用户名: 密码: 验证码:
基于CBM-CFS3模型的三峡库区主要森林生态系统碳计量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是陆地生态系统中最大的碳库,它对全球碳循环的贡献是不可比拟的。三峡库区地处长江流域中下游,生态地位特殊,是我国生态环境保护的重点地区,库区森林生态系统在保持水土、涵养水源、增加碳汇等方面均发挥了重要作用。采用模型模拟方法对库区森林生态系统进行碳储量和生产力的研究,一方面模型模拟的结果有利于更客观地评估三峡库区森林的生态功能;另一方面,通过对模型参数的本土化改进,有利于探索更精确的区域性碳计量的理论与技术方法。
     本文以长江三峡库区的马尾松林、杉木林等主要森林类型为研究对象,以加拿大碳收支模型CBM-CFS3为平台,先收集森林资源清查的一类调查样地的连续调查数据,运用若干种理论生长函数模型,通过比较得出各森林类型最优的林分水平的年龄—蓄积产量曲线,作为模型模拟森林碳储量和生产力的驱动力;然后通过收集大量文献样地资料,采用幂函数模型和多项logit模型分别估计出各森林类型的蓄积—生物量转换参数和林木器官(干、皮、枝、叶)生物量比例参数。最终,应用估算的产量曲线、生物量转换和比例参数以及收集到的生物量周转和凋落物分解参数,以1999年三峡库区森林资源清查二类调查数据中的林龄,面积等数据为基础,实现三峡库区的森林生态系统碳储量和生产力的模拟计算。
     模型参数估计的主要结论如下:
     (1)以Richards、Logistic和Korf生长函数为备选模型,运用非线性回归方法,分别建立林龄-蓄积量生长模型,并通过模型拟合统计量和抽样精度检验的结果比较,对各个模型进行评价,选出适合各森林类型的最优模型。结果表明:Richards模型表现出较强的适应性,其次为Logistic模型、Korf模型。各主要森林类型的最优曲线拟合结果表现良好,决定系数R2均达到0.5以上,均方根误差在10.99m3·hm"2~21.07m3·hm-2之间,精度检验的结果在44%~80%之间。各森林类型的蓄积预测值与实测值的残差呈正态分布,残差有随林龄的增大而增大的趋势。针叶混交林的生长潜力最大,其蓄积生长极限达到352.356m3·hm-2;柏木林长势较差,蓄积生长极值不超过80m3·hm-2。
     (2)蓄积-生物量转换模型的拟合结果除常绿阔叶林外均关系显著,预测残差随自变量的增大而升高,均方根误差均控制在6.520t·hm-2~23.123t·hm-2,精度检验结果在31.14%~91.79%之间,除常绿阔叶林以外,预测精度均达到70%以上。林木器官生物量比例模型拟合的结果除常绿阔叶林外均关系显著,预测残差随自变量的增大而减小。干、皮、枝和叶生物量比例模型的均方根误差均不超过0.1,分别达到0.031~0.085,0.005~0.041,0.029~0.103和0.016~0.083,其精度检验结果分别达到91.04%~96.14%,62.71%~94.48%,63.70%~94.47%和-8.86%~83.92%。各森林类型(除常绿阔叶林外)的乔木层地上生物量模型可行性较高,模型所得生物量参数也可为亚热带森林生物量参数研究提供参考。
     模型模拟主要结果如下:
     (1)三峡库区森林生态系统的死有机质(DOM)碳库的碳储量达到103.636×106t,其中地下DOM碳储量是地上DOM碳储量的3倍以上。对不同森林类型而言,马尾松林的DOM碳储量最高(占库区森林总DOM碳储量的26.1%),其后由大到小依次为落叶阔叶林(22.7%)、针阔混交林(20.2%)、针叶混交林(15.2%)、柏木林(5.5%)、常绿阔叶林(5.0%)、杉木林(3.4%)和温性松林(1.9%)。不同森林类型的DOM碳库的碳密度差异很大,表现为针叶林的DOM碳密度明显小于阔叶林和混交林,尤其是柏木林的各类DOM碳密度均为最低,针阔混交林的DOM碳密度最大。
     (2)三峡库区森林生态系统总有机碳储量达到151.018×106t,其中土壤有机质的碳储量高达80.163×106t,占总森林生态系统碳储量的53.1%,植被生物量的碳储量为47.382×106t(31.4%),枯落物的碳储量为23.472×106t(15.5%)。不同森林类型的生态系统碳储量差异较大,在3.144×106t到40.706×106t之间,分布面积最大的马尾松林的生态系统碳储量最高,生产力较低的柏木林总有机碳储量最低。三峡库区森林生态系统(植被、凋落物、土壤)的平均碳密度达107.353t·hm-2,低于全国平均水平258.83t·hm-2,远低于约275t.hm-2的世界平均水平(植被、土壤)。平均土壤有机质碳密度为56.984t·hm-2,植被碳密度为33.682t.hm-2,枯落物碳密度为16.685t·hm-2。针叶林的生态系统碳密度要小于阔叶林和混交林,针叶林中又属柏木林的碳密度最小;针阔混交林的碳密度最大;各森林类型的植被、枯落物和土壤有机质碳库的碳密度大小与其总碳密度大小正相关。
     (3)三峡库区森林生态系统净第一性生产力(NPP)和净生态系统生产力(NEP)的模拟结果表明:库区内森林植被的平均NPP为3.92t C·hm-2·a-1,其中超过三分之二的碳被分配给凋落物,造成2.71t C.hm-Z.a-1的碳排放,平均NEP为1.21t C·hm-2·a-1。库区植被年均固定大气中的C共5.513×106t,其中有1.694×106t C被固存在生态系统中,并因凋落物分解而释放3.819×106Mg C归还给大气。各森林类型的年均NPP在2.20tC·hm-2·a-1~5.08t C·hm-2·a-1之间,柏木林的碳固定能力最低,针阔混交林最高,其它森林类型的NPP由高至低依次为:针叶混交林>常绿阔叶林>落叶阔叶林>马尾松林>杉木林>温性松林。各森林类型的碳固存能力与其固定碳的能力并不一致,年均NEP在0.63t C·hm-2·a-1~-2.14t C·hm-2·a-1之间,由高至低分别为:针叶混交林>马尾松林>杉木林>常绿阔叶林>落叶阔叶林>针阔混交林>温性松>柏木林。
     通过与实测推算数据的对比验证,CBM-CFS3模型模拟出的森林植被碳密度结果合理;凋落物碳密度的估算结果大于实测推算数据,土壤有机碳密度则较低,远低于全国平均水平;模型死有机质中包含对死木的估算造成了凋落物碳密度的高估,而模型DOM碳库的初始化方法造成土壤有机碳密度的低估;NPP的估计结果基本与实测推算数据相一致。总的来说,模型模拟得出的三峡库区森林生态系统的平均碳密度低于全国平均水平,远低于世界平均水平,但其林龄结构以中幼龄林为主,未来库区森林的固碳潜力巨大。
