用户名: 密码: 验证码:
波达方向估计中阵列误差校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向(DOA—Direction of Arrival)估计是阵列信号处理中一个重要的研究领域,广泛应用在雷达、声纳、通信、生物医学等领域中。但是大部分高分辨DOA估计算法都以接收天线阵列的阵元位置、通道幅相响应和阵元间的互耦效应精确已知为前提。而这在实际测向系统中是很难满足的,因此本文就不同的应用背景和实际环境围绕DOA估计中的阵列模型误差参数估计与校正方法、稳健的DOA估计方法进行了研究。
     针对空间非平稳噪声的情况,提出了一种适用于通道幅相不一致(或阵元位置误差)校正的阵列误差校正方法。该方法结合噪声协方差矩阵的最大似然估计方法对多维校正方法进行了改进,为迭代校正过程提供较精确的初值。仿真结果表明在低信噪比、空间非平稳噪声情况下,此方法具有较大的误差校正范围和较好的校正性能。
     研究了多径传播情况下的阵列通道不一致性校正问题。分析了两种去相关技术(空间平滑、模式空间变换)对通道幅相误差校正的影响。基于加权子空间拟合方法,提出一种适用于多径情况的通道幅相误差自校正方法。推导了该方法中代价函数的一阶导数及海色矩阵,并通过交替投影和高斯—牛顿算法实现了该代价函数的最优搜索。仿真结果表明该方法具有优良的误差校正和方位估计性能。
     针对通道幅相不一致和阵元间互耦效应同时存在的情况,提出了一种校正范围较广的阵列误差联合自校正方法。该方法利用鲁棒控制理论中的H~∞滤波方法抑制模型误差及噪声的影响,为迭代联合自校正过程提供较稳健的初始值。此方法不需互耦系数和幅相误差的先验信息且具有较高的分辨力,符合工程应用的需要。
     提出了一种基于信号分离的宽带DOA稳健测向算法。此算法利用矩阵算子的投影机理对入射信号进行有效的分离,而且矩阵算子的记忆与遗忘特征使得算法在迭代过程中避免陷入局部极值。该算法不需对阵列进行预先测量和校正,具有良好的工程应用前景。
DOA (Direction of Arrival) estimation is an important research area of array signal processing with growing applications in engineering, such as radar, sonar, communication, biomedicine, etc. A number of highly accurate methods exist for solving this problem. Unfortunately they all require precise knowledge about the characteristics of the receiving antenna array. These characteristics, which include sensor locations, gain and phase response, and mutual coupling, are rarely perfectly known in real situations. So this dissertation aims at the development of array calibration and robust DOA estimation methods, based on different application background and real environment.
     A self-calibration algorithm is proposed, which can correct the sensor position errors (or gain and phase errors) in nonuniform noise fields. In this algorithm, the multi-dimensional self-calibration method is combined with the maximum likelihood (ML) estimation method of the colored noise covariance matrix. It can provide more accuate initial value to the subsequent iterative process. The simulation was conducted and it was indicated that in low SNR scenarios, this algorithm has good performance of calibration and DOA estimation.
     The problem of DOA estimation and array gain and phase calibration in the presence of multipath is studied. First, two decorrelation methods (spatial smoothing and mode space transform) are discussed, and their influences to the calibtation of array gain and phase are analyzed. Then based on the weighted subspace fitting (WSF) scheme, a self-calibration algorithm is proposed, which can correct the array gain and phase errors in the presence of multipath propagation. The first-order derivative and Hessian matrix of this method's cost function are derivated, and the alternating optimization and Gauss-Newton method are used to realize the multidimensional search process. This method's calibration and DOA estimation performance is illustrated through computer simulations.
     Regarding the situation that array gain/phase error and mutual coupling exit simultaneously, a joint calibration method is developed, which has superior calibrating range. By using the H~∞filter which is proposed in robust control theory to restrain the influences of array model errors and environment noise, the more accuate initial value can be provided to the subsequent joint iterative self-calibration process. This method has no need of any a priori knowledge about those errors and has higher resolution. So this method is easy to implement in practice.
