用户名: 密码: 验证码:
苯系物对我国典型腹足纲动物的毒害效应及其水质基准的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文探讨了甲苯、乙苯和二甲苯等苯系物对我国典型腹足纲动物铜锈环棱螺的急性和亚慢性毒害效应,同时利用本课题组的实验数据和搜集到的甲苯、乙苯和二甲苯的毒性数据,对我国苯系物的水质基准展开了尝试性的研究。
     目前,脊椎动物中的鱼类和无脊椎动物中的节肢动物是国内外发展的主要实验生物,但是却缺少了无脊椎动物很重要的一部分——软体动物,特别是其中的腹足纲动物,因此其也极少被应用于水质管理质量基准等保护政策的制定中。我国正在发展适合我国生态系统的水质基准,而面临的最大困难之一是缺少本土的模式受试物种,因此,开发我国本土的腹足纲测试物种将能为我国水质基准的制定提供技术的支持,同时也避免了其他国家在制定水质基准时对软体动物不重视的问题。本研究选取了我国本土腹足纲动物——铜锈环棱螺(Bellamya aeruginosa)为受试生物,探讨甲苯、乙苯和二甲苯三种苯系物对其的毒害效应。
     急性毒性试验研究发现,甲苯、乙苯和二甲苯未造成铜锈环棱螺的死亡现象,而对铜锈环棱螺的行为有明显的影响。因此,甲苯、乙苯和二甲苯对铜锈环棱螺的急性毒性试验是以其对螺行为的影响,而不是以死亡为研究指标。甲苯、乙苯和二甲苯对螺的急性行为毒性是引起了不良反应,且具有显著的剂量-效应关系,甲苯、乙苯和二甲苯对螺不良反应的96-h EC50分别为37.2、13.3和8.9mg/L。同时发现,以乙苯为例,不良反应螺的AChE活性受抑制的程度要大于正常反应螺的,而其他生化指标,包括超氧化物岐化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽硫转移酶(GST)、还原型谷胱甘肽(GSH)和脂质过氧化(丙二醛,MDA)与螺的行为变化未呈现出明显的关联性。在其他的研究中发现,抑制AChE的活性是与行为变化有相关性的,因此,本研究认为甲苯、乙苯和二甲苯对铜锈环棱螺的行为变化与AChE的活性受到抑制有关联。
     本论文重点研究了乙苯亚慢性低剂量暴露对铜锈环棱螺的影响,实验分为两个阶段:21天的暴露阶段和17天的恢复阶段。其中,对铜锈环棱螺的影响主要是从两个方面研究的,一方面是生化指标的变化情况,包括AChE、肝胰脏和肾脏组织中的SOD、CAT、GST、GSH和MDA的活性和含量变化;另一方面是利用碱性彗星实验检测肝胰脏组织中的DNA损伤。研究结果表明,乙苯低剂量的暴露亦能对铜锈环棱螺的行为产生影响,造成了铜锈环棱螺的收缩反应,且收缩反应的比例随着暴露时间的增加而增加,但是未有明显的剂量-效应关系。铜锈环棱螺的6种生理生化指标对乙苯胁迫的灵敏度各不相同,且生理生化指标在两种不同行为的铜锈环棱螺中并未呈现出规律性的差异,生理生化指标与铜锈环棱螺行为的相关性不明确。碱性彗星实验的结果表明,乙苯胁迫显著性的引起了螺肝胰脏细胞的DNA损伤,且DNA损伤程度有明显的剂量-效应和时间-效应关系,表明乙苯可能对铜锈环棱螺存在潜在的基因毒性。同时发现,不同行为铜锈环棱螺的DNA损伤没有差异性。在恢复阶段的早期5天内,DNA损伤持续的增加,这应该是由于对DNA损伤的修复造成的,例如,碱基切除修复或者核苷酸切除修复。在恢复阶段的17天之后,DNA损伤的修复还没有完成,表明DNA损伤的修复还需要更多的时间。
     同时,本论文还研究了铜锈环棱螺对乙苯的富集和净化能力,实验分为两个阶段:23天的暴露阶段和17天的净化阶段。结果表明,正常反应螺对乙苯的生物富集因子(BCF)从2.24到80,收缩反应螺对乙苯的BCF从2.05到70,由此可见,正常反应螺对乙苯的富集能力要大于收缩反应螺的。在净化阶段发现,两种不同行为螺对乙苯的净化速率均遵循一级动力学规律,两种不同行为铜锈环棱螺净化乙苯的平均半衰期分别为8.5天和8.0天,两者之间没有明显的差异性,而且5个处理组之间在净化速率上同样也不存在显著的差异性。在净化阶段17天之后,两种不同行为螺体内均还能检测到乙苯,说明螺完全净化干净乙苯还需要更多的时间。
     为了制定符合我国水生态系统特征的苯系物水质基准,本研究利用来自本课题组的苯系物毒性数据,同时还搜集了苯系物相关的毒理数据,采用美国制定水质基准的毒性百分数排序法推导了我国甲苯、乙苯和二甲苯的淡水生物的双值水质基准。毒性百分数排序法得到的基准值可以为水生生物起到应有的保护作用。采用毒性百分排序法得出甲苯、乙苯和二甲苯的基准最大浓度推荐值分别为4.49、0.89和1.15mg/L,基准连续浓度推荐值分别为0.81、0.25和0.41mg/L。该研究将为科学制订苯系物地表水环境质量标准以及排放标准提供重要的理论依据,也为我国今后系统开展水质基准的科学研究提供了示范。
As a consequence of their wide usage, monocyclic aromatic hydrocarbons toluene, ethylbenzene, and xylene have been detected frequently in the aquatic environment, which could lead to harmful effects to the aquatic systems and human. In this paper, acute and subchronical toxicity of toluene, ethylbenzene, and xylene on an aquatic gastropod were investigated, and we attempted to tentatively enact the Water Quality Criteria for toluene, ethylbenzene, and xylene for protecting the aquatic organisms in Chinese aquatic ecosystem.
     As far as we know, the model testing organisms are primarily confined to fish in vertebrates and arthropods in invertebrates. Molluscs also are of great importance in the kingdom of invertebrates, whereas they are absent in the model testing organisms, especially gastropods. So, they are seldom considered in the protect policy of water standard and criteria. Nowadays, China is embarking on the development of its own national water quality system fitting for Chinese aquatic ecosystem, and one of the biggest difficulties is short of the local model testing organisms. Therefore, developing our country own gastropod testing organisms will provide technical support to establish Water Quality Criteria for our country and will also avoid the neglected problem of gastropod in establishing the Water Quality Criteria in the other countries. A local gastropod, Bellamya aeruginosa, was selected as the test organism in the present toxicity study of toluene, ethylbenzene, and xylene, and it is further to discuss the practicability of B. aeruginosa as a potential model testing organism in the present study.
