用户名: 密码: 验证码:
平原河网地区河岸植被缓冲带定量规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河岸植被缓冲带是指河岸两侧向岸坡爬升的由树木及其他植被组成的缓冲区域,其功能是防止由坡地地表径流、废水排放、地下径流和深层地下水流所带来的养分、沉积物、有机质、杀虫剂及其他污染物进入河溪系统。因而,河岸植被缓冲带规划是河流水质保护的重要手段,对维系河流生态系统的健康有着重要的作用,受到学术界、建设和管理部门的广泛关注。
     如何规划河岸植被缓冲带,主要取决于以下几个问题的回答:1)如何考虑河岸植被缓冲带的空间布局?2)河岸植被缓冲带的宽度如何确定?3)在宽度确定的基础上,如何确定植物种类和植物组成?
     本项研究首先对国内外相关研究进行综述、比较,并根据平原河网地区地势平坦、快速城市化的特点,基于GIS平台,筛选和建立了一套适合平原河网地区的河岸植被缓冲带规划技术和流程;同时通过对上海地区河岸带植被的野外调研和数量分析,建立区域河岸植被缓冲带的参照系;在此基础上,以上海滴水湖汇水区为例,利用“3S”技术,建立空间数据库,定量模拟汇水区的面源污染负荷、汇流路径,并确定河岸植被缓冲带的空间格局、宽度、植被种类和数量组成,最终实现区域河岸植被缓冲带的定量规划。论文的研究结论可以从规划方法&技术、实证研究两个方面进行概括:
     规划方法和技术:
     (1)河岸植被缓冲带规划应建立在“参照系构建-汇水区划分-面源污染负荷计算和汇流路径分析”的基础上。河岸植被缓冲带规划主要包含两个方面:一是根据面源污染负荷及汇流路径确定河岸植被缓冲带的空间布局和宽度;二是在空间布局(位置)和宽度计算模拟的基础上,依据建立的河岸植被参照系,确定河岸植被的种类以及组成。
     (2)参照系建立:本研究通过对上海地区河岸带植被的野外调研和数量分析,建立区域河岸植被缓冲带的参照系。
     (3)汇水区划分:针对传统的汇水区划分方法在平原河网地区应用的局限性,本研究提出了适合平原河网地区汇水区的划分方法。在河网地块内部,通过修正Getirana等的DEM融合算法,提出了适合上海地区的DEM融合算法,基于修正算法通过距离偏移矩阵运算和高程偏移矩阵运算,将影响径流特征的地物要素(如道路、建筑、坑塘以及排水管网)叠加到原始的“伪"DEM中,起到细化DEM的目的,提高平坦区域河网提取和汇水区边界模拟的精度。在河网概化的基础上,在MIKE11中建立河网一维非恒定流水动力模型,依据水动力学模型模拟河道在水利控制设施(节制闸、出海闸以及翻水站等)调控作用下引水或排水期间河网的水位、流向以及水量等,确定各出水口所对应范围,完成汇水区的划分。
     (4)面源污染负荷计算及汇流路径分析:本研究通过修正的SCS模型和PLOAD模型对单场次降雨条件下的面源污染负荷做了计算,并模拟了面源污染的汇流路径。
     (5)河岸植被缓冲带规划:基于面源污染途径确定河岸植被缓冲带的空间布局;通过对时间模型和水文模型进行修正,计算得到河岸植被缓冲带所需的最小宽度;依据参照系确定植物种类和数量组成。
     实证研究:
     (1)参照系建立:通过对上海地区河岸带植被的野外调研,利用SPSS软件进行聚类分析得到8种河岸带植被类型。分别对8种河岸带植被调查数据进行统计分析,确定了不同植被类型的参照值。
     (2)汇水区划分:通过对汇水区内各出口水闸的开启状态进行分析,发现各出口水闸的开启状态会随着内河水位的变化而变化,河网水流方向也呈周期性变化,滴水湖汇水区的范围是一个动态范围,伴随着出水口的改变而改变。滴水湖的汇水区范围共有三种方案,其中非引水期间(模式1)的汇水区范围最小,为76.15 km2,此汇水区存在的持续时间最长,达到282 d,引水期间(模式3)汇水区范围次之,面积为233.5 km2,持续时间为80 d,处于两者过渡状态(模式2)的汇水区范围持续时间最短,为3d,面积介于两者之间,为92.29 km2。
     (3)面源污染负荷计算及汇流路径:从面源污染负荷计算结果来看,在汇水区划分模式2下的面源污染的空间分布与模式1类似,产生NH3-N、TN、TP和TSS总量最大的区域主要位于滴水湖的东北侧,紧邻滴水湖的西侧区域产生的NH3-N、TN、TP和TSS总量较少。而汇水区划分模式3下产生NH3-N、TN、TP和TSS总量的区域主要集中在滴水湖的东北侧和西侧,东北侧区域内的面源污染较为集中,都集中在2号河网地块,与之相对应的是滴水湖西侧的面源污染呈散点状分布,各地块均有分布,且集中在河网地块中心位置。汇水区划分模式3下产生的面源污染产生的区域最广,对滴水湖水质的影响作用最大,对该模式下的面源污染防治也显得尤为重要。对面源污染的汇流路径进行分析,发现NH3-N、TN、TP和TSS的汇流路径均以B1(坡面径流-沟渠-1级河流)为主,其次为B2(坡面径流-沟渠-2级河流)和Al(坡面径流-1级河流),通过三种路径排放的面源污染负荷量占到面源污染排放总量70%以上,河岸植被缓冲带的空间布局和后续的河岸植被缓冲带建设应重点考虑这些区域。
     (4)河岸植被缓冲带规划:设置了情景模式1(基于河流两侧现状土地利用类型)和情景模式2(基于河流两侧土地利用类型为林地),模拟这两种情景模式下河岸植被缓冲带的宽度和空间布局。在规划情景模式1中,河岸植被缓冲带宽度在9m到74.5 m之间变化,宽度主要集中在17.1-42.4 m之间。在规划情景模式2中,河岸植被缓冲带宽度在9 m到56.4 m之间变化,宽度主要集中在13.3-29.8 m之间。此外,在宽度确定的基础上,选择人民塘、随塘河及其支流作为代表性河段,以植被参照系为以依据,对这些河段的植物种类与组成做了定量研究。
     论文创新点:
     (1)对国内外相关研究进行综述、比较,并根据平原河网地区地势平坦、快速城市化特点,基于GIS平台,筛选并建立了一套适合平原河网地区的河岸植被缓冲带规划技术和流程。
     (2)通过对上海地区河岸带植被的野外调研和数量分析,建立区域河岸植被缓冲带的参照系。