     In the presence of array imperfection and mutual coupling, a wideband robust DOA estimation algorithm which based on the signals separation category is proposed. By using the matrix operators which have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively and avoid the iterative process falling into the local extreme value. This method has no need of array calibration and measurement beforehand. So it has good potential in applications.
引文
[1] H. Krim, M. Viberg. Two decades of array signal processing research[J]. IEEE signal processing magazine, 1996: 67-94.
    
    [2] Schmidt R. O. Multiple emitter location and signal parameter estimation[J].IEEE Trans. on AP, 1986, 34(3): 276-280.
    [3] Tuan Do-Hong, Peter Russer. Signal processing for wideband smart antenna array applications[J]. IEEE microwave magazine, 2004: 57-67.
    [4] Don H. Johnson, Dan E. Dudgeon. Array signal processing: concepts and techniques. Prentice-Hall, 1993.
    
    [5] Prabhakar S, Naidu. Sensor array signal processing[M]. CRC Press, 2001.
    [6] Cadzow J. A, Kim Y. S, Shiue D C. General direction-of-arrival estimation: a signal subspace approach[J]. IEEE Trans. on AES, 1989, 25(1): 31-46.
    [7] P. Stoica, A. Nehorai. Statistical efficiency study of direction estimation methods, part I: analysis of MUSIC and preliminary study of MLM. In Advances in Spectrum Analysis and Array Processing(S. Haykin, Ed.)[M], vol II,Prentice-Hall, Englewood Cliffs, USA, 1991: 263-306.
    [8] P. Stoica, A. Nehorai. Statistical efficiency study of direction estimation methods, part II: analysis of weighted MUSIC and MLM. In Advances in Spectrum Analysis and Array Processing(S. Haykin, Ed.) [M], vol II,Prentice-Hall, Englewood Cliffs, USA, 1991: 307-326.
    [9] Weiss A. J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J]. IEEE Trans. on SP, 1994, 42(6): 1519-1526.
    [10] Friedlander B. A sensitivity analysis of the MUSIC algorithm[J]. IEEE Trans. on ASSP, 1990,38(10): 1740-1751.
    
    [11] Li Fu, Vaccaro R. J. Sensitivity analysis of DOA estimation algorithms to sensor errors[J]. IEEE Trans. Aerospace and Electronic Systems, 1992, 28(3): 708-717.
    
    [12] Swindlehurst A. L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part I : The MUSIC algorithm[J].IEEE Trans.on SP, 1992, 40(7): 1758-1773.
    [13] Swindlehurst A. L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part II: Multidimensional algorithm[J].IEEE Trans. on SP, 1993, 41(9): 2882-2890.
    [14] Schmidt R. O. Multilinear array manifold interpolation[J]. IEEE Trans. on SP,1992,40(4): 857-866.
    [15] Weiss A. J, Friedlander B. Manifold interpolation for diversely polarized arrays[J]. IEE proceedings-radar, sonar navig, 1994, 141(1): 19-24.
    [16] B. C. Ng, C. M. S. See. Sensor-array calibration using a maximum-likelihood approach[J]. IEEE Trans. on AP, 1996, 44(6): 827-835.
    [17] Eric. K. L. Hung. Computation of the coupling matrix among the elements of an array antenna[A]. In Proceedings of the International Conference on Radar (Radar 94)[C], Paris, May 1994: 703-706.
    [18] Eric. K. L. Hung. Matrix-construction calibration method for antenna arrays[J].IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(3): 819-828.
    [19] Zhang M, Zhu Z. D. DOA estimation with sensor gain, phase and position perturbations [A]. Proceedings of the IEEE National Aerospace and Electronics Conference[C], NAECO, 1993: 67-69.
    [20] Zhang M, Zhu Z. D. Array shape calibration using sources in known locations[A]. Proceedings of the IEEE National Aerospace and Electronics Conference[C], NAECO, 1993: 70-73.