     In the acute study of toluene, ethylbenzene, and xylene, it was found that no mortality occurred, but behavioral alteration, i.e. distress syndrome, was observed in the exposed snails, thus, here the acute effect of toluene, ethylbenzene, and xylene on the snails was evaluated through the behavioral toxicity, and coupled with biochemical responses, including acetylcholinesterase (AChE) in the whole body, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), reduced glutathione (GSH), and lipid peroxidation (malonyldialdehyde, MDA) in the hepatopancreas and kidney. Distress syndrome had clear dose-and time-dependent effects (p<0.05), and96-h EC50values for the distress syndrome of toluene, ethylbenzene, and xylene were37.2,13.3, and8.9mg/L in the tested snails. Taken ethylbenzene as example, AChE activity of the distressed snail was all inhibited more than45%, while the inhibition of AChE activity in the nondistressed snail was all less than30%, and the oxidative biomarkers (SOD, CAT, GST, GSH, and MDA) showed no clear correlation with the distress syndrome. The inhibition in AChE activity is found to be related with behavioral alterations in many studies; therefore, more than45%inhibition in AChE activity induced by ethylbenzene was thought to be connected with the distress syndrome in the tested snails. The findings showed that toluene, ethylbenzene, and xylene caused the inhibition on AChE activity, and eventually led to the behavioral alteration occurred in the snails.
     The focus of present work was performed to elucidate the sublethal effects of ethylbenzene using the freshwater snail, B. aeruginosa (Reeve). The experiment was divided into two periods:a21-day exposure period followed by a17-day recovery period. AChE, SOD, CAT, GST, GSH, and MDA were used as the biochemical biomarkers to evaluate oxidative stress in hepatopancreas and kidney of snails. In addition, alkaline comet assay was applied to determine the genotoxicity of ethylbenzene in hepatopancreas of snails. The results showed that behavioral alteration, namely retraction response, was also observed during the exposure period, and the proportion of retracted snails increased under each treatment as the exposure time prolonged but there was no linear relationship between the retracted proportion and the exposure dose. These six biomarkers exhibited various responses to ethylbenzene in the tested snails, and the differences in these biochemical biomarkers between the two different behavioral snails were not showed same trend, indicating that the correlation between these biochemical biomarkers and the behavioral alteration (retraction response) was not clear. Alkaline comet assay showed that ethylbenzene could significantly induce DNA damage in hepatopancreas of snails, and there was a good dose-and time-response in DNA damage, indicating potential genotoxicity of ethylbenzene on snails. Moreover, the levels of DNA damage had no difference between the two different responses of snails. At the first five days of the recovery period, the increased DNA damage may be due to the repair of DNA damage, such as base or nucleotide excision repair. At the end of the recovery period, the repair of DNA damage was not yet completed, showing that DNA repair requires more time.
     Meanwhile, the capability of the freshwater gastropod B. aeruginosa to take up and depurate ethylbenzene was studied in the subchronical study; the snail was subjected to two treatments, a23-day exposure period followed by a17-day depuration period. The results showed that ethylbenzene uptake in unretracted snails was greater than in retracted snails, the bioconcentration factor (BCF) in the unretracted snails ranged from2.24to80, and BCF in the retracted snails ranged from2.05to70. The depuration rates followed the first order kinetics for both different behavior snails, and the average half-lives of ethylbenzene depuration were8.5d and8.0d, indicating that the depuration abilities in the two different responses of snails had no significant difference from each other. There were also no significant differences among the five treatments in terms of depuration rate for each group. Because of the limited capability of snails to detoxify ethylbenzene, the depuration was mainly through a slow excretion process, and ethylbenzene was still present in the tissue of snail after the17-day depuration. So, the snails need more time to depurate ethylbenzene completedly.
     In order to derive Water Quality Criteria for toluene, ethylbenzene, and xylene that can protect the freshwater ecosystem and biota system in China, all available toxicity data of toluene, ethylbenzene, and xylene to Chinese representative species in freshwater were collected. The toxicity percentile rank method, used for criteria derivation in America was used to derive aquatic life criteria for the three substances. The toxicity percentile rank method was suitable to derive Water Quality Criteria to protect the aquatic organisms. The results from the toxicity percentile rank method showed that, the criteria maximum concentrations of toluene, ethylbenzene and xylene were4.49,0.89, and1.15mg/L, respectively, and the criteria continuous concentrations were0.81,0.25, and0.41mg/L, respectively.
引文
[1]梁峰.我国典型流域重金属的风险评价及六价铬水质基准的推导.[博士学位论文].南京:南京大学,2011
    [2]Traas T P. Guidance document on deriving environmental risk limits. The National Institute of Public Health and the Environment (RIVM) report 601501012. BA Biltooven, the Netherlands,2001
    [3]Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand. Australia and New Zealand Guidelines for Fresh and Marine Water Quality. Australia:ANZECC and ARMCANZ,2000
    [4]CCREM (Canadian Council of Resource and Environment Ministers). Canadian water quality guidelines. Prepared By the Task Force on Water Quality Guidelines.1987.
    [5]ECB (European Chemical Bureau). Technical guidance doeument on risk assessment in support of eommission directive 93/67/eec on risk assessment for new notified substances, commission regulation (ec) no.1488/94 on risk assessment for existing substances and directive 98/8/ec of the European parliament and of the council concerning the placing of biocidal products on the market. Part ii. Environmental Risk Assessment. Ispra, Italy:European Chemicals Bureau, European Commission Joint Research Center, European Communities.2003.
    [6]周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订.农业环境科学学报,2007,26(1):1-5
    [7]Roux D J, Jooste S H J and MacKav H M. Substance-specific water quality criteria for the protection of South African freshwater ecosystems:methods for derivation and initial results for some inorganic toxic substance. South Afrucab Journal of Scien,1996,92: 198-206
    [8]USEPA (United States Environmental Protection Agency). Ambient water quality criteria (series). Office of Regulation Standard. Washington DC:US EPA,1980
    [9]孟伟,刘征涛,张楠,等.流域水质目标管理技术研究(Ⅱ)-水环境基准、标准与总量控制.环境科学研究,2008,21(1):1-8
    [10]周启星.环境基准研究与环境标准制定进展及展望.生态与农村环境学报,2010,26(1):1-8
    [11]张瑞卿,吴丰昌,李会仙,等.中外水质基准发展趋势和存在的问题.生态学杂志,2010,29(10):2049-2056
    [12]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制.环境科学研究,2006,19(3):1-6
    [13]Stephan C E, Mount D J, Hansen D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85-227049. U. S. Environmental Protection agency office of research and development environmental research laboratories.1985
    [14]U.S. EPA. Water Quality Criteria and Standards Plan Priorities for the Future. EPA 822-R-98-003. Washington, DC:U.S. Environmental Protection Agency,1998.
