用户名: 密码: 验证码:
郑州市灰霾与PM_(2.5)污染水平及火电排放源对大气环境的影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郑州市作为河南省的省会,是中原城市群的中心,在全国的经济发展格局中具有承东启西、贯通南北的重要作用。郑州市是全国大气污染比较严重的城市之一,灰霾天气的经常性发生,影响到了居民的正常生活,对人体健康造成危害。探讨灰霾天气的成因,分析灰霾天气下大气颗粒物PM2.5的分布特征,刻不容缓。
     本研究主要分两部分:(1)利用美国气象局(NOAA)公布的郑州站(57083)气象数据,对郑州市灰霾天气的发生特征进行了研究讨论;在郑州市西北工业区利用TEOM 1400a系列监测仪和大流量采样器对PM2.5进行了连续性的高分辨率PM2.5质量浓度监测,结合郑州市七个监测站点的常规观测数据,对大气颗粒物PM2.5的质量浓度分布特征进行了分析。(2)针对火电排放源,选择AERMOD模型系统,评估模拟火电排放源对大气环境质量状况的影响,并对电厂源的污染削减措施进行模拟预测,评估不同削减措施对于郑州市环境影响的改善效果。
     通过分析研究,可以得到如下结论:
     (1)郑州市尘霾天气大致呈现逐年增多的趋势,特别是进入21世纪以后,灰霾的发生天数已达100天以上,灰霾天气的发生呈现大幅增长,开始出现中重度霾天气,重度霾天气发生在1~3天不等。尘霾天气中,70%左右为轻微霾;灰霾的发生几率秋冬较大,夏季最小,10月到次年1月灰霾发生率较高。灰霾的发生与PM2.5污染关系紧密,PM2.5质量浓度达150gg/m3以上时,易发生重度霾天气。
     (2)PM2.5的污染水平严重超标,大气细粒子污染严重:2010-2011年郑州市工业区PM2.5质量浓度均值为76.1μg/m3,超出二级标准日数达41.2%。PM2.5的质量浓度呈现明显的季节变化,秋季最大,冬季次之。
     (3)郑州市PM2.5与PM10的来源具有较好的一致性,80%的采样日期里,PM2.5与PM10的比值都在60%~80%之间;PM2.5污染呈现明显的双峰分布,受交通源贡献影响。
     (4)郑州市基准年电厂满负荷运行时,NO2、PM2.5的日均最大浓度在某些地方有可能超过标准,特别是NO2的浓度分布,年均值超标现象也较明显,必须采取控制措施才能降低污染,达到不危害环境的目的。
     (5)同等的电力负荷下,分别采用能源替代、技术改革获得的环境效益不同。改进效果:天然气替代最优,其次为技术改进,最后为降低电厂负荷。采取采取以天然气部分代替煤的方法,能够显著地降低SO2、NO2对于周围环境的影响。
Zhengzhou is the capital of Henan province and the center of the central plains city group, which holds a pivotal status in the national economy development pattern, linking east with west and connecting south to north. Zhengzhou is one of the cities whose air pollution is quite serious on a national scale. The weather of dust-haze happens frequently. The condition impacts on people's normal life and is harmful to human health. It allows no delay to discuss the cause of dust-haze and the temporal variations of PM2.5.
     This research concludes two parts. First, this study adopted the meteorological data monitored in Zhengzhou station (57083) published by National Oceanic and Atmospheric Administration to analyze the performance of the haze of Zhengzhou. The mass concentration of the atmospheric particulates (PM2.5, PM10) in industrial district of Zhengzhou was monitored by TEOM 1400a monitor and high volume sampler. Secondly, the research chooses AERMOD model to assess the impact of power plants'emission in Zhengzhou to the quality of the atmospheric environment. The improvements of different cutting measures on power plants source's pollution are compared.