    [21] Fistas N, Manikas A. A new general global array calibration method[A].Proceedings of IEEE ICASSP'94[C], 1994, 4: 73-76.
    [22] Ng B. C, Ser W. Array shape calibration using sources in known locations[A].Proceedings of Singapore ICCS/ISITA'92[C], 1992: 836-840.
    [23] Y. Rockah, P. M. Schultheiss. Localization Performance of Arrays Subject to Phase Errors[J]. IEEE Trans. on Aerospace and Electronic Systems, 1988, 24(4):402-409.
    [24] Y. Rockah, P. M. Schultheiss. Array shape calibration using sources in unknown locations-Part I: Far-field sources[J]. IEEE Trans. on Acoustics, Speech, Signal Processing, 1987, 35: 286-299.
    [25] Y. Rockah, P. M. Schultheiss. Array shape calibration using sources in unknown locations-Part II: Near-field sources and estimator implementation[J]. IEEE Trans. on Acoustics, Speech, Signal Processing, 1987, 35: 724-735.
    [26] A. J. Weiss, B. Friedlander. Array shape calibration using eigenstructure methods[J]. Signal Processing, 1991, 22(3): 251-258.
    [27] B. Friedlander, A. J. Weiss. Eigenstructure methods for direction finding with sensor gain and phase uncertainty [A]. Proc. IEEE ICASSP[C], 1988:2681-2684.
    [28] B. Friedlander, A. J. Weiss. Direction finding in the presence of mutual coupling[J]. IEEE Trans. on Antennas and Propagation, 1991, 39(3): 273-284.
    [29] Eric. K. L. Hung. A critical study of a self-calibration direction-finding method for arrays[J]. IEEE Trans. on SP. 1994, 42(2): 471-474.
    [30] J. Pierre, M. Kaveh. Experimental performance of calibration and direction finding algorithms[A]. ICASSP[C], 1991, 2: 1365-1368.
    
    [31] M. Wylie, S. Roy, H. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays[J]. IEEE Trans on SP, 1994, 42(12): 3449-3459.
    [32] V. C. Soon, L. Tong, Y. F. Huang, R. Liu. A subspace method for estimating sensor gains and phases[J]. IEEE Trans on SP, 1994,42(4): 973-976.
    [33] T. Svantesson. Modeling and estimation of mutual coupling in a uniform linear array of dipoles[R]. Dept. Signals and Systems, Chalmers Univ. of Technology,Goteborg, Sweden, Tech. Rep. S-412 96, 1999.
    [34] B. Wahlberg, B. Ottersten, M. Viberg. Robust signal parameter estimation in the presence of array perturbations [A]. IEEE ICASSP[C], 1991: 3277-3280.
    [35] M. Viberg, A. L. Swindlehurst. A Bayesian approach to auto-calibration for parametric array signal processing[J]. IEEE Trans. on SP, 1994, 42(12):3495-3507.
    [36] A. J. Weiss, B. Friedlander. Array shape calibration using sources in unknown locations-A maximum likelihood approach[J]. IEEE Trans. on Acoustics,Speech, Signal Processing, 1989, 37(12): 1958-1966.
    [37] M. Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans. on SP, 1991, 39(11):2436-2448.
    [38] M. Jansson, A. L. Swindlehurst, B. Ottersten. Weighted subspace fitting for general array error models[J]. IEEE Trans. on SP, 1998,46(9): 2484-2497.
    [39] J. S. Hong. Genetic approach to bearing estimation with sensor location uncertainties[J]. Electronics letters, 1993, 29(23): 2013-2014.
    [40] M. C. Dogan, J. M. Mendel. Applications of cumulants to array processing - part I : Aperture extension and array calibration[J]. IEEE Trans. SP, 1995, 43(5):1200-1216.
    [41] A. J. Weiss, B. Friedlander. "Almost Blind" Steering Vector Estimation Using Second-Order Moment[J]. IEEE Trans. on SP 1996,44(4): 2724-2732.