     (3)针对传统的汇水区划分方法在平原河网地区应用的局限性,本研究提出了适合平原河网地区的汇水区划分方法。
Riparian vegetation buffer strip refers to the buffer area along the river. Its function is to prevent nutrients, sediments, organic matter, pesticide and other pollution from entering the river system brought by sloping surface run-off, waste water release, groundwater and deep groundwater flow. That is why it has always been an important instrument in river protection. It plays an important role in maintaining the health of water ecosystem, and has been paid attention by not only the academic circles, but also the construction and administration departments.
     How to plan an effective riparian vegetation buffer strip for water quality conservation? Before answering this question, we need to dress the following questions:(1) How are we to deal with the spatial distribution of the riparian vegetation buffer strip width? (2) How are we to determine the riparian vegetation buffer strip width? (3) On the basis of the width, how are we to regard the species and composition of the vegetation?
     This study, in the first place, reviewed and compared relative studies at home and abroad. Next, the plain river network area is characterized by its plain topography, and rapid urbanization. Based on GIS software, a set of suitable procedure and methodology for the planning of riparian vegetation buffer strip is established. Meanwhile, the reference conditions are set up, via extensive field investigation on the riparian vegetation species, and data analysis. Thirdly, take Shanghai Dishui Lake as an example, using "3S" technologies; the special database is built up. Fourthly, Quantitative model non-point source pollution loads and runoff routes, and define the width, pattern, vegetation species and quantity of the buffer. All these lead to the accomplishment of the quantitative planning of regional riparian vegetation buffer strip. The results and conclusions are as follows:
     Procedure and methodology:
     (1) The planning of riparian vegetation buffer strip shall be studied under the framework of "watershed division-measurement on non-point resource pollution load and rainfall path-establishment of community reference condition-riparian planning" The planning mainly includes two aspects. Firstly, locate and gain the breadth of the buffer based on non-point source pollution load and runoff pathway. Secondly, according to the established riparian vegetation reference condition, and with the modeling of special location and width, define the species and composition of the vegetation.