     Through the study, we can get the following conclusions:
     (1) The occurrence frequency of dust-haze in zhengzhou city is increasing roughly year by year. Especially in the 21st century, the number of days that the haze weather happened is up to 100 or more. Moderate to severe haze weather appeared. The number of days that severe haze happened is ranging from 1 to 3. Among the dust-haze weather,70% of which is slight haze. The incidence of haze weather is larger in autumn and winter, and which is smallest in summer. The rate of haze weather is high from October to the following year's January. The concentration of PM2.5 is closely related with the occurrence of haze. When the concentration of PM2.5 is up to 150μg/m3, the severe weather haze is easy to occur.
     (2) The level of PM2.5 pollution exceeds bid badly. The average of concentrations of PM2.5 in 2010-2011 in industrial districts of Zhengzhou City is 76.1μg/m3. The number of days beyond the secondary standard accounts for 41.2%. The concentrations of the PM2.5 present obvious seasonal changes, and it is large in autumn and winter.
     (3) The source of Zhengzhou's PM2.5 and PM10 has good consistency. In the 80% of the sample dates, the ratio of the PM2.5 and PM10 is between 60%~80%. The level of PM2.5 pollution is obviously the bi-modal distribution. It indicates that the traffic source influences largely.
     (4) If the Zhengzhou's power plants deliver in in full load operation in the datum year, the concentration of NO2, PM2.5 in some of the largest daily may take place more than standard. Especially the concentration of NO2 distribution, the annual average concentration is badly exceeds. Some control measures must be adopted to reduce pollution and meet the purpose of no environmental damage.
     (5)In the same power load, the benefits of alternative energy and improving technology are is different. Using natural gas to replace coal burning is the optimal choice, and next is technology improvement. The worst is to reduce power plant's load. Taking the measure of replacing part of coal by natural gas can significantly reduce the concentration of SO2 and NO2 in the atmospheric environment.
引文
[1]张文丽.空气细颗粒物(PM2.5)生物效应指标研究进展[J].卫生研究,2001(06):379-382.
    [2]Tecer L H, Alagha O, Karaca F, et al. Particulate Matter (PM2.5, PM10-2.5, and PM10) and Children's Hospital Admissions for Asthma and Respiratory Diseases:A Bidirectional Case-Crossover Study[J]. Journal of Toxicology and Environmental Health, Part A,2008,71(8).
    [3]Dr. Kang Y J, Li Y, Zhou Z, et al. Elevation of serum endothelins and cardiotoxicity induced by particulate matter (PM2.5) in rats with acute myocardial infarction[J]. Cardiovascular Toxicology,2002(4).
    [4]董晨,宋伟民,施烨闻.PM_(2.5)颗粒物引起血管内皮细胞氧化损伤的研究[J].卫生研究,2005(02):169-171.
    [5]肖晗,李子健,韩启德,等.大气污染颗粒物质与心血管疾病[J].中国病理生理杂志,2005(04):822-825.
    [6]中国环境监测总站.GB3095-1996环境空气质量标准[S].北京:国家质检总局,1996.
    [7]中国环境监测总站.GB3095-2012环境空气质量标准[S].北京:国家质检总局,2012
    [8]王慧.环保部:中国2/3城市达不到空气质量新标准要求[EB].2012.http://www.chinanews.com/gn/2012/03-02/3713567.shtml
    [9]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010(05):527-532.
    [10]邓伟,刘荣花,熊杰伟,等.当前国内酸雨研究进展[J].气象与环境科学,2009(01):82-87.
    [11]全国电力工业统计快报(2011年)[R].中电联统计信息部,2012.
    [12]中华人民共和国环境保护部.2010年环境统计年报-废气[R].,2010.
    [13]中华人民共和国国民经济和社会发展第十二个五年规划纲要[N].人民日报,2011-03-17(1).
    [14]河南省环境保护厅.河南省环境统计(2011年)[R].2011.
    [15]Gao Y, Nelson E D, Field M P, et al. Characterization of atmospheric trace elements on PM(2.5) particulate matter over the New York-New Jersey harbor estuary[J]. Atmospheric Environment,2002,36(6):1077-1086.