    [42] H.Wu, Y. Youngkang, Z. Bao. Direction finding and array calibration based on maximal set of nonredundant cumulants[A]. ICASSP 1996[C], 5: 2626-2629.
    [43] Rajagopal R, Ramakrishna Rao P. DOA estimation method for unknown noise fields: a matrix decomposition method[J]. IEE Proc. F, Radar Signal Process,1991, 138(5): 495-501.
    [44] Monika Agrawal, Surendra Prasad. A Modified Likelihood Function Approach to DOA Estimation in the Presence of Unknown Spatially Correlated Gaussian Noise Using a Uniform Linear Array[J]. IEEE Trans. on SP, 2000, 48(10):2743-2749.
    [45] Amir Leshem, Mati Wax. Array calibration in the presence of multipath[J].IEEE Trans. on SP, 2000, 48(1): 53-59.
    [46] Qingming Bao, C. C. KO, Wanjun Zhi. DOA estimation under unknown mutual coupling and multipath[J].IEEE Trans.on Aerospace and Electronic systems,2005,41(2):565-573.
    [47]A.Nehorai,D.Starer,P.Stoica.Consistency of direction of arrival estimation with multipath and few snapshots[A].IEEE Intl.Conf.on ASSP[C],Albuquerque,USA,1990:2819-2822.
    [48]Fistas N,Manikas A.a new general global array calibration method[A].IEEE ICASSP[C],1994,4:73-76.
    [49]T.Ratnarajah,A.Manikas.An approach to mitigate the effects of array uncertainties on the MUSIC algorithm[J].IEEE signal processing letters,1998,5(7):185-188.
    [50]T.Do-Hong,P.Russer.Analysis of wideband direction-of-arrival estimation for closely-spaced sources in the presence of array model errors[J].IEEE microwave wireless components letter,2003,13:1-3.
    [51]T.Do-Hong,P.Russer.Wideband direction-of-arrival estimation in the presence of array imperfection and mutual coupling[A].Proceedings of Ⅻ.International symposium on theoretical electrical engineering[C],2003:25-28.
    [52]J.Mohammadpour Velni,K.Khorasani.A robust state-space approach for localizing wideband sources in sensor arrays[A].Proceedings of the 3~(rd) IEEE Sensor Array and Multichannel Signal Processing Workshop[C],Barcelona,Spain,2004:298-302.
    [53]B.P.Flanagan,K.L.Bell.Array self-calibration with large sensor position errors[J].Signal Processing,2001,81:2201-2214.
    [54]B.P.Flanagan,K.L.Bell.Improved array self-calibration with large sensor position errors for closely spaced sources[A].Proceedings of first IEEE Sensor Array and Signal Processing Workshop[C],2000:484-488.
    [55]B.P.Flanagan.Self calibration of antenna arrays with large perturbation errors[D].Ph.D.Thesis,George Mason University,USA,2000.
    [56]K.Kim,T.K.Sarkar,M.S.Palma.Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers[J].IEEE Trans.on Antennas Propag.,2002,50:582-590.
    [57]Yasutaka Horiki,Edward H.Newman.A self-calibration technique for a DOA array with near-zone scatterers[J].IEEE Trans on antennas and propagation,2006,54(4):1162-1166.
    [58]K.R.Dandekar,H.Ling,G.Xu.Experiment study of mutual coupling compensation in smart antenna applications[J].IEEE Trans.Wireless Commun.,2002,1:480-487.
    [59]C.-C.Yeh,M.-L.Leou,D.R.Ucci.Bearing Estimations with Mutual Coupling Present[J].IEEE Trans.Antennas Propagat.,1989,37:1332-1335.
    [60] D. Segovia Vargas, R. Martin Cuerdo, M. Sierra Perez. Mutual coupling effects correction in microstrip arrays for Direction-of-arrival estimation[J]. IEE Proceedings of Microwaves, Antennas and Propagation, 2002, 149(2): 113-118.