Forest resource is the largest carbon pool in terrestrial ecosystem, which contributes carbon to the global carbon cycle incomparably. The Three Gorges Reservoir Area locates in the upstream to midstream of Yangtze River under a special ecological status, where is the key area of ecological and environmental protection in China. The forest ecosystem in this reservoir plays a important role in soil and water conservation, and carbon sink increase, etc. Simulating the carbon storage and productivity of forest ecosystem using model method, on one hand, can make for a more objective assessment of forest ecological functions of Three Gorges Reservoir Area; on the other hand, is conducive to explore more precise regional carbon accounting theory and technical methods through the localization improvement of model parameters.
     This study considers the Masson Pine, Chinese Fir and other major forest types in Three Gorges reservoir area as the research objects. Firstly, the Age-Volume yield curves are created by comparing sevaral growth functions based on forest resource inventory of continuous sample survey data for each forest type, as the driving force for model to simulate forest carbon stocks and productivity; Secondly, volume-to-biomass conversion parameters and forest biomass component (stem, bark, branch, foliage) proportion parameters of every main forest type were estimated using the power function model and multiple logit model and plots by collecting a large number plots from literature data in various forest types.Ultimately, the model simulation of forest ecosystem carbon stocks and productivity in Three Gorges Reservoir finished, using the estimated yield curve, volume-to-biomass conversion parameters and forest biomass component proportion parameters parameters, biomass turnover and litter decomposition parameters searched from literature,adding the base information as age, area, etc. in Three Gorges Forest Inventory data.Model parameters estimation results are as follows:
     (1) The Age-Volume growth models of main forest types in Three Gorges Reservoir Area were estimated using the mathematical statistics method of nonlinear regression, based on the optimal model of Richards, Logistic and Korf growth function. Finally the most suitable models for every forest type were chosen through comparing the results of model fit statistics and sampling accuracy test. It shows that the Richards growth function appears its strong adaptability, the Logistic and Korf growth function. All the fitting results of best curves for every forest type are good, their determine coefficient R2are all above0.5, and the RMSE varied from10.99m3·hm-2to21.07m3·hm-2, the results of accuracy test are between44%-80%. The residuals between predicted and observed volume which show normal distribution, increased with the age rising. Coniferous mixed forest has the greatest potential to growth, its accumulation growth limit is352.356m3·hm-2, and the cypress forest is poorest, with the growth extreme value less than80m3·hm-2. All the growth models can provide reference and basis to stand growth prediction and forest management for this region.