    [15]金小伟,雷炳莉,许宜平,等.水生态基准方法学概述及建立我国水生态基准的探讨.生态毒理学报,2009,4(5):609-616
    [16]Warme M StJ. Critical review of methods to derive water quality guidelines for toxicants and a ProPosal for a new framework. Supervising scientist report 135, Supervising scientist, Canberra,1998
    [17]Canadian Council of Ministers of the Environment (CCME). Protocol for the Derivation of Water Quality Guidelines for the Projection of Aquatic Life. Manitoba:Canadian Council of Ministers of the Environment,1999
    [18]OECD. Report of the OECD Workshop on extrapolation of laboratory aquatic toxicity data to the real environment. OECD Environment Monographs 59, Organisation for Economic Co-operation and Development, Paris, France,1992
    [19]吴丰昌,孟伟,曹宇静,等.镉的淡水水生生物水质基准研究.环境科学研究,2011,24(2):172-184
    [20]Staples C A, Woodburn K B, Klecka G M, et al. Comparison of four species sensitivity distribution methods to calculate predicted no effect concentrations for bisphenol A. Human and Ecological Risk Assessment:An International Journal,2008,14:455-478
    [21]Chapman P M, Fairbrother A, Brown D. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry,1998, 17:99-108
    [22]CCME. A protocol for the derivation of water uality guidelines for the Protection of aquatic life. Prepared by the Task Force on Water Quality uidelines. Canadian Council of Ministers of the Environment, Canada,2007
    [23]Kooijman S A L M. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research,1987,21(3):269-276
    [24]van Straalen N M, Denneman C A J. Ecotoxicological evaluation of soil quality criteria. Ecotoxicology and Environmental Safety,1989,18(3):241-251
    [25]Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicology and Environmental Safety, 1993,25(1):48-63
    [26]Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice. Marine Pollution Bulletin,2002,45:192-202
    [27]雷炳莉,刘倩,孙延枫,等.内分泌干扰物4-壬基酚的水质基准探讨.中国科学:地球科学,2012,42(5):657-664
    [28]Scheringer M, Steinbach D, Escher B, et al. Probabilistic approaches in the effect assessment of toxic chemicals what are the benefits and limitations? Environ Sci Pollut Res Int,2002,9:307-314
    [29]Wagner C, L(?)kke H. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Research,1991,25 (10):1237-1242
    [30]Shao Q X. Estimation for hazardous concentrations based on NOEC toxicity data:an alternative approach. Environmetrics,2000,11(5):583-595
    [31]张瑞卿,吴丰昌,李会仙,等.应用物种敏感度分布法研究中国无机汞的水生生物水质基准.环境科学学报,2012,32(2):440-449
    [32]杜东阳.我国重金属铬和镍的淡水水质基准研究.[硕士学位论文].北京:中国地质大学,2012
    [33]雷炳莉,黄圣彪,王子健,等.生态风险评价理论和方法.化学进展,2009,21(2/3):350-358
    [34]De Laender F, De Schamphelaere K A C, Vanrolleghem P A, et al. Is ecosystem structure the target of concern in ecological effect assessments? Water Research,2008,42: 2395-2402.
    [35]Natio W, Miyamoto K, Nakanishi J, et al. Evaluation of an ecosystem model in ecological risk assessment of chemicals. Chemosphere,2003,53:363-375
    [36]Park R A, Clough J S, Wellman M C. AQUATOX:Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems. Ecological Modelling 2008,213:1-15.
    [37]Lei B S, Huang S B, Qiao M, et al. Prediction of the environmental fate and aquatic ecological impact of nitrobenzene in the Songhuajiang River using the modified AQUATOX model. Journal of Environmental Sciences,2008,20:769-777
    [38]Dillon F S, Mebane C A. Application of site specific water quality criteria developed in headwater reaches to downstream waters. Idaho Department of Environmental Quality 1410N, Hilton, Boise, ID83706.2002.
    [39]雷炳莉,金小伟,黄圣彪,等.太湖流域3种氯酚类化合物水质基准的探讨.生态毒理学报,2009,4(1):40-49
    [40]Marsh M C.The effect of some industrial wastes on fishes. Water Supply and Irrigation Paper No.192. US Geological Survey,1907:337-348.
    [41]Powers E B. The goldfish (Carassius carassius) as a test animal in the study of toxicity. Illinois Biological Monographs,1918,4(2):69-73
    [42]Shelford V E. An experimental study of the effects of gas wastes upon fishes, with especial reference to stream pollution. Bulletin of the Illinois State Laboratory of Natural History,1917,11:381-412
    [43]USEPA. Quality criteria for water. Washington DC:National Teehnical Information Service,1976
    [44]NATC (National Technical Advisory Committee to the Secretery of the Interior). Water Quality Criteria. Washington DC:US Department of the Interior,1968.
    [45]NAS, NAE (National Academy of Science and National Academy of Engineering). Water quality criteria. Washington DC:US Government Printing Offiee,1974.
    [46]USEPA. Quality criteria for water. Washington DC:Office of water Regulations and Standards,1986a
    [47]USEPA. Terms of Environment:Glossary, Abbreviations and Acronyms [EB/OL]. [2006-10-02]. http://www.epa.gov/OCEPAterms/.1997.
    [48]夏青,张旭辉.水质量标准手册.北京:中国环境科学出版社,1990
    [49]中国环境科学研究院.水质基准的理论与方法学导论.北京:科学出版社,2010
    [50]苏海磊.太湖生物区系特征及其与我国湖泊水质基准推导的关系.[硕士学位论文].北京:中国环境科学研究院,2011
    [51]USEPA. National recommended Water Quality Criteria. Washington DC:Office of Water, Office of Science and Technology,2009
    [52]CCME. Canadian water quality guidelines for the Protection of aquatic life:introduction. Winnipeg, Manitoba:Canadian Council of Ministers of the Environment.1999a.
    [53]CCME. Protocol for the derivation of Canadian sediment quality guidelines for the Protection of aquatic life. CCME-PEC-98E. Prepared by Environment Canada. Guidelines Division, Technical Secretarait of the CCME Task Group on Water Quality Guidelines, Ottawa,1995.
    [54]CCME. A Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. Canadian Environmental Quality Guidelines. Ottawa, Canada: Canadian Council of Ministers of the Environment.1999b
    [55]CCME. Canadian sediment quality guidelines for the protection of aquatic life: introduction, updated in Canadian environmental quality guidelines 1999. Winnipeg, Manitoba.2001.
    [56]CCME. Protocol for the derivation of Canadian tissue residue guidelines for the Protection of wildlife that consume aquatic biota. CCME, Winnipeg,1998.
    [57]CCME. Protocols for the derivation water quality guidelines for the Protection of agricultural water uses. Canadian Environmental Quality Guidelines. Onawa, Canada: Canadian Council of Ministers of the Environment.1993.
