用户名: 密码: 验证码:
水生生物对毒死蜱的物种敏感度分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物种敏感度分布(species sensitivity distribution,SSD)是一种基于单物种测试的外推方法,其在污染物环境质量标准的制定与污染生态系统的生态风险评价中的应用近年来已成为研究热点。本研究针对水环境中日益严重的有机磷农药污染问题,选择广泛使用的毒死蜱作为研究对象,利用其对水生生态系统中不同营养层次生物物种的半数效应浓度(median effective concentration, EC50),建立基于对数-逻辑斯蒂、对数-正态、对数-三角形、韦伯分布的水生生物SSD模型,采用概率图和拟合优度检验方法对模型进行了检验和评价,并应用参数Bootstrap对模型参数及模型输出的5%危害浓度(hazardous concentration for 5% of the species, HC5)和潜在影响比例(potentially affected fraction, PAF)进行不确定性分析。论文还从模型选择角度探讨了降低SSD的不确定性的方法,同时研究了小样本数据构建SSD的方法,并确定出构建SSD所需的最小样本容量。本研究可为环境管理机构对受污染水环境进行快速、科学的生态风险评价,以及制定合理、安全的水质标准提供理论依据和方法支持。主要结果如下:
     (1)对四种确定概率SSD模型进行概率图和拟合优度检验,结果表明选用的四种累积函数分布均可以较好地拟合物种敏感度数据。依据Anderson-Darling (A-D)检验统计量的比较,确定对数-三角形分布对数据拟合得更好,其参数为a=-2.2260±0.4016,b=3.8306±0.1588,c=2.9032±0.0401。
     (2)根据建立的对数-三角形SSD模型,预测毒死蜱的HC5值为0.1048μg/L,据此获得毒死蜱的最大浓度标准值(criteria maximum concentration, CMC)为0.0524μg/L。依据毒死蜱的监测数据及对数-三角形SSD模型,预测渤海莱州湾海域、伊波兰加河、普雷图河及波隆伊河中毒死蜱PAF分别为0.01%、4.84%、11.01%、12.35%。简单地表征了渤海莱州湾海域生态系统的生态风险很小;伊波兰加河遭受的风险较小,但需加强对该水域的监测,防止有较高风险危害发生;普雷图和波隆伊这两个水域生态系统遭受的风险较大,应禁止毒死蜱的使用。
     (3)模型参数的不确定性分析表明,四种SSD模型均具有良好的稳健性。但是四种SSD模型输出的HC5和PAF的估算结果存在明显的差异,说明模型选择造成SSD的不确定性。
     (4)为了降低模型选择带来的不确定性,采用了非参数Boostrap方法构建毒死蜱的SSD,预测毒死蜱的HC5值为0.0700μg/L,CMC值为0.0350μg/L。预测伊波兰加河、普雷图河及波隆伊河中毒死蜱PAF值分别为7.00%、16.00%、16.00%。渤海莱州湾海域中毒死蜱PAF值在分布下限之外,生态系统的生态风险很小。与对数-三角形SSD模型相比,非参数Bootstrap方法获得的结果较为保守。
     (5)依据参数Bootstrap方法,确定至少需要9个不同物种急性毒性数据才能构建SSD。而依据非参数Bootstrap方法,确定出使用非参数Bootstrap方法构建SSD所需的最小样本容量为10。
Species sensitivity distribution (SSD) is an extrapolation method, which is based on the single-species toxicity test. In recent years, the applications of SSD in the derivation of environmental quality criteria and ecological risk assessment for contaminated ecosystems have become the research hotspots. The increasing pollutions of organophosphorus pesticides (OP) in water have been of concerns. Taking the widely used chlorpyrifos as the object, the SSD models were developed on the median effective concentrations (EC50) of chlorpyrifos to aquatic species at various trophic levels. Four different distributions, i.e., log-logistic, log-normal, log-triangular and Weibull, were chosen to fit the SSD. Then, all models were tested and evaluated using probability plots and good-of-fit tests. The uncertainty analysis for model parameters, hazardous concentration for 5% of the species (HC5), and potentially affected fraction (PAF) were performed through parametric bootstrap simulations. The ways of reducing the uncertainty of SSD through the model selection were discussed in the paper. Besides, the development of SSD based on the small data sample and the minimum sample size for constructing a valid SSD were also studied. The present study will facilitate the environmental regulatory agency to perform ecological risk assessment to a polluted aquatic environment, and will offer the scientific evidences and technical supports in derivation of water quality criteria. The main results are as follows:
     (1) The results of probability plots and good-of-fit tests showed that SSDs for aquatic biota exposed to chlorpyrifos were well fitted with all the specific probability distributions. Based on the Anderson-Darling test, the fitted log-triangular distribution was preferred, which was determined by three parameters, a=-2.2260, b=3.8306, and c =2.9032, with standard error 0.4016,0.1588 and 0.0401,respectively.