     (2) The model fitting results of volume-to-biomass conversion for every forest type show good relations except evergreen broad-leaved forest, and the predicting residuals increased with the increment of the independent variable value. The root mean square errors of them are all controlled within6.520t·hm-2-23.123t·hm-2. The results of accuracy test are between31.14%-91.79%, all the forest types of it except evergreen broad-leaved forest are above70%. On the other hand, The results of proportion models for biomass components show significant relationship in addition to evergreen broad-leaved forest, and the predicting residuals decreased with the independent variable value increased. The root mean square error of stem, bark, branch and leaf biomass proportion of total tree biomass were all less than0.1, as0.031~0.085,0.005~0.041,0.029~0.103and0.016~0.083respectively. Their results of accuracy test reach91.04%~96.14%,62.71%~94.48%,63.70%-94.47%and-8.86%~83.92%. The models obtained (except the models for evergreen broad-leaved forest) in this paper are reasonable, and the model parameters also can offer reference for the study of the subtropical forest biomass parameters.
     Model simulation results are as follows:
     (1) The carbon storage of dead organic matter (DOM) pool of forest ecosystems reaches103.636×106t in Three Gorges Reservoir Area, and the carbon storage of underground DOM is3times more than the aboveground. For different forest types, Masson Pine forest has the highest carbon stocks in DOM (accounts for26.1%to total DOM carbon stocks), follow in descending order are deciduous broad-leaved (22.7%), coniferous and deciduous mixed (20.2%), coniferous mixed (15.2%), Cypress(5.5%), evergreen broadleaved (5.0%), Chinese Fir (3.4%) and temperate pine forest (1.9%). The carbon stocks in DOM carbon density of different types of forest varied greatly, shows that the coniferous forest is significantly less than broadleaved and mixed forests, especially the Cypress forest types which has the lowest DOM carbon intensity.
     (2) The carbon storage of forest ecosystem reaches151.018×106t in Three Gorges Reservoir Area, where soil organic carbon stock is up to80.163×106t, accounts for53.1%to the total forest ecosystem carbon stocks, and with the biomass carbon stock of47.382×106t (31.4%), litter carbon reserves of23.472×106t (15.5%). The forest ecosystem carbon stocks of different forest are quite different from3.144x106t to40.706×106t. The Masson Pine forest which has the largest distribution area gets the highest ecosystem carbon stocks, while the Cypress forst with lower productivity reserves a minimum. The average forest ecosystems carbon density (vegetation, litters and soil) of107.353t·hm-2of Three Gorges Reservoir Area is below the national average level of258.83t·hm-2, which is far below the world average level of275t·hm-2(vegitation and soil). The average soil organic carbon density is56.984t·hm-2, with the vegetation of33.682t·hm-2, litter of16.685t·hm-2. For different forest types, the ecosystem carbon density of coniferous forest is less than broadleaved and mixed forests, in which the Cypress forest owns the minimal carbon density, the conifer-deciduous mixed forest gets the maximum carbon density.
     (3) The simulation results of Net Primary Productivity (NPP) and Net Ecosystem Productivity (NEP) for forest ecosystem in Three Gorges Reservoir show that:the average vegetation NPP is3.92t C·hm-2·a-1, of which more than two thirds of the carbon is assigned to litters, results in the emissions of2.71t C·hm-2·a-1. The average NEP is1.21t C·hm-2·a-1. The vegetation fixes5.513×106t atmospheric C every year, in which1.694×106t C sequestrate in ecosystems, and release3.819x106t C returned to the atmosphere because of litter decomposition.. The average annual NPP of every forest types varies from2.20-5.08t C·hm-2·a-1. The carbon fixation capacity of forest in descending order as follows:coniferous and deciduous mixed> coniferous mixed> evergreen broad-leaved> deciduous broad-leaved> Masson Pine> Chinese Fir> temperate pine> Cypress forest. The carbon sequestration capacity are not consistent with its fixation ability fixed carbon, with average annual NEP at0.63t C·hm-2·a-1~2.14t C·hm-2·a-1. The carbon sequestration capacity of forest in descending order as follows:coniferous mixed> Masson Pine> Chinese Fir> evergreen broad-leaved> deciduous broad-leaved> coniferous and deciduous mixed> temperate pine> Cypress forest.
     By the comparison with estimated results used measured data, CBM-CFS3model simulation results of vegetation carbon density are reasonable, but the litter and soil organic carbon density express the overestimation and underestimation respectively, the dead organic matter including the deadwood and the DOM initialization methods may be the main reasons. NPP estimation results are basically consistent with the measured projection data. Overall, the average forest ecosystems carbon density of Three Gorges Reservoir Area derived from model is lower than the national, and far below the world level. But benefit from its young-middle age structure, the carbon sequestration potential of forest in this area will appear quickly in the future.