     (2) Establishment of the reference condition:The reference condition is set up, via extensive field investigation on the riparian vegetation species, and data analysis.
     (3) Watershed division:In plain river network, it is difficult to divide a watershed because of the disturbance of rainfall path caused by closed river network structure, plain topology, water conservancy facility regulation and intensive human activities. Aiming at such condition, this study, divides the watershed through two angles, that is, within the river network and between the two river networks. In polygonal river networks areas, watershed delineation is the first step in many hydrological projects. In rapidly urbanized plain river network areas, some landcover features can't be shown in DEM, which caused errors in drainage patterns due to low density of elevation value. Poor landcover features representation in DEM has frequently caused the error of drainage patterns due to the lower precision of the height source or elevation values. To avoid these problems, a new approach, using the digital landcover features (e.g. roads, buildings, ponds, and pipe drainage systems) as ancillary data are added into DEM, has been developed. To avoid detrimental changes in DEM, distance transformation concepts are used to determine the elevation offset distribution in the plain river network areas. The new approach supports the application in small-scaled plain river network areas by modifying two newly added scenes (landcover features are added in DEM and landcover features are burned in DEM). As for inter-sectional river network areas, considering the influence to water volume and direction led by the regulation of dams or other water conservancy facilities, make clear the outlet of the relative network and finish the division work.
     (4) Measurement on non-point resource pollution load and rainfall path:This study borrowed the modified SCS model for reference, to calculate the runoff yield based on the data of rainfall-runoff was also given. In the same way as the calculation of runoff yield, this study borrowed PLOAD and EMC (event mean concentration) for reference, to calculate the total non-point source pollution loads of the watershed at one single rainfall event. The pollution load of the buffer runoff is then derived. The modeling of the pollution flow path is further done in ArcGIS Hydrology tools.
     (5) Planning of riparian vegetation buffer strip:The study applied a width variable calculation method. Based on time models and hydrology models created by different researchers targeting protection of riparian, with comprehensive consideration of physical and chemical properties of soil, topology, landcover, and other special environmental factors, calculate the variable width of the riparian. On the basis of extensive investigation, the riparian vegetation species on different habitats are defined. The reference indicators and frames are separately created based on all kinds of vegetation types. These laid a solid foundation for the species selection and community construction of the riparian.
     A case study in Lingang:
     (1) Establishment of reference condition for riparian vegetation community:Based on extensive field investigation on the riparian vegetation community in Shanghai, eight habitats are gained using the cluster analysis of SPSS. The investigation data of riparian vegetation under eight habitat conditions are analyzed statistically. Reference values of vegetation species, richness indicator, diversity indicators, and ratio of local species, vegetation coverage and the number of community vertical structures are defined under different vegetation types.
     (2) Watershed delineation:The analysis of sluices at each outlet within the watershed show that, during the year, the on and off status of each sluice changes with the change of water level of inner lakes. The flow direction of the river network varies periodically. The Dishui Lake watershed is a dynamic area. It alters along with the outlet, is quite different from the traditional one. There are three scenarios about the watershed area. During the non-diversion period, it is the smallest, covering an area of 76.15 km2. Such watershed lasts the longest, up to 282d. When Dishui Lake is drawing water from other rivers, the area becomes the largest, of 233.5 km2, lasting for 80d. Between the two circumstances, is the middle one with an area of 92.29 km2, and will last for only 3d.
     (3) Measurement on non-point resource pollution load and rainfall path:In the aspect of the special distribution of non-point source pollution in the watershed, regions producing NH3-N, TN, TP and TSS mainly concentrate at the north-east and the west of Dishui Lake. The non-point source pollution in the north-east is mostly centralized in network No.2. However, the pollution in the west scatters, distributes in every block, and centralized in the sole of every block. The analysis shows that these regions are mainly paddy fields and dry lands in land use. The study proves that agriculture is the main cause of non-point source pollution through modeling.
     The analysis on the non-point source pollution release routes shows that NH3-N, TN, TP and TSS are mainly following the route of B1 "buffer runoff-ditch-1st class stream", and then goes to B2"buffer runoff-ditch-2nd class stream" and A 1 "buffer runoff-1st class stream". These three routes account for over 70% of the total non-point source pollution release volume.