    [58]Babut M, Corinne B, Marc B, et al. Developing environmental quality standards for various pesticides and priority pollutants for French freshwaters. Journal of Environmental Management,2003,69:139-147
    [59]PIVM. Guidance for the derivation of environmental risk limits within the framework of 'International and national environmental quality standards for substances in the Netherlands'(INS). Report No.601782001. Bilthoven, The Netherlands:National Institute of Public Health and the Environment.2007.
    [60]Crommentuijn T, Sijm D, de Bruijn J, et al. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Jounal of Environment Management,2000,60(2):121-143
    [61]Wu F C, Meng W, Zhao X L, et al. China embarking on development of its own national water quality criteria system. Environmental Science and Technology,2010,44(21): 7992-7993
    [62]张彤,金洪钧.美国对水生态基准的研究.上海环境科学,1996,15(3):7-9.
    [63]孟伟,闫振广,刘征涛.美国水质基准技术分析与我国相关基准的构建.环境科学研究,2009,22(7):757-761
    [64]王明俊.水质的基准和标准.海洋通报,1981,3:77-85
    [65]周忻,刘存,张爱茜,等.非致癌有机物水质基准的推导方法研究.环境保护科学,2005,31(1):20-22
    [66]吴丰昌,孟伟,宋永会.中国湖泊水环境基准的研究进展.环境科学学报,2008,28(12):2386-2393
    [67]穆景利,王莹,王菊英.我国海水水质基准的构建:以三丁基锡为例.生态毒理学报,2010,5(6):776-786
    [68]洪鸣.金属铅与三丁基锡化合物海水水质基准研究.[硕士学位论文].大连:大连海事大学,2008
    [69]张彤,金洪钧.丙烯腈水生态基准研究.环境科学学报,199717(1):75-85
    [70]张彤,金洪钧.硫氰酸钠的水生态基准研究.应用生态学报,1997,8(1):99-103
    [71]张彤,金洪钧.乙睛的水生态基准.水生生物学报,1997,21(3):226-233
    [72]Daqiang Yin, Shuangqing Hu, Hongjun Jin, et al. Deriving freshwater quality criteria for 2,4,6-trichlorophenol for protection of aquatic life in China. Chemosphere,2003,52: 67-73
    [73]Daqiang Yin, Hongjun Jin, Lingwei Yu, et al. Deriving freshwater quality criteria for 2,4-dichlorophenol for protection of aquatic life in China. Environmental Pollution,2003, 122:217-222
    [74]闫振广,孟伟,刘征涛,等.我国淡水水生生物镉基准研究.环境科学学报,2009,29(11):2393-2406
    [75]李玉爽,吴丰昌,崔骁勇,等.中国苯的淡水水质基准研究.生态学杂志,2012,31(4):908-915
    [76]曹宇静,吴丰昌.淡水中重金属镉的水质基准制定.安徽农业科学,2010,8(3):1378-1380
    [77]吴丰昌,孟伟,张瑞卿,等.保护淡水水生生物硝基苯水质基准研究.环境科学研究,2011,24(1):1-10
    [78]吴丰昌,冯承莲,曹宇静,等.锌对淡水生物的毒性特征与水质基准的研究.生态毒理学报,2011,6(4):367-382
    [79]吴丰昌,冯承莲,张瑞卿,等.我国典型污染物水质基准研究.中国科学(地球科学),2012,42(5):665-672
    [80]龙华,汪登强,陈建武,等.几种实验用鱼的研究现状.实验动物与比较医学,2005,25(3):175-180.
    [81]OECD (Organisation for economic cooperation and development) guidelines for the testing of chemicals,203,1992. Fish, Acute Toxicity Test. Paris, France
    [82]OECD guidelines for the testing of chemicals,218,2004. Sediment-Water chironomid toxicity test using spiked sediment
    [83]沈英娃,王宏,卢玲.化学品环境管理与水生实验动物.中国比较医学杂志,2004,14(1):54-57.
    [84]USEPA (U. S. Environmental Protection Agency),2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater. Second edition. EPA-600-R-99-064. Washington DC, Office of Science and Technology; Duluth, Minnesota, Office of Research and Development
    [85]ASTM (American Society for Testing and Materials),2003. Test method for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates. E1706-00el
    [86]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [87]Chapman G A, Denton D L, Lazorcha J M, editors. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. Washington DC:US Environmental Protection Agency.1995. EPA/600/R-95-136.661p
    [88]Oetken M, Nentwig G, Loffler D, et al. Effects of pharmaceuticals on aquatic invertebrates. Part I. the antiepileptic drug carbamazepine. Archives of Environmental Contamination and Toxicology,2005,49(3):353-361
    [89]Nassef M, Matsumoto S, Seki M, et al. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish(Oryzia latipes). Chemosphere,2010,80(9):1095-1100
    [90]Nentwig G Effects of pharmaceuticals on aquatic invertebrates. Part II:the antidepressant drug fluoxetine. Archives of Environmental Contamination and Toxicology,2007,52(2):163-170
    [91]Foran C M, Weston J, Slattery M, et al. Reproductive Assessment of Japanese Medaka (Oryzias latipes) Following a Four-Week Fluoxetine (SSRI) Exposure. Achives of Environmental Contamination and Toxicology,2004,46(4):511-517
    [92]Stuart R J, Robertson J B. Acute toxicity of pentachlorophenol to the freshwater snail, Gillia altilis. Bull Environmental Contamination and Toxicology,1985,35(5):633-640
    [93]Robertson J B, Mazzella C. Acute toxicity of the pesticide diazinon to the freshwater snail Gillia altilis. Bulletin of Environmental Contamination and Toxicology,1989,42(3): 320-324
    [94]Oehlmann J, Di B P, Tillmann M, et al. Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology,2007,16(1):29-43
    [95]Clarke A H. Gastropods as indicators of trophic lake stages. The Nautilus,1979,94: 138-142
    [96]Moncheva S, Namiesnik J, Apak R, et al. Rapana venosa as a bioindicator of environmental pollution. Chemistry and Ecology,2011,27(1):31-41
    [97]Hao O J. Bioindicators for water quality evaluation-a review. Journal of the Chinese Institute of Environmental Engineering,1996,6(1):1-19
    [98]Matthiessen P, Gibbs P E. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry,1998,17(1): 37-43
    [99]Craig P G, Scott P W. Imposex still evident in eastern Australia 10years after tributyltin restrictions. Marine Environmental Research,2003,55(2):101-112
    [100]Tan K S. Imposex in Thais gradate and Chicoreus capucinus (Mollusca, Neogastropoda, Muricidae) from the Straits of Johor:a case study using penis length, area and weight as measures of imposex severity. Marine Pollution Bulletin,1999,39(1-12):295-303