引文
Aber JD, Federer CA. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia,1992,92(4):463-474.
    Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystem:a triangular relationship. Oikos,1997(3),79:439-449.
    Atjay GL, Ketner P, Duvignesud P. Terrestrial primary production and phytomass. In the Global Carbon Cycle, edited by B Bolin et al., Willy, New York,1979:129-181.
    Bi J, Blanco JA, Seely B, et al. Yield decline in Chinese-fir plantations:a simulation investigation with implications for model complexity. Canadian Journal of Forest Research,2007,37(9):1615-1630.
    Botkin DB, Janak JF, Wallis JR. Rationale, limitations, and assumptions of a northeastern forest growth simulator. IBM Journal Research and Devision,1972a,16(2):101-116.
    Botkin DB, Janak JF, Wallis JR. Some ecological consequences of a computer model of forest growth. Journal of Ecology.1972b,60(3):849-873.
    Boudewyn P, Song X, Magnussen S, et al. Model-based, volume-to-biomass conversion for forested and vegetated land in Canada. Natrual Resources Canada, Canada Service Pacific Forestry Centre, Victoria, British Columbia Information Report, BC-X-411,2007.
    Box EO. Macroclimate and Plant Forms:An Introduction to Predictive Modeling in Phytogeography. Netherlands:The Hague:Dr. W. Junk Publishers,1981:258.
    Brown S and Lugo AE. Biomass of tropical forests:A new estimate based on forest volumes. Science, 1984,223(4642):1290-1293.
    Brown S. Measuring carbon in forests:current status and future challenges. Environmental Pollution, 2002,116(3):363-372.
    Caspersen JP, Pacala SW, Jenkins JC, et al. Contributions of land-use history tocarbon accumulation in U.S. forests. Science,2000,290(5494):1148-1151.
    Cohen WB, Harmon ME, Wallin DO, et al. Two decades of carbon flux from forests of the Pacific Northwest. Bioscience,1996,46 (11):836-844.
    Cotrufo MF, De Angelis P, Polle A. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology,2005,11(6):971-982
    Cox PM, Betts RA, Jones CD, et al. Modeling vegetation and the carbon cycle as interactive elements of the climate system. In:Pearce R, ed. Meteorology at theMillennium. New York:Academic Press.2001.
    Detwiler RP, Hall CAS. Tropical forests and the global carbon cycle. Science,1988(4835),239:42-47.
    Dixon RK, Brown SL, Houghton RA, et al. Carbon pools and flux of global forest ecosystems. Science, 1994,263(5144):185-190.
    Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    Foley JA, Prentice IC, Ramankutty N, et al. An integrated biosphere model of land surface processes, terestrial carbon balance and vegetation dynamics. Global Biogeochemical Cycles,1996,10(4):603-628.
    Groot WJ, Landry R, Kurz WA, et al. Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire,2007,16(5):593-606.
    Haxeltine A, Prentice I. BIOME3:An equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemistry Cycle,1996,10(4):693-710
    Heal OW, Menaut JC, Steffen WL. Towards a global terrestrial observing system (GTOS):detecting and monitoring change in terrestrial ecosystems. Technology Report 26, IGBP Global Change Report. UNESCO,1993.
    Holdridge LR. Determination of world plant formations from simple climatic data. Science,1947,105: 367-368.
    Intergovernmental Panel on Climate Change (IPCC),2003, In:Penman J., et al. (Eds.), Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies, Hayama (http://www.ipcc-nggip.iges.or.jp).
    Jarvis PG, McNaughton KG. Stomatal control of transpiration:scaling up from leaf to region. Advances in Ecology Research,1986,15:1-49.
    Jenkinson DS, Hart PB, Rayner JH, et al. Modeling the turnover of organic matter in long-term experiments. INTECOL Bulletin,1987,15:1-8.
    Jenney HS, Gessel P, Bingham FT. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Science,1949,68(6):419-432.
    Ji JJ. A climate-vegetation interaction model:simulating physical and biological processes at the surface. Journal of Biogeography,1995,22(2/3):445-451.
    Kimmins JP. Forest ecology. New York:Macmillan,1987.
    Kimmins JP. Ecology, environmentalism and green religion. The Forestry Chronicle,1993,69(3):285-289.
    Kimmins JP. Forestry in the twenty-first century:challenges, changes and opportunities. Journal of the Inst. of Wood Science,1995,13:497-499.