    [61] K. C. Lee. A simplified model for the mutual coupling effects of adaptive antenna arrays[J]. J. of Electromagn. Waves and Appl, 2003, 17(9): 1261-1268.
    [62] I. J. Gupta, A. A. Ksienski. Effect of mutual coupling on the performance of adaptive arrays[J]. IEEE Trans on AP, 1983, 31(9): 785-791.
    [63] S. Durrani, M. E. Bialkowski. Effect of Mutual Coupling on the Interference Rejection Capabilities of Linear and Circular Arrays in CDMA[J]. IEEE Trans.Antennas Propagat., 2004, 52: 1130-1134.
    [64] H. E. King. Mutual impedance of unequal length antennas in echelon[J]. IRE Trans. Antennas Propagat., 1957, 5: 306-313.
    [65] P. Ioannides, C. A. Balanis. Mutual Coupling in Adaptive Circular Arrays[J].Proc. Antennas and Propagation Society Int. Symp., Monterey, CA, 2004, 1:403-496.
    [66] Harry L. Van Trees. Detection, estimation, and modulation theory Part IV Optimum array processing[M]. New York, Wiley, 2001.
    [67] Stoica P, Nehorai A. MUSIC, maximum likelilood, and Cramer-Rao bound[J].IEEE Trans. On ASSP, 1989, 37(5): 720-741.
    [68] Stoica P, Nehorai A. MUSIC, maximum likelilood, and Cramer-Rao bound:further results and comparisons[J]. IEEE Trans. On ASSP, 1990, 38(12):2140-2150.
    [69] A. J. Weiss, B. Friedlander. Self-Calibration for High-Resolution Array Processing. In Advances in Spectrum and Array Processing, Vol. II, (S. Haykon,Ed.)[M], Ch. 10, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [70] J. X. Zhu, H. Wang. Effects of Sensor Position and Pattern Perturbations on CRLB for Direction Finding of Multiple Narrow-Band Sources[A]. Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling[C], 1988:98-102.
    [71] J. Smith, Y. Leung, A. Cantoni. The Cramer-Rao Lower bound for Towed Array Shape Estimation with a Single Source[J]. IEEE Trans. on Signal Processing,1996,44(4): 1033-1036.
    [72] J. Dauwels, Sascha Korl. A numerical method to compute Cramer-Rao-type bounds for challenging estimation problems[A]. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2006)[C],Toulouse, France, 2006, 5: 717-720.
    [73] Roller C. David. Robust eigenstructure-based DF in the presence of mutual coupling[D]. Ph. D. Thesis, The George Washington University, 1994.
    [74] Q. T. Zhang, K. M. Wang. Information theoretic criteria for the determination of the number of signals in spatially correlated noise[J]. IEEE Trans. on SP, 1993,41: 1651-1663.
    [75] M. Wax, J. Sheinvald, A. J. Weiss. Detection and localization in colored noise via generalized least squares[J]. IEEE Trans, on SP, 1996, 44(7): 1734-1743.
    [76] Yuehua Wu, Kwok-Wai Tam. On determination of the number of signals in spatially correlated noise[J]. IEEE Trans. on SP, 1998, 44(11): 3023-3029.
    [77] M. Pesavento, A. B. Gershman. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Trans. On Signal Processing, 2001, 49 (7): 1310-1324.
    [78] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai. Exact and large sample approximations of maximum likelihood techniques for parameter estimation and detection in array processing. in Radar Array Processing[M], S. Haykin, J. Litva,and T. Shepherd, eds., Springer-Verlag, 1993: 99-151.
    [79] Bo. Goransson, Bjoin Ottersten. Direction estimation in partially unknown noise fields[J]. IEEE Trans. On SP, 1999, 4(9): 2375-2384.
    [80] H. Sinath, V. U. Reddy. Analysis of MUSIC Algorithm with sensor gain and phase perturbations[J]. Signal processing, 1991, 23: 245-256.
    [81] Fu Li, R. Vaccaro. Performance degradation of DOA estimators due to unknown noise fields[J]. IEEE Trans. On SP, 1992, 40(3): 686-690.