     (4) Planning of riparian vegetation buffer strip:Two profiles are separately set, based on the current situation of the landuse of both sides of the lake, and the simulation situation as woodland. An analysis was carried out to compare the riparian buffer width and location under these two profiles. In planning profile No.1, integrating the simulating results from both time model and hydrology model, it shows that, riparian buffer width ranges from 9 m to 74.5 m. Among that, riparian buffer width mainly ranges from 17.1 m to 42.4 m, In planning profile No.2, integrating the simulating results from both time model and hydrology model, it shows that, riparian buffer width ranges from 9 m to 56.4 m. Among that, riparian buffer width mainly ranges from 13.3 m to 29.8 m. On the foundation of such, two sets of riparian vegetation species and specific community parameters are chosen based on the site condition around the river and the frame of reference condition.
     The innovations in the dissertation are as bellow:
     (1) Based on previous study results made by other researchers, a framework and a set of procedure of the planning of riparian vegetation buffer strip are addressed, and the techniques and the methodology are established.
     (2) Based on previous study results on establishment of reference condition, a procedure of the establishment of reference condition is discussed and a set of reference condition of riparian vegetation buffer strip for Shanghai is established.
     (3) Automated watershed delineation from DEM is the key step when conducting any spatially distributed hydrological modelling. For rapidly urbanized flat area, it fails to provide a realistic drainage structures and watershed boundary from conventional DEM processing methods. A new method was proposed for watershed delineation in urbanized plain river network.
引文
[1]Ceballos A, Schnabel S. Hydrological behaviour of a small catchment in the dehesa landuse system [J]. Journal of Hydrology,1998,210 (1-4):146-160.
    [2]Getirana A C V, Bonnet M P, Filho O C R. et al. Improving hydrological information acquisition from DEM processing in floodplains [J]. Hydrological processes,2009,23: 502-514.
    [3]Bailey R C, Norris R H, Reynoldson T B. Bioassessment of Freshwater Ecosystems:Using the Reference Condition Approach [M]. New York:Kluwer Academic Publishers,2004.
    [4]Baker M E, Weller D E, Jordan T E. Improved methods for quantifying potential nutrient interception by riparian buffers [J]. Landscape Ecology,2006,21:1327-1345.
    [5]Bakhsh A, Hatfield J L, Kanwar R S, et al. Simulating nitrate drainage losses from a Walnut Creek watershed field [J]. Journal of environmental quality.2004,33(1):114-123.
    [6]Banadda E N, Kansiime F, Kigobe M, et al. Landuse-based nonpoint source pollution:a threat to water quality in Murchison Bay, Uganda [J]. Water Policy.2009,1(11):94-105.
    [7]Band L E, Moore I D. Scale:landscape attributes and geographical information systems [M]. Toronto, Ontario:Wiley,1995:159-179.
    [8]Band L E. Topographic partition of watersheds with digital elevation models [J], Water Resources Research,1986,22:15-24.
    [9]Boothroyd I K G, Quinn J M, Langer E R,et al. Riparian buffers mitigate effects of pine plantation logging on New Zealand streams. Riparian vegetation structure, stream geomorphology and periphyton [J]. Forest Ecology and Management,2004,194:199-213.
    [10]Ceng W H, Wang C H, Zhu Y. Taihu Lake model [M]. Hohai University press, Nanjing, 2006.
    [11]Cerdan O, Souchere V, Lecomte V, et al. Incorporating soil surface crusting processes in an expert-based runoff model:sealing and transfer by runoff and erosion related to agricultural management [J]. Catena,2001,46:189-205.
    [12]Copper A B. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment [J]. Hydrobiologia,1990,202 (1):13-26.
    [13]Costa-Cabral M C. Digital elevation model networks (DEMON); a model of flow over hillslopes for computation of contributing and dispersal areas [J], Water Resources Research, 1994:30:1681-1692.
    [14]Daniels R B, Gilliam J W. Sediment and Chemical Load Reduction by Grass and Riparian Filters [J]. Soil Science Society of America,1996,60:246-251.
    [15]Dauer D M, Ranasinghe J A, Weisberg S B. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay [J]. Estuaries and Coasts,2000,23(l):80-96.
    [16]Davies S P, Jackson S K. The biological condition gradient:a descriptive model for interpreting change in aquatic ecosystems [J]. Ecological Applications,2006,16:1251-1266.
    [17]Dillaha T A, Reneau R B, Mostaghimi S, et al. Vegetative filter strips for agricultural non-point source pollution control [J]. Transactions of the ASAE,1989,32(2):513-519.