     (2) According to the built log-triangular SSD model, the HC5 and the criteria maximum concentration (CMC) of chlorpyrifos were 0.1048μg/L and 0.0524μg/L, respectively. In addition, according to the reported data and log-triangular SSD model, the PAF of species exposed to chlorpyrifos in the Laizhou Bay (Bohai Sea, China) area, Iporanga River, Preto River and Piloes River were 0.01%,4.84%,11.01% and 12.35%, respectively. These PAF values could simply characterize that the ecological risk of chlorpyrifos in Laizhou Bay area was very low; the ecological risk of chlorpyrifos in Iporanga River was lower, but the strengthening monitoring was a necessary measure to prevent a higher risk harm happening; the ecological risks of chlorpyrifos Preto River and Piloes River were higher, and chlorpyrifos should be banned.
     (3) The results of uncertainty analysis for model parameters indicated the high robustness of each model. Obvious differences of the estimation results of HC5 and PAF among all SSD models showed that the model selection led to the uncertainty of SSD.
     (4) In view of reducing the uncertainties of SSD through the model selection, the nonparametric bootstrap method was introduced. The median estimation of the HC5 and CMC of chlorpyrifos were 0.0700μg/L and 0.0350μg/L, respectively. The PAF of species exposed to chlorpyrifos in Iporanga River, Preto River and Piloes River were 7.00%,16.00% and 16.00%, respectively. The PAF of species exposed to chlorpyrifos in the Laizhou Bay areawas below the lower tail of Bootstrap distribution, and the corresponding risk might not be significant. The nonparametric bootstrap method gave the more conservative results when compared to the log-triangular SSD model.
     (5) Based on the parametric bootstrap method, a sample with size 9 was minimum requirement for a valid and valuable SSD,while the nonparametric bootstrap method gave a sample size with 10 that was the minimum for constructing a valid SSD.
引文
1.陈峰,陆守曾,杨珉Bootstrap估计及其应用.中国卫生统计,1997,14(5):5-7
    2.陈向强,何苗,蔡强,朱仕坤,施汉昌.检测水中有机磷农药的酶传感器.环境科学,2006,27(8):1627-1630
    3.金小伟,雷炳莉,许宜平,查金苗,王子健.水生态基准方法学概述及建立我国水生态基准的探讨.生态毒理学报,2009,4(5):609-616
    4.雷炳莉,黄圣彪,王子健.生态风险评价理论和方法.化学进展,2009,21(2/3):350-358
    5.刘良,颜小品,王印,徐福留.应用物种敏感性分布评估多环芳烃对淡水生物的生态风险.生态毒理学报,2009,4(5):647-654
    6.刘勇,付荣恕,任宗明.2种有机磷农药联合胁迫下日本青鳉的逐级行为响应.环境科学,2010,31(5):1328-1332
    7.马继华,蒋耀培,刘泉,王伟民.“毒死蜱”对南美白对虾的急性毒性影响.水产科技情报,2009,36(4):192-194
    8.毛小苓,倪晋仁.生态风险评价研究述评.北京大学学报(自然科学版),2005,41(4):646-654
    9.穆景利,王菊英,洪鸣.海水水质基准的研究方法与我国海水水质基准的构建.生态毒理学报,2010a,5(6):761-768
    10.穆景利,王莹,王菊英.我国海水水质基准的构建:以三丁基锡为例.生态毒理学报,2010b,5(6):776-786
    11.潘力军,高世荣,孙凤英,许永香,陈逊,王俊起.几种农药污染的饮用水生物毒性试验.中国卫生工程学,2007,6(1):5-7
    12.裴洪平,汪勇.杭州西湖富营养化模型的不确定性分析.生物数学学报,2004,19(1):117-122
    13.汤银才.R语言与统计分析.北京:高等教育出版社,2008
    14.王晶.基于Bootstrap方法的多品种小批量生产的质量控制研究.[硕十学位论文].天津:天津大学图书馆,2006
    15.王连生.有机污染化学.北京:高等教育出版社,2004
    16.王凌.海洋环境中典型有机磷污染物分析及其生态效应研究.[硕十学位论文].青岛:中国海洋大学图书馆,2006
    17.王印,王军军,秦宁,吴文婧,朱樱,徐福留.应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险.环境科学学报,2009,29(11):2407-2414
    18.吴丰昌,孟伟,宋永会,刘征涛,金相灿,郑丙辉,王业耀,王圣瑞,姜霞,卢少勇,储 昭升,陈艳卿,王超,华祖林,王沛芳,于志强,傅家谟.中国湖泊水环境基准的研究进展.环境科学学报,2008,28(12):2385-2393
    19.武向伟,胡俊西,公维华.5种常用农药对斑马鱼的毒性作用及安全评价.农技服务,2009,26(9):78-79
    20.杨宇,石璇,徐福留,陶澍.天津地区土壤中萘的生态风险分析.环境科学,2004,25(2):115-118
    21.叶常明,王春霞,金龙珠.21世纪的环境化学.北京:科学出版社,2004
    22.尹晓辉.几种农药对中华蟾蜍的生态毒理效应及分子毒性研究.[博士学位论文].上海:东华大学图书馆,2008
    23.赵劲松.部分有机磷化合物的定量构效关系研究.[博士学位论文].南京:南京大学图书馆,2005
    24.赵玉琴,李丽娜,李建华.常见拟除虫菊酯和有机磷农药对鱼类的急性及其联合毒性研究.环境污染与防治,2008,30(11):53-57
    25.智昕,牛军峰,唐阵武,杨志峰.长江水系武汉段典型有机氯农药的生态风险评价.环境科学学报,2008,28(1):168-173
    26. Aldenberg T, Slob W. Confidence limits for hazardousconcentrations based on log-logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf,1993,25(1):48-63
