thyristor converter [J]. ICIEA 2007:2ND IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-4, PROCEEDINGS, 2007:1559-1563.
    [239]Jos R, Jorge P, Csar A S, Pablo C, Pablo L, Patricio C, Ulrich A. Predictive Current Control of a Voltage Source Inverter[J]. Industrial Electronics, IEEE Transactions on,2007,54(1):495-503.
    [240]Fukuda S, Ueda S. Auxiliary supply assisted harmonic suppression for 12-pulse phase-controlled rectifiers:Power Electronics Conference (IPEC), 2010 International,2010[C].21-24 June 2010.
    [241]J. A, Y. H L, L. B P, N. R W. A current reinjection scheme that adds self-commutation and pulse multiplication to the thyristor converter [J]. Power Delivery, IEEE Transactions on,2006,21 (3):1593-1599.
    [242]贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报(自然科学版),2006,36(03):507-511.
    [243]周建新,吴盈,司风琪,徐治皋.基于非线性块式递推偏最小二乘法的电站热力过程动态数据检验[J].中国电机工程学报,2012,32(29):110-115.
    [244]黎小林,曹侃,谢开贵,王立斌,黄莹,许树楷.基于最小二乘法的高压直流输电系统可靠性灵敏度分析[J].电力系统自动化,2009,33(18):12-16.
    [245]寇攀高,周建中,肖剑,肖汉.基于多新息最小二乘法的同步发电机一次性抛载试验参数辨识[J].电网技术,2013,37(02):378-384.
    [246]黄文涛,邓长虹,汪志强,舒征宇,翁毅选.基于SCADA及时域最小二乘法的抽水蓄能电站发电机多工况参数辨识[J].高电压技术,2012,38(04):1019-1024.
    [247]向纯靖,李长兵.基于最小二乘法的永磁同步电动机参数辨识[J].微特电机,2012,40(02):30-33.
    [248]盘宏斌,罗安,唐杰,荣飞,陈栋.一种改进的基于最小二乘法的自适应谐波检测方法[J].中国电机工程学报,2008,28(13):144-151.
    [249]贾秀芳,华回春,曹东升,赵成勇.基于复线性最小二乘法的谐波责任定量划分[J].中国电机工程学报,2013,33(04):149-155.
    [250]曹健,林涛,刘林,张蔓,崔一铂.基于最小二乘法和复连续小波变换的电力系统间谐波测量方法[J].电网技术,2009,33(17):86-90.
    [251]杨启平,邓正文,董辉,徐丹凤.基于最小二乘法的电力变压器参数辨识算法[J].上海电力学院学报,2012,28(05):401-405.
    [252]王仕韬,吕征宇,王鹿军,张德华,姚文熙.永磁风力发电系统的变拓扑晶闸管整流器控制策略[J].电力系统自动化,2012,36(14):160-165.
    [253]Zhang D, Wang S, Lin H, Lu Z. Predictive Current Control of Multi-Pulse Flexible-Topology Thyristor AC-DC Converter[J]. Journal of Zhejiang University SCIENCE C,2013,14(4):296-310.
    [254]寇宝泉,曹海川,李春艳,郭守仑.多输出合成型风力发电装置[P].中国专利:CN101741174A,2010-06-16.
    [255]林鹤云,颜建虎,冯奕.磁通切换型聚磁式横向磁通永磁风力发电机[P].中国专利:CN101741197A,2010-06-16.
    [256]吕征宇,姚文熙,王仕韬,张德华,郑家龙.一种分布式发电的多输入整流电路[P].中国专利:CN101834538A,2010-09-15.
    [257]青云.华锐风电 再创中国海上风电里程碑——6MW海上风电机组全球首次投入商用[J].装备制造,2012(03):74-75.
    [258]Polinder H, van der Pijl F F A, de Vilder G J, Tavner P J. Comparison of direct-drive and geared generator concepts for wind turbines[J]. Energy Conversion, IEEE Transactions on,2006,21(3):725-733.
    [259]胡书举.直驱型风力发电系统概述[J].变频器世界,2009(10):55-59.
    [260]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009,24(09):140-146.