    [18]Dingman S L. Physical Hydrology second edition. New Jersey, New York:Prentice-Hall, Inc, 2002.
    [19]Duke G D, Kienzle S W, Johnson D L, et al. Improving overland flow routing by incorporating ancillary road data into digital elevation models [J]. Journal of Spatial Hydrology,2003,3(2):1-27.
    [20]Duke G D, Stefan W K, Johnson D L, et al. Incorporating ancillary data to refine anthropogenically modified overland flow paths [J]. Hydrological Process,2006,20: 1827-1843.
    [21]Engman E T. Roughness coefficients for routing surface runoff [J]. Journal of Irrigation and Drainage Engineering,1986,112(1):39-53.
    [22]EUROPA. The EU Water Framework Directive-integrated river basin management for Europe [EB/OL]. http://ruropa.eu.int/comm/environment/water/water-framework/ indexen.html. The European Union Online,2009-8-16.
    [23]Fennessym S, Cronk K. The effectiveness and restoration potential of riparian emotions for the management of non-point source pollution, particularly nitrate [J]. Critical Reviews in Environmental Science and Technology,1997,27(4):285-317.
    [24]Fortin M J, Olson R J, Ferson S, et al. Issues related to the detection of boundaries [J]. Landscape Ecology,2000,15 (5):453-466.
    [25]Freeman T G. Calculating catchment area with divergent flow based on a regular grid [J], Computers & Geosciences,1991,17:413-422.
    [26]Gallant J C, Dowling T I.A multiresolution index of valley bottom flatness for mapping depositional areas [J]. Water Resources Research,2003,39 (12):1-4.
    [27]Garbrecht J, Martz W. The assignment of drainage direction over flat surfaces in raster digital elevation models [J]. Journal of Hydrology,1997,193:204-213.
    [28]Gerritsen J, Green J, Preston R. Establishment of regional reference conditions for stream biological assessment and watershed management [A]. A national conference on watershed management, Alexandria, Virginia, USA.EPA 840-R-94-002. U.S. Environmental Protection Agency, Washington, D.C., USA.1993.
    [29]Goetz S J, Varlyguin D, Smith A J, et al. Application of multitemporal landsat data to map and monitor land cover and land use change in the Chesapeake Bay watershed, in Analysis of Multi-temporal Remote Sensing Images [J]. Singapore:World Scientific Publishers,2005.
    [30]Goodwid C N, Hawkins C P, Kershner J L. Riparian restoration in the western United States: Overview and perspective [J]. Restoration Ecology,1997,5:4-14.
    [31]Grayson R B, Bloschl G, Barling R D,et al. Process, scale and constraints to hydrological modelling in GIS [A]. Proceedings of the HydroGIS 93:Applications of Geographic Information Systems in Hydrology and Water Resources held in Vienna [C], Austria, in April 1993.
    [32]Gregory S V, Ashkenas L. Field guide for riparian management [R]. USA:USDA Forest Service,2000.
    [33]Gregory S V, Swanson F J, Mckee W A, et al. An ecosystem perspective of riparian zones [J].Bioscience,1993,41(1):540-551.
    [34]Groffman P M, Bain D J, Band L E, et al. Down by the riverside:Urban riparian ecology [J].Frontiers in Ecology and the Environment,2003,1:315-321.
    [35]Groffman P M, Gold A J, Simmons R. Nitrate dynamics in riparian forest:Microbial studies [J].Journal of Environmental Quality,1992,21(4):666-671.
    [36]Hutchinson M F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits [J]. Journal of Hydrology,1989,106:211-232.
    [37]Irvine K.Classifying ecological status under the European Water Framework Directive:The need for monitoring to account for natural variability [J]. Aquatic conservation:Marine and Freshwater Systems,2004,14:107-112.
    [38]Jensen S K, Dominique J O. Extracting to topographic structure from digital elevation data for geographic information system analysis [J]. Photogrammetric Engineering and Remote Sensing,1988(54):1593-1600.
    [39]Callow J N, Niel K P V, Boggs G S. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis? [J]. Journal of Hydrology,2007,332:30-39.
    [40]Jones J A, Swanson F J, Wemple B C, et al. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks [J]. Conservation Biology,1999,14:76-85.
    [41]Karr J K. Bioligical integrity:a long neglected aspect of water resource management [J]. Ecological Applications,1991,1(1):66-84.