    27. Aldenberg T, Jaworska. J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf,2000,46(1):1-18
    28. ANZECC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality:Volume 2-Aquatic Ecosystems-Rationale and Background Information. Paper 4. Canberra, Australia: Australia and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand,2000
    29. Awkerman J A, Raimondo S, Barron M G. Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models. Environ Sci Technol,2008,42(9): 3447-3452
    30. Bellosta C J G. ADGofTest:Anderson-Darling GoFtest. R package version 0.1.2009. http://CRAN.R-project.org/package=ADGofTest
    31. Brattin W J, Barry T M, Chiu N. Monte Carlo modeling with uncertain probability density functions. Hum Ecol Risk Assess,1996,2(4):820-840
    32. Brix K V, DeForest D K, Adams W J. Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environ Toxicol Chem,2001,20(8):1846-56
    33. Caldwell D J, Mastrocco F, Hutchinson T H, Lange R, Heijerick D, Janssen C. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone,17α-ethinyl estradiol. Environ Sci Technol,2008,42(19):7046-7054
    34. Campbell K R, Bartell S M, Shaw J L. Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. Ⅱ. Approaches using quotients and distributions. Environ Toxicol Chem,2000,19(3):760-774
    35. Carnell R. Triangle:Provides the standard distribution functions for the triangle distribution. R package version 0.5.2009
    36. CCME. A Protocol for the Derivation of Environmental Health and Human Health Soil Quality Guidelines. CCME-EPC-101E. En 108-4/8-1996E. Winnipeg, Manitoba, Canada:Canadian Council of Ministers of the Environment,1996
    37. CCME. Canadian Environmental Quality Guidelines. Winnipeg, Canada:Canadian Council of Ministers of the Environment,1999
    38. Celander M C, Goldstone J V, Denslow N D, Iguchi T, Kille P, Meyerhoff R D, Smith B A, Hutchinson T H, Wheeler J R. Species extrapolation for the 21st century. Environ Toxicol Chem, 2011,30(1):52-63
    39. Chapman P M, Fairbrother A, Brown D. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem,1998,17(1):99-108
    40. D'Agostino R B. Graphical analysis. In:D'Agostino R B, Stephens M A eds., Goodness-of-Fit Techniques. New York:Marcel Dekker,1986,7-62
    41. Davison A C, Hinkley D V. Bootstrap methods and their application. New York:Cambridge University Press,1997
    42. Duboudin C, Cliffroy P, Magaud H. Effects of data manipulation and statistical methods on species sensitivity distributions. Environ Toxicol Chem,2004a,23(2):489-499
    43. Duboudin C, Ciffroy P, Magaud H. Acute-to-chronic species sensitivity distribution extrapolation. Environ Toxicol Chem,2004b,23(7):1774-1785
    44. Durda J L, Preziosi D V. Data quality evaluation of toxicological studies used to derive ecotoxicological benchmarks. Hum Ecol Risk Assess,2000,6(5):747-765
    45. ECB. Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/97 EEC on Risk Assessment for New Notified Substances, Commisson Regulation (EC) no.1488/94 on Risk Assessment for Existing Substances and Directive 98/8/EC of the European Parlianment and of the Council Concenrning the Placing of Biocidal Products on the Market. Part Ⅱ. Environmental Risk Assessment. Ispra, Italy:European Chemicals Bureau, European Commission Joint Research Center, European Communities,2003
    46. Efron B, Tibshirani R J. An introduction to the bootstrap. Boca Raton:Chapman & Hall/CRC. 1994
    47. Efroymson R E, Will M E, Suter Ⅱ G W. Toxicological benchmarks for contaminants of potential concern for effects on soil and litter invertebrates and heterotrophic processes:1997 revision. ES/ER/TM-126/R2. Oak Ridge, TN, USA:Oak Ridge National Laboratory,1997a