    [82] A. Moghaddamjoo. Transform-based covariance differencing approach to the array with spatially nonstationary noise[J]. IEEE Trans. On SP, 1991, 39(1):219-221.
    [83] A. Paulraj, T. Kailath. Eigenstructure method for direction of arrival estimation in the presence of unknown noise fields[J]. IEEE Trans. On ASSP, 1986, 34(1):13-20.
    [84] Shan. T. J, Wax M, Kailath T. On spatial smoothing for estimation of coherent signals[J]. IEEE Trans. On ASSP, 1985, 33(4): 806-811.
    [85] Williams R T, Prasad S, Mahalanbis S K, Sibul L H.An improved spatial smoothing technique for bearing estimation in a multipath environment[J]. IEEE Trans. On ASSP, 1988, 36(4): 425-432.
    [86] Pillai S U, Kwon B H. Forward/backward spatial smoothing technique for coherent signal identification[J]. IEEE Trans. On ASSP, 1989, 37(1): 8-15.
    [87] Pillai S U, Kwon B H. Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes[J]. IEEE Trans.On Assp, 1989,37(8): 1176-1189.
    [88] Rao B D, Hair K V S. Effect of spatial smoothing on the performance of MUSIC and the minimum-norm method[J]. IEE Proc.-F, 1990, 138(6): 449-458.
    [89] Rao B D, Hair K V S. Effect of spatial smoothing on statespace methods/ESPRIT[A]. In Proc. IEEE ASSP 5~(th) workshop spectrum estimation modeling[C], 1990, 10: 377-381.
    [90] Linebarger D. A, Johnson D H. The effect of spatial averaging on spatial correlation matrices in the presence of coherent signals[J]. IEEE Trans. On ASSP, 1990, 38(5): 880-884.
    [91] Di A. Multiple sources location-a matrix decomposition approach[J]. IEEE Trans.On, ASSP, 1985,33(4): 1086-1091.
    [92] Kung S Y, Lo C K, Foka R. A toeplitz approximation approach to coherent source direction finding[A]. ICASSP[C], 1986, 11: 193-196.
    [93] Wang H, Kaveh M. On the performance of signal-subspace processing-part II:coherent wide-band systems[J]. IEEE Trans. On ASSP, 1987, 35(11):1583-1591.
    [94] Evans J. E, Johson J. R, Sun D. F. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation[A].IEEE 1st ASSP workshop spectral estimation Canada[C]. 1981: 134-139.
    [95] C. P. Mathews and M. D. Zoltowski. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Trans. Signal Processing, 1994,42: 2395-2407.
    [96] Mati Wax, Jacob Sheinvald. Direction finding of coherent signals via spatial smoothing for uniform circular arrays[J]. IEEE Trans. on Antennas and Propagation, 1994,42 (5): 613-620.
    [97] M Viberg, B Ottersten. Sensor array processing based on subspace fitting[J].IEEE Trans. on SP, 1991, 39 (5): 1110-1121.
    [98] M Viberg, B Ottersten, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Trans. on SP, 1991, 39 (11):2436-2449.
    [99] Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Trans. on ASSP, 1988, 36 (10): 1553-1559.
    [100] Dennis J. E, Schnabel R. B. Numerical methods for unconstrained optimization and nonlinear equations[M]. Prentice Hall, Englewood Cliffs, Nj 1983.
    [101] Dandekar K.R., Hao Ling, Guanghan Xu. Smart antenna array calibration procedure including amplitude andphase mismatch and mutual coupling effects[A]. IEEE International Conference on Personal Wireless Communications[C], 2000: 293-297.
    [102] Hon Tat Hui. A practical approach to compensate for the mutual coupling effect in an adaptive dipole array[J]. IEEE Trans. On AP, 2004, 52(5): 1262-1269.
    [103] Yamada H., Ogawa Y., Yamaguchi Y. Mutual impedance of receiving array and calibration matrix for high-resolution DOA estimation[A]. IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics[C], 2005: 361-364.