    [42]Karr J R, Chu E W. Restoring life in running waters:better biological monitoring [M]. Washington DC:Island Press,1998.
    [43]La Marche J L, Lettenmaier D P. Effects of forest roads on flood flows in the Deschutes River, Washington [J]. Earth Surface Processes and Landforms,2001,26:115-134.
    [44]Langer E R, Steward G A, Kimberley M O. Vegetation structure, composition and effect of pine plantation harvesting on riparian buffers in New Zealand [J]. Forest Ecology and Management,2008,256:949-957.
    [45]Lavalle N M. Improving Hawaii's Water Quality:Selecting Sites for Riparian Restoration in a GIS [D]. USA:Duke University,2007.
    [46]Lee K H, Isenhart T M, Schultz R C. Sediment and nutrient removal in an established multi2species riparian buffer [J]. Journal of Soil and Water Conservation,2003,58(1):1-8.
    [47]Leon L F, Soulis E D, Kouwen N, et al. Nonpoint Source Pollution:A Distributed Water Quality Modeling Approach [J]. Journal of Water Research.2001,35(4):997-1007.
    [48]Lhomme J, Bouvier C, Perrin J L. Applying a GIS-based geomorphological routing model in urban catchments [J]. Journal of Hydrology,2004,299(3-4):203-216.
    [49]Lim T T, Edwards D R, Workman S R, et al. Vegetated filter strip removal of cattle manures constituents in runoff [J]. Transactions of the ASAE,1998,41(5):1375-1381.
    [50]Lin C H, Lerch R N, Garrett H E, et al. Incorporating forage grasses in riparian buffers for bioremediation of atrazine, isoxaflutole and nitrate in Missouri [J]. Agroforestry Systems, 2004,63:91-99.
    [51]Lowrance R, Altier L S, Williams R G, et al. REMM:the Riparian Ecosystem Management Model [J]. Journal of Soil and Water Conservation Ankeny,2000,55(1):27-34.
    [52]Lowrance R, Leonard R, Sheridan J. Managing riparian ecosystems to control non-point pollution [J]. Journal of Soil and Water Conservation,1985,40(1):87-91.
    [53]Lowrance R, Newbold J D, Schnabel R R,et al.Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds [J]. Environmental Management,1997,21(5): 687-712.
    [54]Lowrance R, Newbold J D, Schnabel R R, et al. Riparian ecosystem management model: simulator for ecological processes in riparian zones [A].in:Proceedings of the first federal interagency hydrologic modeling conference [C].1998.
    [55]Mander U, Hayakawa Y, Kuusemets V. Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds [J]. Ecological Engineering,2005,24:421-432.
    [56]Mander U, uusemets V, Lomus K, et al. Efficiency and dimensioning of riparian buffer zones in agricultural catchments [J]. Ecological Engineering,1997,8:299-324.
    [57]Meeban W R, Swanson F J, Sedell J R.Influences of riparian vegetation on aquatic ecosystems with particular references to salmonoid fishes and their food supplies [A]. In: Johnsonr R, Jonesd A et al. Importance Preservation and Management of Flood plain Wetlands and other Riparian Ecosystem [C]. Washington:USDA Forest Service,1977: 137-145.
    [58]Mersie W, Seybold C A, McNamee C, et al. Abating endosulfan from runoff using vegetative filter strips:the importance of plant species and flow rate [J]. Agriculture, Ecosystems and Environment,2003,97:215223.
    [59]Mishra S K. et al. Long-term Hydrologic Simulation Using Storage and Source Area Concepts [J]. Hydrological Processes,2005,19:2845-2861.
    [60]Montgomery D R. Road surface drainage, channel initiation, and slope instability [J]. Water Resources Research,1994,30:1925-1932.
    [61]Moore I D, Grayson R B, Ladson A R. Digital terrain modeling:a review of hydrological geomorphologic and biological applications [J]. Hydrological Processes,2001,5:3-30.
    [62]Morrison S W. The Percival Creek corridor plan [J]. Journal of Soil and Water Conservation, 1988,43:465-467.
    [63]Munne A N, Prat C, Sola N, et al. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams:QBR index. Aquatic Conservation [J]:Marine and Freshwater Ecosystems,2003,13:147-163.
    [64]Muscutt A D, Harris G L, Bailey S W,et al. Buffer zones to improve water quality:a review of their potential use in UK agriculture [J]. Agriculture, Ecosystems and Environment,1993, 45:59-77.