    48. Efroymson R E, Will M E, Suter II G W. Toxicological benchmarks for screening contaminants of potential concern for effects on terrestrial plants. ES/ER/TM-85/R3. Oak Ridge, TN, USA: Oak Ridge National Laboratory,1997b
    49. Erickson R J, Stephan C E. Calculation of the final acute value for water quality criteria for aquatic organisms. PB88-214994. Springfield, VA, USA:National Technical Information Service. 1988
    50. European Commission. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substance and commission regulation 5EC no 1488/94 on risk assessment for existing substance. Part Ⅱ. Luxembourg:Office for Official Publications of the European Communities,1996
    51. Forbes T L, Forbes V E. A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol,1993,7(3):249-254
    52. Forbes V E, Calow P, Sibly R M. Are current species extrapolation models a good basis for ecological risk assessment?. Environ Toxicol Chem,2001,20(2):442-447
    53. Fox D R. Setting water quality guidelines-A statistician's perspective. SET AC News,1999,19(3): 17-18
    54. Frampton G K, Jansch S, Scott-Fordsmand J J, Rombke J, van den Brink P J. Effects of pesticides on soil invertebrates in laboratory studies:a review and analysis using species senstivity distributions. Environ Toxicol Chem,2006,25(9):2480-2489
    55. Giesy J P, Solomon K R, Coates J R, Dixon K R, Giddings J M, Kenaga E E. Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev Environ Contam Toxicol,1999,160:1-129
    56. Grist E P M, Leung K M Y, Wheeler J R, Crane M. Better bootstrap estimation of hazardous concentration thresholds for aquatic assemblages. Environ Toxicol Chem,2002,21(7):1515-1524
    57. Haan C T. Parametric uncertainty in hydrologic modeling. T AS ABE,1989,32(1):137-146
    58. Hanna S R, Chang J C, Fernau M E. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos Environ, 1998,32(21):3619-3628
    59. Hart A. The use of species sensitivity distributions in avian risk assessments for pesticide registration. In:Posthuma L, Suter II G W, Traas T P eds., Species sensitivity distributions in ecotoxicology. Boca Raton:Lewis Publisher,2002,516-517
    60. Hayashi T I, Kashiwagi N. A bayesian method for deriving species-sensitivity distributions: Selecting the best-fit tolerance distributions of taxonomic groups. Hum Ecol Risk Assess,2010, 16(2):251-263
    61. Hopkin S P. Ecological implications of "95% protection levels" for metals in soil. Oikos,1993, 66(1):137-141
    62. Hose G C, van den Brink P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Contam Toxicol,2004. 47(4):511-520
    63. Hunt J, Birch G, Warne M S. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary. Environ Toxicol Chem,2010,29(5): 1172-1181
    64. Klapow L A, Lewis R H. Analysis of toxicity data for California marine water quality standards. J Water Pollut Control Fed,1979,51(8):2054-2070
    65. Klepper O, Bakker J, Traas T P, van de Meent D. Mapping the potentially affected fraction (PAF) of species as a basis for comparison of ecotoxicological risks between substances and regions. J Hazard Mater,1998,61(1-3):337-344
    66. Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol,1997,25(1):1-5
    67. Kooijman S A L M. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res,1987,21:269-276
    68. Kwok K W H, Bjorgeseter A, Leung K M Y, Lui G C S, Gray J S, Shin P K S, Lam P K S. Deriving site-specific sediment quality guidelines for Hong Kong marine environments using field-based species sensitivity distributions. Environ Toxicol Chem,2008,27(1):226-234
    69. Long E R, Morgan L G. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle, WA, USA:National Oceanic and Atmospheric Administration Technical Memorandum NOS/OMA 52,1990