    [104] Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling[A]. Proceedings of the European Signal Processing Conference, EUSIPO 2000[C], 2000, 3: 1417-1420.
    [105] See C M S, Poh B K. Parametric sensor array calibration using measured steering vectors of uncertain locations[J]. IEEE Trans. On Signal Processing,1989,47(4): 1133-1137.
    [106] B. Friedlander, A. J. Weiss. Direction finding in the presence of mutual coupling[J]. IEEE Trans. on Antennas and Propagation, 1991, 39 (3): 273-284.
    [107] Roald Goossens, Hendrik Rogier. A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling[J]. IEEE Trans. On Antennas and Propagation, 2007, 55 (3):841-849.
    [108] H. Steyskal, J. S. Herd. Mutual coupling compensation in small array antennas[J].IEEE Trans. On Antennas Propagat., 1990, 38:1971-1975.
    [109] S. Durrani, M. E. Bialkowski. Effect of Mutual Coupling on the Interference Rejection Capabilities of Linear and Circular Arrays in CDMA[J]. IEEE Trans.On Antennas Propagat., 2004, 52(4): 1130-1134.
    [110] T. Svantesson. Direction Finding in the Presence of Mutual Coupling[D]. Master Thesis, Chalmers University of Technology, Goteborg, Sweden, 1999.
    [111] T. Svantesson. The Effects of Mutual Coupling Using a Linear Array of Thin Dipoles of Finite Length [A]. In Proc. 8th IEEE Signal Processing Workshop On Statistical Signal and Array Processing[C], Portland, USA, September 1998:232-235.
    [112] T. Svantesson. Mutual Coupling Compensation Using Subspace Fitting[A]. In Proc. IEEE SAM2000 Workshop[C], Boston, MA, 2000: 494-498.
    [113] T.Svantesson. Modeling and Estimation of Mutual Coupling in a Uniform Linear Array of Dipoles[A]. In Proc. ICASSP 99[C], Phoenix, USA, 1999: 2961-2964.
    [114] T. Svantesson. Antennas and Propagation from a Signal Processing Perspective[D]. Thesis for the degree of Doctor of Philosophy. Chalmers University of Technology, Goteborg, Sweden, 2001.
    [115] Yeh C, Leou M., Ucci D. R. Bearing estimations with mutual coupling present. [J] IEEE Trans. On Antennas and Propagation, 1989, 37(10): 1332-1335.
    [116] B. Hassibi. A. H. Sayed, T. Kailath. Indefinite-Quadratic Estimation ond Conlrol: A Unified Approach to H~2 and H~∞ Theories[M]. SIAM Studies in Applied Mathematics, New York, 1999.
    [117] T. Ratnarajah, A. Manikas. A state-space model for H~∞ type array signal processing[A]. Proceedings of ICASSP[C], 1997: 3745-3748.
    [118] B. Hassibi, A. H. Sayed, T. Kailath. Linear estimation in Krein spaces—Part I: Theory and Part II: AppIications[J]. IEEE Trans, on Automatic Control, 1996,41(1): 18-49.
    [119] Su G., Morf M. Signal subspace approach for multiple wideband emitter location[J]. IEEE Trans. On ASSP, 1983, 31(12): 1502-1522.
    [120] Bienvenu G. Eigensystem properties of the sample space correlation matrix[A].Inproc. ICASSP[C], 1983: 332-335.
    [121] Wax M., Shan T. J., Kailath T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Trans. On ASSP, 1984, 32(4): 817-827.
    [122] Allam M., Moghaddamjoo A. Two-dimensional DFA projection for wideband direction-of-arrival estimation[J]. IEEE Trans. On SP, 1995,43(7): 1728-1732.
    [123] Valaee S., Kabal P. Wideband array processing using a two-sided correlation transformation[J]. IEEE Trans. On SP, 1995, 43(1): 160-172.