    Koppen W. Das geographisches system der klimate. In:Koppen W, Geiger R, eds. Handbuch der Klimatologie. Berlin:Gerbruder Borntraeger,1972:1-46.
    Kurz WA, Dymond CC, White TM, et al. CBM-CFS3:A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling,2009,220(4):480-50.
    Kurz WA, Apps MJ. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecology Applications,1999,9(2):526-547.
    Kurz WA, Apps MJ. Developing Canada's National Forest Carbon Monitoring, Accounting and Reporting System to meet the reporting requirements of the Kyoto Protocol.Mitigation Adaptation Strategies Global Change,2006,11(1):33-43.
    Kurz WA, Apps MJ, Webb TM, et al. Carbon Budget of the Canadian Forest Sector Phase I. Forestry Canada Northern Forestry Centre, Edmonton Information Report, NOR-X-326,1992.
    Li Z, Kurz WA, Apps MJ, et al. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector:recent improvements and implications for the estimation of NPP and NEP. Canadian Journal of Forest Research,2003,33(1):126-136.
    Liu J, Chen JM, Chen W. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research,1999,104 (D22):27735-27754.
    Liu Z, Li F. The generalized Chapman-Rechards function and application to tree and stand growth. Journal of Forestry Research,2003,14(1):19-26.
    Loranger G, Ponge JF, Imbert D, et al. Leaf decomposition in two semi evergreen tropical forests: influence of litter quality. Biology and Fertility Soils,2002,35(4):247-252.
    Lu J, Ji J. A simulation and mechanism analysis of long-term variations at land surface over arid semiaridarea in north China. Journal of Geophysical Research,2006,111(D9):1-19.
    McGuire AD, Melillo JM, Joyce LA, et al. Interactions between carbon and nitrogen dynamics in estimating net p rimary p roductivity for potential vegetation in North America. Global Biogeochemistry Cycle,1992,6(2):101-124.
    McGuire AD, Melillo JM, Kicklighter DW, et al. Equilibrium responses of soil carbon to climate change:em irical and process based estimates. Journal of Biogeography,1995,22(4/5):785-796.
    Meentemeyer V, Berg B. Regional variation in rate of mass loss of Pinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality. Scandinavian Journal of Forest Research, 1986,1(1-4):167-180.
    Mikol P. Comparative experiment on decomposition rates of forest litter in southern and northern Finland. Oikos,1960,11(1):161-166.
    Neilson RP. A model for predicting continental scale vegetation distribution and water balance. Ecology Applications,1995,5(2):362-385.
    Ngao J, Epron D, Brechet C, et al. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Global Change Biology,2005,11(10):1768-1776.
    Pan Y, Hom J, Jenkins JC, et al. Importance of foliar nitrogen concentration to p redict forest productivity spatially across the Mid-Atlantic region. Forest Science,2004,50(3):279-289.
    Parton WJ, Schimel DS, Cole CV, et al. Analysis of factors controlling soil organic matter levels in great Plains grasslands. America Journal of Soil Science Society,1987,51(5):1173-1179.
    Parton WJ, Scurlock JMO, Ojima DS, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles,1993,7 (4):785-809.
    Patton WJ, McKeown B, Kirchner V, et al. Century user's manual. Natural Resource Emlogy Laboratory Colorado State University, Fort Collins,1992.
    Potter CS, M atson PA, Vitousek PM. Evaluation of so il database attributes in a global carbon cycle model:implications fo rglobal change research. In:Environmental information management and analysis: ecosystem to global scales (ed. Michener W) Taylor and Francis. London, U K,1994:281-302.
    Potter CS, Randerson JT, F ield CB et al. Terrestrial ecosystem production, a process model based on global satellite and surface data. Global Biogeochemical Cycles,1993,7(4):811-841.
    Raich JW, Schlesinger WH.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44(2):81-99
    Raich JW, Rastetter EB, Melillo JM, et al. Potential Net Primary Productivity in South America: application of a global model. Ecology Applications,1991,1 (4):399-429.
    Running SW, Hunt ERJ. Generalization of a forest ecosystem processmodel for other biomes, BIOME-BGC and an application for global-scale models. In:Ehleringer JR, Field CB, eds. Scaling Physiological Processes:Leaf to Globe. San Diego:Academic Press Inc.1993; 141-158.
    Running SW, Coughlan JC. A general model of forest ecosystem processes for regional applications. Ⅰ. Hydrologic balance, canopy gas exchange and primary production processes. Ecological. Modelling,1988, 42(2):125-154.
    Running SW, Gower ST. FOREST-BGC, a general model of forest ecosystem processes for regional applications. Ⅱ. Dynamic carbon allocation and nitrogen budgets. Tree Physiology,1991,9(1-2):147-160.