    [65]Naiman R J, Decamps H, Pollock M. The Role of Riparian Corridors in Maintaining Regional Biodiversity [J]. Ecological Applications,1993,3(2):209-212.
    [66]Nakamura F, Yamada H. Effects of pasture development on the ecological functions of riparian forests in Hokkaido in northern Japan [J]. Ecological Engineering,2005,24: 539-550.
    [67]Nieswand G H, Hordon R M, Shelton T B, et al. Buffer strips to protect water supply reservoirs:A model and recommendations [J]. Water Resources Bulletin,1990, 26(6):959-966.
    [68]Nikolaidis N P, Shen H, Heng H, et al. Movement of nitrogen through an agricultural riparian zone:distributed modeling [J]. Water Science and Technology,1993,28:13-23.
    [69]Nisbet T R. The role of forest management in controlling diffuse pollution in UK forestry [J]. Forest Ecology and Management,2001,143:215-226.
    [70]Nunez A, Lopez E, Diaz-Fierros F. Vegetated Filter Strips for Wastewater Purification:A Review [J]. Bioresource Technology,1995,51:13-22.
    [71]Nyssen J, Poesen J, Moeyersons J, et al. Impact of road building on gully erosion risk:a case study from the northern Ethiopian highlands [J]. Earth Surface Processes and Landforms, 2002,27:1267-1283.
    [72]O'Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data [J]. Computer Vision Graphics and Image Processing,1984,28:323-344.
    [73]Orlandini S, Moretti G, Franchini M, el al. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models [J]. Water Resources Research,2003,39:11-44.
    [74]Oswalt S N, King S L. Channelization and floodplain forests:Impacts of accelerated sedimentation and Valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA [J]. Forest Ecology and Management,2005,215:69-83.
    [75]Otto S, Vianello M, Infantino A, et al. Effect of a full-grown vegetative filter strip on herbicide runoff:Maintaining of filter capacity over time [J]. Chemosphere,2008,71:74-82.
    [76]Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed:Observations on the role of a riparian forest [J]. Ecology,1984,65(5):1466-1475.
    [77]Peterman W E, Semlitsch R D. Efficacy of riparian buffers in mitigating local population declines and the effects of even-aged timber harvest on larval salamanders [J]. Forest Ecology and Management,2009,257:8-14.
    [78]Phillips J D. An evaluation of the factors determining the effectiveness of water quality buffer zones [J]. Journal of Hydrology,1989b,107:133-145.
    [79]Phillips J D. Evaluation of North Carolina's Estuarine Shoreline Area of Environmental Concern from a Water Quality Perspective [J]. Coastal Management,1989a,17:103-117.
    [80]Polyakov V, Fares A, Ryder M H. Precision riparian buffers for the control of non-point source pollutant loading into surface water:A review [J]. Environmental Reviews.2005,13: 129-144.
    [81]Prakash. Water resources engineering:handbook of essential methods and design [M]. Reston:ASCE Press,2004.
    [82]Quinn P, Beven K, Chevallier P, et al.The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models [J], Hydrological Processes,1991, 5:59-79.
    [83]Qureshi M E, Harrison S R. A decision support process to compare Riparian revegetation options in Scheu Creek catchment in North Queensland [J]. Journal of Environmental Management,2001,62:101-112.
    [84]Aspinall R J, Pearson D M. Integrated geographical assessment of environmental condition in water catchments:linking landscape Ecology, environmental modeling and GIS [J]. Journal of Environmental Management,2000,59:299-319.
    [85]Richard R. Defining reference conditions for restoration of riparian plant commuities: examples from California, USA [J]. Environmental Management,1999,24(1):55-63.
    [86]Rieger W. A phenomenon-based approach to upslope contributing area and depressions in DEMs [J]. Hydrological Processes,1998,12:857-872.
    [87]Salvetti R, Actuis M, Azzellino A, et al. Modelling the point and non-point nitrogen loads to the Venice Lagoon (Italy):the application of water quality models to the Dese-Zero basin [J]. Desalination,2008,226:81-88.
    [88]Sarah J M. The effects of non-point source pollution on surface water quality, Clayburn Watershed, Abbotsford, British Columbia, Canada [D]. Florida:University of South Florida, 2009.