    [16]Moffet R C, Desyaterik Y, Hopkins R J, et al. Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City[J]. Environmental Science & Technology, 2008,42(19):7091-7097.
    [17]Stone E, Schauer J, Quraishi T A, et al. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan[J]. Atmospheric Environment, 2010,44(8):1062-1070.
    [18]Li Z, Sjodin A, Porter E N, et al. Characterization of PM(2.5)-bound polycyclic aromatic hydrocarbons in Atlanta[J]. Atmospheric Environment,2009,43(5):1043-1050.
    [19]Gupta A K, Nag S, Mukhopadhyay UK. Characterisation of PM10, PM2.5 and benzene soluble organic fraction of particulate matter in an urban area of Kolkata, India[J]. Environmental Monitoring and Assessment,2006,115(1-3):205-222.
    [20]Fabretti J, Sauret N, Gal J, et al. Elemental characterization and source identification of PM(2.5) using Positive Matrix Factorization:The Malraux road tunnel, Nice, France[J]. Atmospheric Research,2009,94(2):320-329.
    [21]Menetrez M Y, Foarde K K, Dean T R, et al. An evaluation of the protein mass of particulate matter[J]. Atmospheric Environment,2007,41(37):8264-8274.
    [22]Khan M F, Shirasuna Y, Hirano K, et al. Characterization of PM(2.5), PM(2.5-10) and PM(> 10) in ambient air, Yokohama, Japan[J]. Atmospheric Research,2010,96(1):159-172.
    [23]Yu T Y. Characterization of ambient PM(2.5) concentrations[J]. Atmospheric Environment, 2010,44(24):2902-2912.
    [24]彭林,李剑,朱坦,等.郑州空气颗粒物中PAHs的碳同位素特征及来源[J].中国环境科学,2005(01):107-110.
    [25]申占营,熊杰伟,陈东,等.郑州市区PM_10污染状况及相关气象条件分析[J].河南气象.2005:28-29.
    [26]李尉卿,崔娟.郑州市大气气溶胶数浓度和质量浓度时空变化研究[J].气象与环境科学,2010(02):7-13.
    [27]杨书申,邵龙义,李凤菊,等.郑州市大气可吸入颗粒物单颗粒污染特征分析[J].辽宁工程技术大学学报(自然科学版),2008(05):774-777.
    [28]李运中.郑州市大气污染状况评价以及颗粒物中水溶性离子的测定[D].郑州大学,2010.
    [29]吴瑞杰.郑州市大气颗粒物PM2.5和PM10的特性研究[D].郑州大学,2011.
    [30]吴丹,张世秋.中国大气污染控制策略与改进方向评析[J].北京大学学报(自然科学版),2011(06):1143-1150.
    [31]Matooane L, Diab R D. Air pollution carrying capacity in the South Durban Industrial Basin[J]. South African Journal of Science,2001,97(11-12):450-453.
    [32]Etyemezian V, Ahonen S, Nikolic D, et al. Deposition and removal of fugitive dust in the arid southwestern United States:Measurements and model results[J]. Journal of the Air & Waste Management Association,2004,54(9):1099-1111.
    [33]Feliciano Jacomino V M, Barreto A A, Fonseca Tavares F V, et al. Evaluation of the air quality in a pig iron production pole[J]. Engenharia Sanitaria E Ambiental,2009, 14(4):511-520.
    [34]Bhanarkar A D, Majumdar D, Nema P, et al. Emissions of SO(2), NO (x) and particulates from a pipe manufacturing plant and prediction of impact on air quality[J]. Environmental Monitoring and Assessment,2010,169(1-4):677-685.
    [35]Popescu F, Ionel I, Talianu C. EVALUATION OF AIR QUALITY IN AIRPORT AREAS BY NUMERICAL SIMULATION[J]. Environmental Engineering and Management Journal, 2011,10(1):115-120.
    [36]Huertas J I, Huertas M E, Izquierdo S, et al. Air quality impact assessment of multiple open pit coal mines in northern Colombia[J]. Journal of Environmental Management,2012, 93(1):121-129.