    [261]肖磊.直驱型永磁风力发电系统低电压穿越技术研究[硕士学位论文][D].长沙:湖南大学,2009.
    [262]Weihao H, Yue W, Weizheng Y, Hailong Z, Jinlong W, Zhaoan W. Modeling and control of zero-sequence current in multiple grid connected converter[C]. Power Electronics Specialists Conference (PESC), IEEE,2008.
    [263]曾翔君,张宏韬,李迎,房鲁光,杨旭.大功率直驱风电系统高效率变流器设计[J].中国电机工程学报,2010,30(30):15-21.
    [264]张东升.高功率因数VIENNA整流器控制策略的研究[博士学位论文][D].哈尔滨:哈尔滨工业大学,2009.
    [265]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-96.
    [266]周志宇,郭钰锋.基于Crowbar电路的双馈风电机组低电压穿越能力[J].哈尔滨工业大学学报,2013,45(04):122-128.
    [267]李建林,朱颖,许洪华.基于Crowbar电路的双馈感应式发电系统低电压穿越特性研究[C].2008中国电工技术学会电力电子学会第十一届学术年会,中国浙江杭州,2008.
    [268]靖言.永磁直驱型风电系统低电压穿越技术研究[硕士学位论文][D].北京:华北电力大学,2011.
    [269]冯博,潘文霞,柯联锦,何海平,吴雨.基于电池储能和Crowbar的风力发电机低电压穿越控制的研究[J].可再生能源,2013,31(04):35-40.
    [270]赵辉,马玲玲,岳有军.储能型直驱风电系统低电压穿越能力研究[J].大电机技术,2012(06):9-13.
    [271]Jadhav H T, Roy R. A comprehensive review on the grid integration of doubly fed induction generator [J]. International Journal of Electrical Power & Energy Systems,2013,49(0):8-18.
    [272]田野,王冕,张艺枥,李军,杨恩星,陈国柱.基于机电储能的永磁同步发电机低电压穿越控制策略[J].电力系统自动化,2012,36(07):17-21.
    [273]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006(3):24-35.
    [274]吴政球,干磊,曾议,冷贵峰,罗建中.风力发电最大风能追踪综述[J].电力系统及其自动化学报,2009,21(04):88-93.
    [275]Quincy W, Liuchen C. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems [J]. Power Electronics, IEEE Transactions on,2004,19(5):1242-1249.
    [276]Shen B, Mwinyiwiwa B, Yongzheng Z, Boon-Teck O. Sensorless Maximum Power Point Tracking of Wind by DFIG Using Rotor Position Phase Lock Loop (PLL)[J]. Power Electronics, IEEE Transactions on, 2009,24(4):942-951.
    [277]Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. Energy Conversion, IEEE Transactions on,2006,21(1):130-135.
    [278]Kazmi S M R, Goto H, Hai-Jiao G, Ichinokura O. A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems[J]. Industrial Electronics, IEEE Transactions on, 2011,58(1):29-36.
    [279]黄守道,卢季宁,黄科元,高剑.优化爬山算法在直驱永磁风力发电系统中的应用[J].控制理论与应用,2010,27(08):1221-1226.
    [280]Azzouz M, Elshafei A L, Emara H. Evaluation of fuzzy-based maximum power-tracking in wind energy conversion systems[J]. Renewable Power Generation, IET,2011,5(6):422-430.
    [281]叶杭冶.风力发电机组的控制技术[M].机械工业出版社,2005.
    [282]卢贤良,郑德腾.带整流负载6相双Y移30°绕组同步发电机换相过程理论分析及计算机仿真[J].电工技术学报,1995(03):15-22.
    [283]卢贤良.带整流负载六相双Y移30°绕组同步发电机整流特性的分析[J].电工技术杂志,1994(02):20-22.
    [284]李兴源,黄耀群,谢应璞,苏翼德.带整流负载时双Y同步发电机特性的分析[J].中国电机工程学报,1988,08(02):35-47.
    [285]廖民.带整流负载时六相双、r移30°绕组同步发电机电枢磁势和转子表面附加损耗的分析[J].大电机技术,1990(04):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700