    Running SW, Hunt ER. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global scale models. In:Ehleringer JR., Field CB (Eds.), Scaling Physiological Processes:Leaf to Globe. Academic Press, San Diego, CA,1993:141-158.
    Schimel DS. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995,1(1):77-91.
    Schulze E, Wirth C, Heimann M. Managing forests after Kyoto. Science,2000,289(5487):2058-2059.
    Sedhi RA. The carbon cycle and global forest systems. Water, Air and Soil Pollution,1993,70(1-4): 295-307.
    Sellers PJ, Los SO, Tucker CJ, et al. A revised land surface parameterization (SiB-2) for atmospheric general circulation models II. The generation of global climate fields of terrestrial biophysical parameters from satellite data. Journal of Climate,1996a,9(4):706-737.
    Sellers PJ, Mintz Y, Sud YC, et al. A simple biosphere model (SiB) for use within general circulation models. Journal of Atmospheric Science,1986,43:505-531.
    Sellers PJ, Randall DA, Collatz GJ, et al. A revised landsurface parametrization (SiB-2) for atmospheric GCMs I. Model formulation. Journal of Climate,1996b,9(4):676-705.
    Shugart HH, West DC. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. Journal of Environment Management,1977,5: 161-179.
    Sitch S, Prentice IC, Smith B, et al. LPJ-A coupled model of vegetation dynamics and the terrestrial carbon cycle. In:Sitch S, ed. The Role of Vegetation Dynamics in the Control of Atmospheric CO2 Content. PhD. thesis. Lund, Sweden:Lund University.2000.
    Smyth CE, Trofymow JA, Kurz WA, and the CIDET Working Group. Decreasing uncertainty in CBM-CFS3 estimates of forest soil carbon sources and sinks through use of long-term data from the Canadian Intersite Decomposition experiment. Canadian Forest Service Pacific Forestry centre Information Report, BC-X-422,2009.
    Soil Classification Working Group. The Canadian system of soil classification. In:Agriculture and Agri-Food Canada Publ.1646 (revised). NRC Research Press, Ottawa, Ontario,1998.
    Song C, WoodCock CE. A regional forest ecosystem carbon budget model:impects of forest age structure and landuse history. Ecological Modelling,2003,164(1):33-47.
    Stinson G, Kurz WA, Smyth CE, et al. An inventory-based analysis of Canada's managed forest carbon dynamics,1999 to 2008. Global Change Biology,2011,17(6):2227-2244.
    Taylor AR, Wang JR, Kurz WA. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests:an exploratory analysis using the CBM-CFS3 simulation model. Forest Ecology and Management,2008,255(10):3632-3641.
    Ter-Mikealian MT, Colombo SJ, Chen J. Estimating natural forest fire return interval in north eastern Ontario, Canada. Forest Ecology and Management,2009,258(9):2037-2045.
    Thuille A, Buchmann N, Schulze ED. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 2000,20(13):849-857.
    Urban DL. A versatile model to simulate forest pattern:a user's guide to ZELIG, version 1.0. University of Virginia, Charlottesville, VA,1990.
    Verseghy DL. CLASS:A Canadian land surface acheme for GCMS. I. Soil model. International Journal of Climatology,1991,11(2):111-113.
    Vitousek PM, Turner DR, Parton WJ, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii I:Patterns, mechanisms, and models. Ecology,1994,75(2):418-429.
    Wamant P, Franois L, Strivay D, et al. CARAIB:Aglobal model of terrestrial productivity. Global Biogeochemical Cycles,1994,8(3):255-270.
    Wang YP, Rey A, Jarvis PG. Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biology,1998,4 (8):797-807.
    Waring RH and Schlesinger WH. Forest ecosystem:Concepts and management. Academic Press, USA, 1985.
    Wei X, Liu W, Waterhousec J, et al. Simulations on impacts of different management strategies on long-term site productivity in lodgepole pine forests of the central interior of British Columbia. Forest Ecology and Management,2000,133(3):217-229.
    Weinstein DA, Beloin RM, Yanai RD. Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiology,1991,9(1-2):127-146.
    Whittaker RH, Likens GE. Methods of assessing terrestrial productivity. New York:Springer-Verlag, 1975:305-328
    Williams M, Rastetter EB, Fernandes DN, et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest:The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell and Environment,1996,19(8):911-927.
    Williams MA, Rice CW, Owensby CE. Carbon dynamics andmicrobial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and soil,2000,227(1-2):127-137.
    Wu XW, Wang JD, Strahler AH. Scale effects of plank law over non-isothermal blackbody surface. Science in China (Series E),1999,42(6):652-656.
    Zeide B. Analysis of growth equations. Forest Science,1993,39(3):594-616.