    [37]Kesarkar A P, Dalvi M, Kaginalkar A, et al. Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India[J]. Atmospheric Environment,2007,41 (9):1976-1988.
    [38]Venkatram A, Isakov V, Seila R, et al. Modeling the impacts of traffic emissions on air toxics concentrations near roadways[J]. Atmospheric Environment,2009, 43(20):3191-3199.
    [39]Sivacoumar R, Raj S M, Chinnadurai S J, et al. Modeling of fugitive dust emission and control measures in stone crushing industry[J]. Journal of Environmental Monitoring,2009, 11(5):987-997.
    [40]Mazur M, Mintz R, Lapalme M, et al. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada[J]. Science of The Total Environment,2009,408(2):373-381.
    [41]Zou B, Zhan F B, Wilson J G,et al. Performance of AERMOD at different time scales[J]. Simulation Modelling Practice and Theory,2010,18(5):612-623.
    [42]Sarr J H, Goita K, Desmarais C. Analysis of Air Pollution from Swine Production by Using Air Dispersion Model and GIS in Quebec[J]. Journal of Environmental Quality,2010, 39(6):1975-1983.
    [43]Heckel P F, Lemasters G K. The Use of AERMOD Air Pollution Dispersion Models to Estimate Residential Ambient Concentrations of Elemental Mercury[J], Water Air and Soil Pollution,2011,219(1-4):377-388.
    [44]Onofrio M, Spataro R, Botta S. The role of a steel plant in north-west Italy to the local air concentrations of PCDD/Fs[J]. Chemosphere,2011,82(5):708-717.
    [45]Mohan M, Bhati S, Sreenivas A, et al. Performance Evaluation of AERMOD and ADMS-Urban for Total Suspended Particulate Matter Concentrations in Megacity Delhi[J]. Aerosol and Air Quality Research,2011, 11(7):883-894.
    [46]Wei Y, Tian W, Zheng Y, et al. Modelling of urban ambient N, N-dimethylformamide concentrations in a small-scale synthetic leather industrial zone[J]. Journal of Zhejiang University-Science A,2011,12(5):374-389.
    [47]Yassin M F, Al-Awadhi M M. Impact of Sulfur Dioxide Emissions of Power Stations on Ambient Air Quality[J]. Environmental Engineering Science,2011,28(7):469-475.
    [48]Abu-Allaban M, Abu-Qudais H. Impact Assessment of Ambient Air Quality by Cement Industry:A Case Study in Jordan [J]. Aerosol and Air Quality Research,2011, 11(7):802-810.
    [49]Carr E, Lee M, Marin K, et al. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline[J]. Atmospheric Environment,2011, 45(32):5795-5804.
    [50]Seangkiatiyuth K, Surapipith V, Tantrakarnapa K, et al. Application of the AERMOD modeling system for environmental impact assessment of NO(2) emissions from a cement complex[J]. Journal of Environmental Sciences-China,2011,23(6):931-940.
    [51]Levy J I, Spengler J D, Hlinka D, et al. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois:model sensitivity and implications[J]. Atmospheric Environment, 2002,36(6):1063-1075.
    [52]Protonotariou A, Bossioli E, Athanasopoulou E, et al. Evaluation of CALPUFF modelling system performance:an application over the Greater Athens Area, Greece[J]. International Journal of Environment and Pollution,2005,24(1-4):22-35.
    [53]Indumati S, Oza R B, Mayya Y S, et al. Dispersion of pollutants over land-water-land interface:Study using CALPUFF model[J]. Atmospheric Environment,2009,43(2): 473-478.
    [54]Trapp W. THE APPLICATION OF CALMET/CALPUFF MODELS IN AIR QUALITY ASSESSMENT SYSTEM IN POLAND[J]. Archives of Environmental Protection,2010, 36(1):63-79.
    [55]Streets D G, Fu J S, Jang C J, et al. Air quality during the 2008 Beijing Olympic Games[J]. Atmospheric Environment,2007,41(3):480-492.