    [101]Depledge M H, Billinghurst Z. Ecological significance of endocrine disruption in marine invertebrates. Marine Pollution Bulletin,1999,39(1-12):32-38
    [102]施华宏,黄长江.有机锡污染与海产腹足类性畸变.生态学报,2001,21(10):1711-1717
    [103]Giesy J P, Hoke R A. Freshwater sediment toxicity bioassessment:rationale for species selection and test design. Journal of Great Lakes Research,1989,15(4):539-569
    [104]Ducrot V, Cognat C, Mons R, et al. Development of rearing and testing protocols for a new freshwater sediment test species:the gastropod Valvata piscinalis. Chemosphere, 2006,62(8):1272-1281
    [105]Duft M, Schmitt C, Bachmann J, et al. Prosobranch snails as test organisms for the assessment of endocrine active chemicals-an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgns antipodarum. Ecotoxicology,2007,16(1):169-182
    [106]Lagadic L, Coutellec M-A, Caquet T. Endocrine disruption in aquatic pulmonate mollusks:few evidences, many challenges. Ecotoxicology,2007,16(1):45-59
    [107]Melo L E L, Coler R A, Watanabe T, et al. Development the gastropod Pomacea lineata (Spix,1827) as a toxicity test organism. Hydrobiologia,2000,429(1-3):73-78
    [108]Ma T W, Gong S J, Zhou K, et al. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity. Journal of Environmental Science,2010,22(2):304-313
    [109]Weltje L, Schulte-Oehlmann U. The seven year itch-progress in research on endocrine disruption in aquatic invertebrates since 1999. Ecotoxicology,2007,16(1):1-3
    [110]Segner H, Caroll K, Fenske M, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates:report form the European IDEA project. Ecotoxicology and Environmental Safety,2003,54(3):302-314
    [111]Hutchinson T H. Small is useful in endocrine disrupter assessment-four key recommendation for aquatic invertebrate research. Ecotoxicology,2007,16(1):231-238
    [112]Buikema A L, Niederlehner B R, Cairns J. Biological Monitoring, Part IV-Toxicity Testing. Water Research,1982,16(3):239-262
    [113]ASTM 2002. Standard guide for designing biological tests with sediments (ASTM designation:E 1525-02). In:Annual Book of ASTM Standards. Vol 11.05. Philadelphia, PA.844-868
    [114]国家环境保护总局《化学品测试方法》编委会.化学品测试方法.北京:中国环境科学出版社,2004
    [115]刘保元.磷矿浮选剂的选矿尾水对铜锈环棱螺生殖的影响.环境科学与技术,1988,1:8-11
    [116]An Y J. Toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) mixtures to Sorghum bicolor and Cucumis sativus. Bulletin of environmental contamination and toxicology,2004,72:1006-1011
    [117]Mackay D, Shiu W-Y, Ma K-C. Physical-Chemical Properties and Environmental Fate Handbook, CRC NetBase, Chapman & Hall.
    [118]Mater L, Sperb R M, Madureira L A S, et al. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil. Journal of Hazardous Materials,2006,136(3):967-971
    [119]Andreoni V, Gianfreda L.Bioremediation and monitoring of aromatic-polluted habitats. Applied Microbiology and Biotechnology,2007,76(2):287-308
    [120]丁克强,孙铁珩,李培军.石油污染土壤的生物修复技术.生态学杂志,2000,19(2):50-55
    [121]Lokhande P B, Patil V V, Mujawar H A. Multivariate statistical study of seasonal variance of BTEX in the surface water of Savitri River. Environ. Monit. Assess,2009, 157:51-61.
    [122]Borden R C, Black D C, Mcblief K V. MTBE and aromatic hydrocarbons in North Carolina stormwater runoff. Environmental Pollution,2002,118:141-152
    [123]Kelley C A, Hammer B T. Concentrations stable isotope values of BTEX in gasoline-contaminated groundwater. Environ. Sci. Technol,1997,31:2469-2472
    [124]Huybrechts T, Dewulf J, Langenhove H V. Spatial and temporal variability of priority volatile organic compounds in the Scheldt estuary. Water Res.,2004,38,3241-3250
    [125]Schmidt T C, Haderlein S B, Pfister R, et al. Occurrence and fate modeling of MTBE and BTEX compounds in a Swiss Lake used as drinking water supply. Water Res.,2004, 38,1520-1529
    [126]D6rea H S, Bispo J R L, Aragao, K A S, et al. Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe, Brazil. Microchem. J.,2007,85: 234-238.
    [127]Wang Z D, Li K, Fingas M, et al. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. J. Charomatogr. A, 2002,971:173-184.
    [128]Frederic L, Michael B. A short primer on benzene, toluene, ethylbenzene and xylenes (BTEX) in the environment and in hydraulic fracturing fluids. Griffith University,2010.
    [129]李炳华,陈鸿汉,何江涛.长江三角洲某地区浅层地下水单环芳烃污染特征及其原因分析.中国地质,2006,23(5):1124-1130
    [130]马建华,马全杰,冯亚楠.黄河兰州段苯系物污染现状调查与评价.甘肃环境研究与监测,1999,12(2):93-96
    [131]Atkinson R. Atmospheric chemistry of VOC and NOx. Atmospheric Environment,2000, 34:2063-2101
    [132]毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测.北京:化学工业出版社,2004.122-124
    [133]Plaza G A, Wypych J, Berry C, et al. Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World Journal of Microbiology & Biotechnology,2007,23(4):533-542
    [134]范亚维,周启星.BTEX的环境行为与生态毒理.生态学杂志,2008,27(4):632-638
    [135]Xu Z H, Mulchandani A, Chen W. Detection of benzene, toluene, ethylbenzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnology Progress,2003,19(6):1812-1815
    [136]Deeb R A, Alvarez-Cohen L. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnology and Bioengineering,1999,62(5):526-536
    [137]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单.中国环境监测,1990,6(4):1-3
    [138]《水和废水监测分析方法》编辑委员会.水和废水监测分析方法.北京:中国环境科学出版社,1989
    [139]Johnson W W, Finley M T. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. United States Department of the Interior, Fish and Wildlife Service/Resource Publication 137. Washington D.C,1980