    [124] Hung H., Kaveh M. Focusing matrices for coherent signal-subspace processing[J]. IEEE Trans. On ASSP, 1988, 36(8): 1272-1281.
    [125] H. Wang, M. Kaven. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources[J]. IEEE Trans. On ASSP, 1985, 33(4): 823-831.
    [126] T. Do-Hong, P. Russer, Comparing performance of direction-ofarrival estimation methods for wideband signal sources[A]. In 2002 Eur. Conf. Wireless Technology Proc.[C], Sept. 2002: 201-204.
    [127] T. Do-Hong, P. Russer. Analysis and simulation of direction-of-arrival estimation for closely spaced wideband sources using arbitrary antenna arrays[A].In 2002 Eur. Conf. Wireless Technology Proc.[C], Sept. 2002: 197-200.
    [128] Tuan Do Hong, Peter Russer. An analysis of wideband direction - of - arrival estimation for closely - spaced sources in the presence of array model errors[J].IEEE Trans, Microwave and Wireless Components, 2003, 13(8): 314-316.
    [129] Jian Li, Dunmin Zheng, Petre Stoica. Angle and waveform estimation via RELAX[J]. IEEE Trans. On Aerospace and Electronic Systems, 1997, 33(3):1077-1087.
    [130] Javad Mohammadpour, Khorasani K. A State-space Approach for Localizing Narrowband Sources Based on RELAX Method[A]. IEEE Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers[C],2005: 1399-1403.
    [131] K. V. Stavropoulos, A. Manikas. Array calibration in the presence of unknown sensor characteristics and mutual coupling[A]. Proceedings of 2000 European Signal Processing Conference[C], 2000, 3: 1417-1420.
    [132] A. Manikas, N. Fistas. Modelling and estimation of mutual coupling between array elements[A]. Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, ICASSP-94[C], Adelaide, Australia, 1994, 4: 553-556.
    [133]王炎.数字天线阵列及其校正[D].博士论文,中国科学技术大学.2003.
    [134]章宏,陈荆花,周希朗.阵列天线阵元位置误差、通道不一致和互耦的校正[J].上海交通大学学报,2002,36(9):1284-1290.
    [135]陈永倩,顾建峰,肖先赐.用禁忌搜索实现DOA估计[J].电波科学学报,2005,20(1):55-58.
    [136]李杰,高火涛,郑霞.相控阵天线的互耦和近场校准[J].电子学报,2005,33(1),119-122.
    [137]吴云韬.非平稳、色噪声环境下的参数估计方法研究[D].博士论文,西安电子科技大学,2003.
    [138]汪茂光.几何绕射理论[M].陕西西安:西北电汛工程学院出版社.1985.
    [139]孙超,李斌,加权子空间拟合算法理论与应用[M].陕西西安:西北工业大学出版社.1994.
    [140]王布宏,王永良,陈辉.多径条件下基于加权空间平滑的阵元幅相误差校正[J].通信学报,2004,25(5):166-174.
    [141]王永良.空间谱估计理论与算法[M].北京:清华大学出版社.2004.
    [142]刘德树.空间谱估计及其应用[M].安徽合肥:中国科学技术大学出版社.1997.
    [143]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2004.
    [144]王布宏,王永良,陈辉.均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正[J].中国科学E辑,2004,34(2):229-235.
    [145]黄可生.宽带信号阵列高分辨处理技术研究[D].博士论文,国防科学技术大学,2005.
    [146]邵朝.稳健的超分辨算法研究[D].博士论文,西安电子科技大学,1997.
    [147]肖国有,屠庆平.声信号处理及其应用[M].陕西西安:西北工业大学出版社.1994.
    [148]沈凤麟,叶中付,钱玉美.信号统计分析与处理[M].安徽合肥:中国科技大学出版社.2001.
    [149]黄曼磊.鲁棒控制理论及应用[M].黑龙江哈尔滨:哈尔滨工业大学出版社,2007.
    [150]HarryL.VanTrees(汤俊译).最优阵列处理技术[M].北京:清华大学出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700