    [56]Yu Y, Sokhi R S, Kitwiroon N, et al. Performance characteristics of MM5-SMOKE-CMAQ for a summer photochemical episode in southeast England, United Kingdom[J]. Atmospheric Environment,2008,42(20):4870-4883.
    [57]Im U, Markakis K, Unal A, et al. Study of a winter PM episode in Istanbul using the high resolution WRF/CMAQ modeling system[J]. Atmospheric Environment,2010,44(26): 3085-3094.
    [58]Kelly J T, Bhave P V, Nolte C G, et al. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model[J]. Geoscientific Model Development,2010,3(1):257-273.
    [59]Zhang H, Ying Q. Secondary organic aerosol formation and source apportionment in Southeast Texas[J]. Atmospheric Environment,2011,45(19):3217-3227.
    [60]Xing J, Wang S X, Chatani S, et al. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020[J]. Atmospheric Chemistry and Physics,2011,11(7): 3119-3136.
    [61]Khiem M, Ooka R, Huang H, et al. A numerical study of summer ozone concentration over the Kanto area of Japan using the MM5/CMAQ model[J]. Journal of Environmental Sciences-China,2011,23(2):236-246.
    [62]Mueller S F, Mallard J W. Contributions of Natural Emissions to Ozone and PM(2.5) as Simulated by the Community Multiscale Air Quality (CMAQ) Model[J]. Environmental Science & Technology,2011,45(11):4817-4823.
    [63]Levy J I, Woody M, Baek B H, et al. Current and future particulate-matter-related mortality risks in the United States from aviation emissions during landing and takeoff[J]. Risk analysis:an official publication of the Society for Risk Analysis,2012,32(2):237-249.
    [64]Kang J, Song S, Lee H W, et al. The Influence of Meteorological Conditions and Complex Topography on Ozone Concentrations in a Valley Area near Coastal Metropolitan Cities[J]. Terrestrial Atmospheric and Oceanic Sciences,2012,23(1):25-38.
    [65]Xing J, Zhang Y, Wang S, et al. Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics[J]. Atmospheric Environment,2011,45(10):1786-1798.
    [66]Gao Y, Zhang M. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games[J]. Journal of Environmental Sciences-China,2012,24(1):50-61.
    [67]Li L, Chen C H, Fu J S, et al. Air quality and emissions in the Yangtze River Delta, China[J]. Atmospheric Chemistry and Physics,2011,11(4):1621-1639.
    [68]Che W, Zheng J, Wang S, et al. Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China[J]. Atmospheric Environment,2011,45(9):1740-1751.
    [69]全国气象防灾减灾标准化委员会.QX/T 113-2010霾的观测和预报等级[S].北京:气 象出版社,2010.
    [70]袁媛.开封市近地层大气颗粒物垂直分布特征研究[D].河南大学,2010.
    [71]时鹏辉,宋继红.平顶山市大气颗粒物污染水平研究[J].工业安全与环保,2009(07):31-32.
    [72]李凯.西安市南郊空气中PM_(2.5)及其重金属污染特征研究[D].西安建筑科技大学,2009.
    [73]王琪.长沙市大气环境颗粒物浓度水平与变化特性[D].中南大学,2009.
    [74]郑有飞,田宏伟,陈怀亮,等.河南省夏季秸秆焚烧污染物排放量的估算与分析[J].农业环境科学学报,2010(08):1590-1594.
    [75]张红,邱明燕,黄勇.一次由秸秆焚烧引起的霾天气分析[J].气象,2008(11):96-100.
    [76]Zhang Q, Streets D G, He K, et al. NOx emission trend for China,1995-2004:The view from the ground and the view from space[J]. Journal of Geophysical Research-Part-D-Atmospheres.2007.
    [77]张强,Zbigniewklimont, Streets Davidg,等.中国人为源颗粒物排放模型及2001年排放清单估算[J].自然科学进展,2006(02):223-231.
    [78]赵斌,马建中.天津市大气污染源排放清单的建立[J].环境科学学报,2008(02):368-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700