    [140]Verschueren K. Handbook of environmental data on organic chemicals. New York:Van Nostrand Reinhold Company, Limited,1983
    [141]Ferrando M D, Andreu-Moliner E. Acute toxicity of toluene, hexane, xylene, and benzene to the rotifers Brachionus calyciflorus and Brachionus plicaTilis. Bulletin of environmental contamination and toxicology,1992,49:266-271
    [142]范亚维,周启星.水体中甲苯、乙苯和二甲苯对斑马鱼的毒性效应.生态毒理学报.2009,4(1):136-141
    [143]范亚维,周启星,王媛媛,等.水体BTEX污染对大型溞和霍普水丝蚓的毒性效应及水环境安全评价.环境科学学报,2009,29(7):1485-1490
    [144]QPHR. Queensland Public Health Regulations. Queensland Government, Brisbane, Australia,2005
    [145]NHMRC. Australian drinking water guidelines. National Health and Medical Research Council and Natural Resource, Management Ministerial Council, Canberra, Australia, 2004
    [146]WHO. Guidelines for drinking water quality. Third Edition incorporating the first and second addenda. World Health Organization, Geneva, Switzerland,2008
    [147]USEPA. National primary drinking water standards. US Environmental Protection Agency, Office of Water, USA,2003
    [148]郑师梅,周启星,熊红霞.腹足纲动物毒性测试候选物种的研究.中国环境科学,2011,31(8):1390-1397
    [149]Zheng S M, Zhou Q X, Gao J, et al. Behavioral alteration and DNA damage of freshwater snail Bellamya aeruginosa stressed by ethylbenzene and its tissue residue. Ecotox Environ Saf 2012,81:43-48
    [150]National Research Council. Biological markers in reproductive toxicology. Washington DC:National Academic Press,1989
    [151]王晓蓉,罗义,施华宏,等.分子生物标志物在污染环境早期诊断和生态风险评价中的应用.环境化学,2006,25(3):320-325
    [152]Kille P, Sturzenbaum S R, Galay M, et al. Molecular diagnosis of pollution impact in earthworms-Towards integrated biomonitoring. Pedobiologia,1999,43(6):602-607
    [153]van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review. Environmental Toxicology and Pharmacology, 2003,13(2):57-149
    [154]刘海芳,王凡.水环境污染程度的分子生物标志物的研究进展.安徽农业科学,2007,35(18):5502-5506
    [155]周启星,王美娥.土壤生态毒理学研究进展与展望.生态毒理学报,2006,1(1):1-11
    [156]OECD.1984. Guideline for Testing of Chemicals 204 "fish, prolonged toxicity test:14-day study''
    [157]Cheung S G, Wong L S. Effects of copper on activity and feeding in the subtidal prosobranch Babylonia lutosa (Lamarck). Mar. Pollut. Bull.1999,39(1-12):106-111
    [158]周永新,张宗涉.《水生生物毒性试验方法》,农业出版社.1989
    [159]Gorun V, Proinov I, Baltescu V, Balaban G, Barzu O. Modified Ellman procedure for assay of chilinesterases in crude enzymeatic preparations. Anal Biochem,1978,86(1): 324-326
    [160]邹国林,桂兴芬,钟晓凌,等.一种SOD的测活方法—邻苯三酚自氧化法的改进.生物化学与生物物理进展,1986,4:71-73
    [161]徐镜波,袁晓凡,郎佩珍.过氧化氢酶活性及活性抑制的紫外分光光度法测定.环境化学,1997,16(1):73-76
    [162]Habig W H, Pabst M J, Jakoby W B. Glutathione s-transferases:the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry,1974,249(22): 7130-7139
    [163]Hiroshi O, Nobuko O, Kunio Y. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979,95:351-358
    [164]莫简主编.医用自由基生物学导论.北京:人民卫生出版社,1989:228-232
    [165]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254
    [166]王连生,刘征涛,周风帆,等.芳烃类有机物结构与活性相关的模式参数研究.环境科学,1994,15(3):7-11
    [167]戴朝霞,赵劲松,陈振翔,等.取代芳香烃化合物对4种水生生物的毒性研究.中国环境科学,2005,25(2):165-168
    [168]Blum D J W, Speece R E. Determining chemical toxicity to aquatic species:The use of QSARs and surrogate orgnisms. Environmental Science and Technology,1990,24(3): 284-293
    [169]Verhaar H J M, Van Leeuwen C J, Hermens J L M. Classifying environmental pollutants. 1:Structure-activity relationships for prediction of aquatic toxicity. Chemosphere,1992, 25(4):471-491
    [170]Di Marzio W, Saenz M E. OSARS for aromatic hydrocarbons at several trophic levels. Environmental Toxicology,2006,21(2):118-124
    [171]Schultz T W, Sinks G D, Bearden A P. QSAR in aquatic toxicology:a mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers, J(ed). Comparative QSARs. London:Taylor & Francis:1998,51-109
    [172]Cronin M T D, Schultz T W. Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis:comparative assessment of the methodologies. Chemicals Research Toxicology,2001,14(9):1284-1295
    [173]Little E E, Brewer S K. Neurobehavioural toxicity in fish. In:D. Schlenk and W.H. Benson (Ed.), Target Organ Toxicity in Marine and Freshwater Teleosts New Perspectives:Toxicology and the Environment, Taylor and Francis, London and New York,2001,2:139-174
    [174]Barron M. Environmental contaminants altering behavior. In Dell'Omo, G (ed) Behavioral Ecotoxicology. John Wiley & Sons Ltd, New York,2002, pp 167-186
    [175]Keenleyside M H A. Diversity and adaptation in fish behavior. Zoophysiology,1979,11: 208
    [176]Scott G R, Sloman K A. The effects of environmental pollutants on complex fish behaviour:integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 2004,68:369-392
    [177]Amiard-Triquet C. Behavioural disturbances:the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 2009,15:87-110
    [178]Dell'Omo G Behavioural Ecotoxicology. Wiley and Sons, West Sussex,2002.
    [179]Bai A R K, Reddy C C. Inhibition of acetylcholinesterase as a criterion to determine the degree of insecticide poisoning in Apis cerana indica. J Apic Res 1976,16:112-114
    [180]Castro B B, Sobral O, Guilhermino L, et al. An in situ bioassay integrating individual and biochemical responses using small fish species. Ecotoxicology,2004,13:667-681
    [181]Peakall, D. Animal Biomarkers as Pollution Indicators. London, England:Chapman & Hall.1992.