    曹富强,刘朝晖,刘敏,等.森林凋落物及其分解过程的研究进展.广西农业科学,2010,41(7):693-697
    曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学D辑:地球科学,2004,34(增刊Ⅱ):1-14.
    陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响.植物生态学报,2007,31(2):189-204.
    程瑞梅,肖文发,李建文,等.三峡库区森林植被分类系统初探.环境与开发,1999,14(2):4-8.
    方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-970.
    方精云,陈平安,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320~2322)的若干说明.植物生态学报,2002,26(2):243-249.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508.
    冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径.世界林业研究.2005,18(3):25-28.
    葛哓改.三峡库区马尾松林凋落物分解及对土壤碳库动态的影响研究.中国林科院博士学位论文,2012,132.
    谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响.自然资源学报,2007,22(2):251-259.
    郭建芬,杨玉盛,陈光水,等.森林凋落物分解研究进展.林业科学,2006,42(4):93-100.
    国庆喜,张锋.基于遥感信息估测森林的生物量.东北林业大学学报,2003,31(2):40-43.
    国庆喜,张海燕,王兴昌,等.东北典型森林十壤呼吸的模拟-IBIS模型的局域化应用.生态学报,2010,30(9):2295-2303.
    何宗明,陈光水,刘剑彬,等.杉木林凋落物产量、分解率与储量的关系.应用与环境生物学报,2003,9(4):352-356.
    胡承彪,韦源连,梁宏温,等.两种森林凋落物分解及其土壤效应的研究.广西农业大学学报,1992,11(4):47-52.
    黄建辉,韩兴国,陈灵芝.森林生态系统很细生物量研究进展.生态学报,1999,19(2):270-276.
    黄锦学,黄李梅,林智超,等.中国森林凋落物分解速率影响因素分析.亚热带资源与环境学报,2010,5(3):56-63.
    黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000,24(2):175-179.
    季劲钧,胡玉春.一个植物冠层物理传输和生理生长过程的多层模式.气候与环境研究,1999a,4(2):152-164.
    季劲钧,余莉.地表物理过程与生物地球化学过程耦合反馈机理的模拟研究.大气科学,1999b,23(3):439-448.
    贾治邦.中国森林资源报告:第七次全国森林资源清查.北京:中国林业出版社,2009.
    巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律.生态学报,2011,31(4):1139-1148.
    李海全,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量.林业科学,2011,47(7):7-12.
    李克让.十地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002.
    李平衡,于权,任海.马占相思人工林生态系统的碳格局及其动态模拟.热带亚热带植物学报,2009,17(5):494-501.
    李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,2001,56(4):379-389
    梁宏温.田林老山中山杉木人工林凋落物及其分解作用的研究.林业科学,1993,29(4):255-259.
    廖军,王新根.森林凋落量研究概述.江西林业科技,2000,1:31-34.
    林波,刘庆,吴彦,等.森林凋落物研究进展.生态学杂志,2004,23(1):60-64.
    林建华.马尾松造林密度与林分生长效应实验.福建林业科技,2005,32(3):137-139.
    林清山,洪伟.中国森林碳储量研究综述.中国农学通报,2009,25(6):220-224.
    刘健敏.基于小班数据库的忻城县森林优势树种组生长模型研究.广西科学,2011,18(3):294-297.
    刘强,彭少鳞,毕华,等.热带亚热带森林叶凋落物交互分解的研究.中山大学学报,2004,43(4):86-89.
    刘双娜,周涛,舒阳,等.基于遥感降尺度估算中国森林生物量的空间分布.生态学报,2012,32(8):2320-2330.
    刘曦,国庆喜,刘经伟.IBIS模型验证与东北东部森林NPP季节变化模拟研究.森林工程,2010,26(4):1-10.
    刘曦,国庆喜,刘经伟IBIS模拟东北东部森林NPP主要影响因子的敏感性.生态学报,2011,31(7):1772-1782.
    吕建华,季劲钧.青藏高原大气-植被相互作用的模拟试验Ⅱ:植被叶面积指数和净初级生产力.大气科学,2002,26(2):255-262.
    骆期邦,曾伟生,贺东北,等.立木地上部分生物量模型的建立及其应用研究.自然资源学报,1999,14(3):271-277.
    马鸿,韩国涛,惠淑荣.日本落叶松林分生长数学模型的建立.沈阳大学学报(自然科学版),1998,4(38):102-104.
    马祥庆,刘爱琴,何智英,等.杉木幼林生态系统凋落物及其分解作用研究.植物生态学报,1997,21(6):564-570.
    毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环模型研究概述.应用生态学报,2006,17(11):2189-2195.
    朴世龙,方精云,黄耀.中国陆地生态系统碳收支.中国基础科学,2010,2:20-22.