    70. Maltby L, Blake N, Brock T C M, van den Brink P J. Insecticide species sensitivity distributions: Importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem, 2005,24(2):379-388
    71. Maltby L, Brock T C M, van den Brink P J. Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol,2009,43(19):7556-7563
    72. Mebane C A, Hennessy D P, Dillon F S. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge. Water Air Soil Pollut,2008, 188(1-4):41-66
    73. Meng Y B, Shi L X, Wang J J, Shi P J. Considering data uncertainty in species sensitivity distribution for ecological risk assessment of chemicals. The 4th International Conference on Bioinformatics and Biomedical Engineering,2010, Chengdu, China
    74. Michael J R, Schucany W R. Analysis of data from censored samples. In:D'Agostino R B, Stephens M A eds., Goodness-of-Fit Techniques. New York:Marcel Dekker,1986,461-496
    75. Moraes R, Elfvendahl S, Kylin H, Molander S. Pesticide residues in rivers of a Brazilian Rain Forest Reserve:assessing potential concern for effects on aquatic life and human health. Ambio, 2003,32(4):258-63
    76. Newman M C, Ownby D R, Mezin L C A, Powell D C, Christensen T R L, Lerberg S B, Anderson B A. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem,2000, 19(2):508-515
    77. Newman M C, Unger M A. Fundamentals of ecotoxicology. Boca Raton:Lewis Publishers,2002
    78. OECD. Report of the OECD Workshop on the Extrapolation of Laboratory Aquatic Toxicity Data to the Real Environment. OECD Environment Monograph No.59. Paris, France:Organization for Economic Cooperation and Development,1992
    79. PAN. San Francisco, CA:Pesticide Action Network, North America,2010. http://www.pesticideinfo.org
    80. Parkhurst D F. Arithmetic versus geometric means for environmental concentration data. Environ Sci Technol,1998,32(3):92-98
    81. Posthuma L, Suter Ⅱ G W, Traas T P. Species sensitivity distributions in ecotoxicology. Boca Raton:Lewis Publisher,2002
    82. Qi P, Wang Y, Mu J L, Wang J Y. Aquatic predicted no-effect-concentration derivation for perfluorooctance sulfonic acid. Environ Toxicol Chem,2011,30(4):836-842
    83. Raimondo S, Montague B, Barron M G. Determinants of variability in acute-to-chronic toxicity ratios in aquatic invertebrates and fish. Environ Toxicol Chem,2007.26(9):2019-2023
    84. Raimondo S, Vivian D N, Delos C, Barron M G. Protectiveness of species sensitivity distribution hazard concenterations for acute toxicity used in endangered species risk assessment. Environ Toxicol Chem,2008,27(12):2599-2607
    85. R Development Core Team. R:A language and environment for statistical computing. Vienna:R Foundation for Statistical Computing,2010. http://www.R-project.org
    86. RIVM. Environmental risk limits. RIVM Report 601640001. Bilthoven, the Netherlands: National Institute of Public Health and the Environment,1999
    87. RIVM. Guidance Document on Deriving Environmental Risk Limits in the Netherlands. 601501012. Bilthoven, the Netherlands:National Institute of Public Health and the Environment, 2001
    88. Schuler L J, Rand G M. Aquatic risk assessment of herbicides in freshwater ecosystems of south Florida. Arch Environ Contam Toxicol,2008,54(4):571-583
    89. Semenzin E, Temminghoff E J M, Marcomini A. Improving ecological risk assessment by including bioavailability into species sensitivity distributions:an example for plants exposed to nickel in soil. Environ Pollut,2007,148(2):642-647
    90. Shao Q X. Estimation for hazardous concentrations based on NOEC toxicity data:an alternative approach. Environmetrics,2000,11(5):583-595
    91. Smith E P, Cairns Jr J. Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology,1993,2(3):203-219