    [182]Hart A D M. Relationship between behaviour and the inhibition of acetylcholinesterase in birds exposed to organophosphorus pesticides. Environ Toxicol Chem 1993,12: 321-336
    [183]Almeida J R, Oliveira C, Gravato C, et al. Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology,2010,19:1369-1381
    [184]Ghousia B, Rao J V, Srikanth K. Oxidative stress and changes in locomotor behaviour and gill morphology of Gambusia affinis exposed to chromium. Toxicol Environ Chem 2006,88:355-365
    [185]王媛媛,周启星,范亚维.鲫鱼脑AChE活性对水体中石油污染土壤和孔雀石绿的响应.农业环境科学学报,2009,28(3):466-470
    [186]Mackey A P, Hodgkinson M. Assessment of the impact of naphthalene contamination on mangrove fauna using behavioral bioassays. Bull Environ Contam Toxicol 1996,56: 279-286
    [187]Bajgar J. Organophosphates/nerve agent poisoning:mechanism of action, diagnosis, rophylaxis and treatment. Advances in Clinical Chemistrt,2004,38:151-216
    [188]张宁,周启星,李婷,等.氧化型染发剂对沙蚕的毒性效应及对部分酶活性的影响.生态毒理学报,2008,3(1):65-71
    [189]Vieira L R, Sousa A, Frasco M F, et al. Acute effects of Benzo[a]pyrene,anthracene and a fuel oil on biomarkers of the common goby pomatoschistus microps(Teleostei, Gobiidae). Science of the Total Environment,2008,395(2-3):87-100
    [190]Penttinen O P, Holopainen I J. Physiological energetics of a midge, Chironomus riparius meigen (Insecta, Diptera)-normoxic heat output over the whole life-cycle and response of larva to hypoxia and anoxia. Oecologia 1995,103:419-424
    [191]Livingstone D R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollut Bull,2001,42:656-666
    [192]Orucoe S Y, Uner N. Tissue-specific ox idative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology,2004,137(1): 43-51
    [193]Babo S, Vasseur P. Invitro effects of thrim on liver antioxidant enzyme activ ities of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology,1992,22(1):61-68
    [194]Radic S, Cvjetko P, Glavas K, et al. Oxidative stress and DNA damage in Broad Bean (Vicia Faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry, 2009,28(1):189-196
    [195]Li Y N, Zhou Q X, Li F X, et al. Effects of tetrabromobisphenol-A as an emerging pollutant on wheat (Triticum aestivum) at biochemical levels. Chemosphere,2008, 74(1):119-124
    [196]Mecord J M, Fridovieh. Superoxide dismutase:an enzymie fuction for erythrocuprein (hemoeuprein). Journal of Biological Chemistry,1969,244(22):6049-6055
    [197]Zaman K, MaeGill R S, Johnson J E, et al. An insect model for assessing mereury toxieity:effete of mercury on antioxidant enzyme activities of the housefiy (Musca domestica) and the cabbage looper moth (TrichoPlusia ni). Archives of Environmental Contamination and Toxicology,1994,26(1):114-118
    [198]刘宛,李培军,周启星,等.污染土壤的生物标记物研究进展.生态学杂志,2004,23(5):150-155
    [199]刘硕,周启星.抗氧化酶诊断环境污染研究进展.生态学杂志,2008,27(10):1791-1798
    [200]杨居荣,贺建群,张国祥,等.不同耐受性作物中几种酶活性对Cd胁迫的反应.中国环境科学,1996,16(2):113-117
    [201]Moreira S M, Moreira-Santos M, Ribeiro R, et al. The'Coral Bulker'fuel oil spill on the North Coast of Portugal:spatial and temporal biomarker responses in Mytilus galloprovincialis. Ecotoxicology,2004,13:619-630.
    [202]Lavarias S, Heras H, Pedrini N, et al. Antioxidant response and oxidative stress levels in Marobrachium borellii (Crustacea:Palaemonidae) exposed to the water-soluble fraction of petroleum. Comparative Biochemistry and Physiology, Part C,2011,153:415-421
    [203]Reed D J, Beatty P W. Biosynthesis and regulation of glutathione:toxicological implications. Rev Biochem Toxicol,1980,2:213-241
    [204]Liu Y, Zhou Q X, Xie X J, et al. Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by toluene, ethylbenzene and xylene. Ecotoxicology 2010,19: 1551-1559
    [205]Zhang Y S, Andersson T, Forlin L. Induction of hepatic xenobiotic biotransformation enzymes in rainbow trout by/3-naphthoflavone. Time-course studies. Comp Biochem Physiol 1990,95B:247-253
    [206]Gowland B T G, McIntosh A D, Davies I M, et al. Implications from a field study regarding the relationship between polycyclic aromatic hydrocarbons and glutathione S-transferase activity in mussels. Mar Environ Res 2002,54:231-235
    [207]Downs C A, Shigenaka G, Fauth J E, et al. Celluar physiological assessment of bivalves after chronic exposure to spilled Exxon Valdez crude oil using a novel molecular diagnostic biotechnology. Environ Sci Technol,2002,36:2987-2993
    [208]Heath A G Water Pollution and Fish Physiology,2nd edn.1995, USA:CRC Press, Inc.
    [209]Marzin D. New approaches to estimating the mutagenic potential of chemicals. Cell Bio Toxicol,1999,15:359-365.
    [210]Ticc R R, Agurell E, Anderson D, et al. Single cell gel/comet assay:Guidelines for in vitro and in vivo gentic toxicology testing. Environ Mol Mutagen,2000,35:206-221.
    [211]Horvathova E, Slamenova D, Hlincikova L, et al. The nature and origin of DNA single-strand breaks determined with the comet assay. Mutat Res,1998,409:163-171.
    [212]Mitchelmore C L, Chipman J K. DNA strand breakage in aquatic organisms and the potential value of comet assay in environmental monitoring. Mutat Res,1998,399: 135-147.
    [213]陆开宏,张双玲,张春景,等.应用彗星实验研究产毒微囊藻喂食暴露对铜锈环棱螺肝细胞DNA的损失.农业环境科学学报,2010,29(6):1079-1085
    [214]Singh N P, McCoy M T, Tice R R, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988,175:184-191
    [215]Jha Awadhesh N. Ecotoxicological applications and significance of the comet assay. Mutagenesis,2008,23:207-221
    [216]Blaxter J H S, Hallers-Tjabbes C C T. The effect of pollutants on sensory systems and behavior of aquatic animals. Neth. J. Aquat. Ecol.1992,26:43-58.
    [217]Morrow J E, Gritz R L, Kirton M P. Effects of some components of crude oil on Young coho salmon. Copeia,1975,1975:326-331.
    [218]Lee R F, Sauerheber R, Benson A A. Petroleum hydrocarbons:uptake and discharge by the marine mussel Mytilus edulis. Science,1972,177:344-346.
    [219]Stegeman J J, Teal J M. Accumulation, release and retention of petroleum hydrocarbons by the oyster Crassostrea virginica. Mar. Biol.1973,22:37-44.
    [220]Sullivan J T, Cheng T C. Heavy metal toxicity to Biomphalaria glabrata (mollusca: pulmonata). Ann. N.Y. Acad. Sci.1975,266:437-444.
    [221]Yager C M, Harry H W. The uptake of radioactive zinc, cadmium, and copper by the freshwater snail, Taphius glabratus. Malacologia,1964,1:339-353.
    [222]Erskine S, Beach D G, Rouleau C, et al. Fate and distribution of pyrene in Ilyanassa obsolete exposed through the diet. Invertebr. Surviv. J.2010,7:67-78.
    [223]Hellou J, Beach D G, Erskine S, et al. Balanced fates of pyrene and 1-hydroxypyrene in snails, Ilyanassa obsolete, and spiked sediments. Polycyclic Aromat. Compd.2010,30: 75-90.