    秦建华.林分生长与产量模型系统研究综述.林业科学,2002,38(1):122-129.
    饶雄,张景雄,丁翼星.基于多项logit模型的土地覆被分层分类方法研究.武汉大学学报(信息科学版),2008,33(11):1166-1169.
    孙楠,张怡春.林口林业局优势树种林分蓄积生长曲线表的编制.吉林林业科技,2007,36(1):27-30.
    唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究.林业科学,2000,36:19-27
    田大伦,朱小年,蔡宝玉,等.杉木人工林生态系统凋落物的研究Ⅱ:凋落物的养分含量及分解速率.中南林学院学报,1989,9(增):45-55.
    王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-98.
    于军邦,刘纪远,邵全琴,等.基于遥感-过程耦合模型的1988-2004年青海三江源区净初级生产力模拟..植物生态学报,2009,33(2):254-269.
    于敏,李贵才,仲国庆,等.区域尺度上森林生态系统碳储量的估算方法分析.林业资源管理,2010,2:107-112.
    于培娟,孙睿,朱启疆,等.复杂地形条件下提高BEPS模型模拟能力的途径.中国图象图形学报,2006,11(7):1017-1025.
    王培娟,谢东辉,张佳华,等.基于过程模型的长白山自然保护区森林植被净第一性生产力空间尺度转换方法.生态学报,2007,27(8):3215-3223.
    王萍.森林碳循环模型概述.应用生态学报,2009,20(6):1505-1510.
    王绍刚,何国金,刘定生,等.森林碳循环模型方法研究进展.科技导报,2008,26(9):72-77.
    王淑君,管东生,黎夏,等.广州森林碳储量时空演变及异质性分析.环境科学学报,2008,28(4):778-785.
    王天博,陆静.国外生物量模型概述.中国农学通报,2012,28(16):6-11.
    王仲锋.森林生物量建模与精度分析.北京林业大学博士论文,2006.
    温肇穆.杉木林乔木层凋落物及其在分解过程中化学成分的变化.广西农学院学报,1990,9(2):1-10.
    吴庆标,王效科,段晓男,等.中国森林生态系统固碳现状和潜力.生态学报,2008,28(2):517-524.
    夏朝宗.森林生态系统生产力遥感模型研究.中国科学院研究生院博士学位论文,2004,2.
    肖文发,李建文,于长青,等.长江三峡库区陆生动植物生态.重庆:西南师范大学出版社,2000,5-11.
    邢乐杰.三峡库区森林生态系统有机碳储量研究.华中农业大学硕士学位论文,2008.
    胥辉.一种与材积相容的生物量模型.北京林业大学学报,1999,21(5):32-36.
    许晓静,张凯,刘波,等.森林凋落物分解研究进展.中国水土保持科学,2007,5(4):108-114.
    延晓冬,赵俊芳.基于个体的中国森林生态系统碳收支模型FORCCHN及模型验证.生态学报,2007,27(7):2684-2694.
    扬曾奖,曾杰,徐大平,等.森林枯枝落叶分解及其影响因素.生态环境,2007,16(2):649-654.
    杨帆,刘金山,贺东北.我国森林碳库特点与森林碳汇潜力分析.中南林业调查规划,201231(1):1-4.
    应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算.东北林业大学学报,2009,37(9):33-35.
    曾锋,邱治军,许秀玉.森林凋落物分解研究进展.生态环境学报,2010,19(1):239-243.
    曾慧卿,刘琪璟,冯宗伟,等.基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP.生态学报,2008,28(11):5314-5321.
    曾立雄,王鹏程,肖文发,等.三峡库区主要植被生物量与生产力分配特征.林业科学,2008,44(8):16-22.
    张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究.林业科学研究,1999,12(1):53-59.
    张小全,吴可红.森林细根生产和周转研究,林业科学,2001,37(3):126-138.
    张小全,朱建华,侯振宏.主要发达国家林业有关碳汇源及其计量方法与参数.林业科学研究,2009,22(2):285-293.
    赵俊芳,延晓冬,贾根锁.1981-2002年中国东北地区森林生态系统碳储量的模拟.应用生态学报,2009,20(2):241-249.
    周涛,史培军,贾根锁,等.中国森林生态系统碳周转时间的空间格局.中国科学:地理科学,2010,40(5):632-644.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522.
    周元满,谢止生,刘新田.Richards函数在桉树无性系林分生长预测上的应用研究.西南农业大学学报(自然科学版),2005,27(2):240-243.
    朱绍辉,钱桂芝,疏贵平Richards生长函数在意大利杨树无性系人工林生长预测上的应用.江苏林业科技,2000,27(1):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700