    92. Smit M G D, Holthaus K I E, Trannum H C, Neff J M, Kjeilen-Eilertsen G, Jak R G, Singsaas I, Huijbregts M A J, Hendriks A J. Species sensitivity distributions for suspended clays, sediment burial, and grain size change in the marine environment. Environ Toxicol Chem,2008.27(4): 1006-1012
    93. Solbe J F, Buyle B, Guhl W, Hutchinson T, Laenge R, Mark U, Munk R, Scholz N. Developing hazard identification for the aquatic environment. Sci Total Environ,1993,134:47-57
    94. Solomon K R, Baker D B, Richards R P, Dixon K R, Klaine S J, La Point T W, Kendall R J, Weisskopf L W, Giddings J M, Giesy JP, Hall L W, Williams W M. Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem,1996,15(1):31-76
    95. Solomon K R, Giddings J M, Maund S J. Probabilistic risk assessment of cotton pyrethroids:I. Distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem,2001,20(3): 652-659
    96. Stephens M A. Tests based on EDF statistics. In:D'Agostino R B, Stephens M A eds.. Goodness-of-Fit Techniques. New York:Marcel Dekker,1986
    97. Suter Ⅱ G W. Ecological Risk Assessment. Boca Raton:Lewis Publisher,1993
    98. US EPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. PB85-227049. Springfield, VA, USA:National Technical Information Service, United States Environmental Protection Agency,1985
    99. US EPA. Ambient Water Quality Criteria for Chlorpyrifos. Washington DC, USA:United States Environmental Protection Agency,1986
    100. US EPA. Framework for ecological risk assessment. EPA/630/R-92/001. Washington DC, USA: Risk Assessment Forum, United States Environmental Protection Agency,1992
    101. US EPA. Technical basis for deriving sediment quality criteria for nonionic organic contaminants for the protection of benthic organisms by using equilibrium partitioning. EPA-822-R-93-001. Washington DC, USA:Office of Water, United States Environmental Protection Agency,1993
    102. US EPA. Guidelines for ecological risk assessment. EPA/630/R-95/002F. Washington DC. USA: National Center for Environmental Assessment, United States Environmental Protection Agency. 1998
    103. van Straalen N M, Denneman C A. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf,1989,18(3):241-251
    104. van Straalen N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc. Environ Toxicol Pharmacol,2002,11(3-4):167-172
    105. van Wezel A P. Chemical and biological aspects of ecotoxicological risk assessment of ionizable and neutral organic compounds in fresh and marine waters:a review. Environ Rev,1998,6(2): 123-137
    106. Verdonck F A M, Jaworska J, Thas O, Vanrolleghem P A. Determining environmental standards using bootstrapping, bayesian and maximum likelihood techniques:a comparative study. Anal Chim Acta,2001,446(1-2):429-438
    107. Vighi M, Finizio A, Villa S. The evolution of the environmental quality concept:from the US EPA Red Book to the European Water Framework Directive. Environ Sci Pollut Res,2006,13(1): 9-14
    108. Wagner C, Lekke H. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res,1991,25(10):1237-1242
    109. Wang B, Yu G, Huang J, Hu H Y. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches. Ecotoxicology,2008.17(8): 716-724
    110. Warren-Hicks W J, Hart A. Application of uncertainty analysis to ecological risks of pesticides. CRC Press,2010
    111. Wheeler J R, Grist E P M, Leung K M Y, Morritt D, Crane M. Species sensitivity distributions: data and model choice. Mar Pollut Bull,2002,45(1-12):192-202
    112. Zhao J S, Wang B, Dai Z X, Wang X D, Kong L R, Wang L S.3D-quantitative structure-activity relationships study of organophosphate compounds. Chin Sci Bull,2004,49(3):240-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700