    [224]Vyas N B, Kun zel W J, HillEF, et al. Regional cholinesterase activity in white-throated sparrow brain is differen tially affected by acephate (Orthene(R)). Comarative Biochemistry and Physiology-Part C:Pharmacology,toxicology and Endocrinology, 1996,113(3):381-386
    [225]Sun Y, Yin G, Zhang J, Yu H, Wang X. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No.l exposure. Environ. Toxicol.2007,22:256-263
    [226]Israr M; Sahi S V; Jain J. Cadmium accumulation and antioxidative responses in the Sesbania drummondii Callus. Archives of Environmental Contamination and Toxicology, 2006,50:121-127
    [227]Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide:analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 1996,320:61-67
    [228]Cunha I, Mangas-Ramirez E, Guilhermino L. Effects of copper and cadmium on cholinesterase and Glutathione S-transferase activities of two marine gastropoda (Monodonta lineate and Nucella lapillus). Comp Biochem Physiol Part C Toxicol Pharmacol,2007,145:648-657
    [229]Fairbairn D W, Olive D L, O'Neill K L. The comet assay:a comprehensive review. Mutat Res,1995,339:37-59
    [230]McKelvey-Martin V J, Green M H L, Schmezer P, et al. The single gel electrophoresis assay (comet assay):a European review. Mutat Res,1993,288:47-63
    [231]International Agency of Research on Cancer (IARC) Working Group. Ethylbenzene. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol.77. IARC Press, Lyon,2000 pp227-266.
    [232]U. S. Department of Health and Human Services.1999. Toxicological Profile for Ethylbenzene.
    [233]Livingstone D R. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet 2003,154:427-430
    [234]Marnett L J. Oxyradicals and DNA damage. Carcinogenesis 2000,21:361-370
    [235]Vanzella T P, Martinez C B R, Colus I M S. Genotoxic and mutagenic effects of diesel oil water soluble fraction on a neotropical fish species. Mutat Res 2007,631:36-43
    [236]Midorikawa K, Uchida T, Okamoto Y, et al. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage. Chem Biol Interact 2004,150:271-281
    [237]Hook S E, Lee R F. Genotoxicant induced DNA damage and repair in early and late developmental stages of the grass shrimp Paleomonetes pugio embryo as measured by the comet assay. Aquat Toxicol 2004,66:1-14
    [238]Laffon B, Aldao I, Perez-Cadahia B, et al. First step in the evaluation of the effects of Prestige oil on the shore environment:availability, bioaccumulation and DNA damage. Cienc Mar 200632:389-399
    [239]Large A T, Shaw J P, Peters L D, et al. Different levels of mussel (Mytilus edulis) DNA strand breaks following chronic field and acute laboratory exposure to polycyclic aromatic hydrocarbons. Mar. Environ. Res.2002,54:493-497.
    [240]Noventa S, Pavoni B, Galloway T S. Periwinkle (Littorina littorea) as a sentinel species: a field study integrating chemical and biological analyses. Environ. Sci. Technol.2011, 45:2634-2640.
    [241]Neff J M, Cox B A, Dixlt D, et al. Accumulate and release of petroleum-derived aromatic hydrocarbons by four species of marine animals. Marine Biology,38,1976: 279-289
    [242]OECD.2002. SIDS assessment report for Ethylbenzene.
    [243]Nunes P, Benville P E Jr. Uptake and depuration of petroleum hydrocarbons in the Manila clarn, Tapes semidecussata Reeve. Bull. Environm. Contam. Toxicol.,1979,21: 719-726
    [244]Roubal W T, Stranahan S I, Malins D C. The accumulation of low molecular weight aromatic hydrocarbons of crude oil by coho salmon (Oncorhynchus kisutch) and starry flounder (Platichthys stellatus). Arch. Environ. Contam. Toxicol.,1978,7:237-244
    [245]Yoshida K, Shigeoka T, Yamauchi F. Relationship between molar refraction and n-octanol/water partition coefficient. Ecotoxicology and Environmental Safe,1983,7: 558-565
    [246]Veith G D, Kosian P. Estimating bioconcentration potential from octanol/water partition coefficients. Physical Behavior of PCBs in the Great Lakes, Ann Arbor Science, Ann Arbor MI,1983:269-282
    [247]Feijtel T, Kloepper-Sams P, den Haan K. Integration of bioaccumulation in an environmental risk assessment. Chemosphere,1997,34:2337-2350
    [248]Snyder M J. Cytochrome P450 enzymes in aquatic invertebrates:recent advances and future directions. Aquatic Toxicology,2000,48:529-547
    [249]Bonacci S, Iacocca A, Fossi S, et al. Biomonitoring aquatic environmental quality in a marine protected area:a biomarker approach. Ambio,2007,36:308-315
    [250]Gagnaire B, Geffard O, Noury P, et al. In vivo indirect measurement of cytochrome P450-associated activities in freshwater gastropod molluscs. Environmental Toxicology, 2010,25:545-553
    [251]Hellou J. Behavioral ecotoxicology, an "early warning" signal to assess environmental quality. Environ Sci Pollut Res,2011,18:1-11
    [252]Stone W L. Hydrophobic interaction of alkanes with liposomes and lipoproteins. J. Biol. Chem,1975,250:4368-4370
    [253]Jones A, Zabel T. Proposed Environmental quality standards for toluene in water. Final Report to the Doe. Wrc report No doe 2986,1996
    [254]Kester J E. "Endocrine disrupters." In:Clinical environmental health and toxic exposures, Second Edition, J.B. Sullivan and G.R. Krieger, Eds. Lippincott Williams and Wilkins,2001
    [255]Nagpal N K. Ambient water quality guidelines for Xylene:overview report [electronic resource]
    [256]Gossett RW, Brown DA, Young D R. Predicting the bioaccumulation of organic compounds in marine organisms using octanol/water partition coefficients. Marine Pollut Bull 1983,14:387-392
    [257]Muijs B, Jonker M T O. Temperature-dependent bioaccumulation of polycyclic aromatic hydrocarbons. Environmental Science and Technology,2009,43:4517-4523
    [258]Fisk A T, Norstrom R J, Cymbalisty C D, et al. Dietary accumulation and depuration of hydrophobic organochlorines:bioaccumulation parameters and their relationship with Kow. Environ Toxicol Chem 1998,17:951-961
    [259]Sharon L, Bertelsen, Alex D, et al. Evaluation of logKow and tissue lipid content as predictors of chemical partitioning to fish tissue. Environmental Toxicology and Chemistry,1998:1447-1455
    [260]Oliver B G, Niimi A J. Bioconcentration factors of some halogenated organics for rainbow trout:Limitations in their use for prediction of environmental residues. Environmental Science and Technoogy,1985,19:842-849
    [261]Vos J H, Bodar C W M. Environmental Rish Limits for Toluene. RIVM Letter Report 601782005/2008.
    [262]van Leeuwen L C. Environmental Rish Limits for xylene (m-, o-, p-xylene). RIVM Letter Report 601782011/2009.
    [263]CCME. Ambient Aquatic Life Guidelines for Toluene. Science and Information Branch Water Stewardship Division Ministry of Environment.2007.
    [264]CCME. Summary of Existing Canadian Environmental Quality Guidelines.2003.
    [265]CCME. Ambient Aquatic Life Guidelines for Xylene. Science and Information Branch Water Stewardship Division Ministry of Environment.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700