    [89]Saunders W. Preparation of DEMs for use in environmental modeling analysis. In:Maidment, Hydrologic and Hydraulic Modeling Support with Geographic Information Systems [M]. ESRI Press, Redlands, CA,2000:29-51.
    [90]Schneider B. Phenomenon-based specification of the digital representation of terrain surfaces [J]. Transactions in GIS,2001,5:39-52.
    [91]Schultz R C, Colletti J P, Isenhart T M, et al. Design and placement of a multispecies riparian buffer strip system [J]. Agrofor. Syst.1995,29:201-226.
    [92]Schultz R C, Designing Riparian buffers to improve their Function [J].European water,2005. 11/12:47-53.
    [93]Serrano S E, Workman S R. Modeling Transient Stream/Aquifer Interaction with the Non-Linear Boussinesq Equation and its Analytical Solution [J]. Journal of Hydrology,1998, 206:245-255.
    [94]Shirish B, Jennifer M J, Kirk H, et al. Relationships between stream water chemistry and military land use in forested watersheds in Fort Benning, Georgia [J]. Ecological Indicators, 2006,6(2):458-466.
    [95]Shortle J S, Horan R D, Abler D G. Research Issues in Non-point Pollution Control[J]. Environmental and Resource Economics,1998,11(3-4):571-585.
    [96]Smith D S, Hellmund P C. Ecology of greenways:design and function of linear conservation areas [M]. Minnesota:University of Minnesota Press,1993.
    [97]Snaddon C D, Wishart M J, Davies B R. Some implications of inter-basin water transfers for river ecosystem functioning and water resources management in southern Africa [J]. Aquatic Health and Management,1998,1:159-182.
    [98]Soille P, Vogt J V, Colombo R. Carving and adaptive drainage enforcement of grid digital elevation models [J]. Water Resources Research,2003,39 (12):1366-1379.
    [99]Souchere V, King D, Daroussin J, et al. Effects of tillage on runoff directions:consequences on runoff contributing area within agricultural catchments [J]. Journal of Hydrology,1998, 206:256-267.
    [100]Stoddard J L, Larsen D P, Hawkins C P, et al. Setting expectations for the ecological condition of streams:the concept of reference condition [J]. Ecol. Appl,2006,16(4): 1267-1276.
    [101]Sullivan T J, Moore J A, Thomas D R, et al. Efficacy of Vegetated Buffers in Preventing Transport of Fecal Coliform Bacteria from Pasturelands[J].Environmental Management, 2007,40:958-965.
    [102]Swift L W.Filter strip width for forest roads in the Southern Appalachians [J]. Southern Journal of Applied Forestry,1986,10:27-34.
    [103]Tarboton D G. A new method for the determination of flow directions and upslope in grid digital elevation models [J]. Water Resources Research,1997,33(2):309-319.
    [104]Tribe, E.Automated recognition of valley heads from digital elevation models [J]. Earth Surface Processes and Landforms,1991,16:33-49.
    [105]Turcotte R, Fortin J P, Rousseau A N, et al. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network [J]. Journal of Hydrology,2001,240:225-242.
    [106]U.S. Watershed Protection and Management, Forest Service Manual Chapter 2520, WO Amendment 2500 [R]. USA:Department of Agriculture Forest Service:1994,94-326.
    [107]Uowolo A L, Binkley D, Adair E C. Plant diversity in riparian forests in northwestColorado: Effects of time and river regulation [J]. Forest Ecology and Management,2005,218: 107-114.
    [108]Vianello M, Vischetti C, Scarponi L, et al. Herbicide losses in runoff events from a field with a low slope:Role of a vegetative filter strip [J]. Chemosphere,2005,61:717-725.
    [109]Wenger S. A Review of the Scientific Literature on Riparian Buffer Width, Extent and Vegetation [M]. Georgia:University of Georgia Press,1999.
    [110]White M D, Greer K A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California [J]. Landscape and Urban Planning, 2006.74:125-138.
    [111]Williams R D, Nicks A D. Using CREAMS to simulate filter strip effectiveness in erosion control [J]. Journal of Soil and Water Conservation,1988,43:108-112.
    [112]Woil K P, Nagumo T, Kuramochi K, et al. Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas [J]. Science of the Total Environment,2004,329:61-74.
    [113]Weining X. A GIS method for riparian water quality buffer generation [J]. International Journal of Geographical Information Systems,1993a,7(1):57-70.
    [114]Weining X. Application of a G IS-Based Stream Buffer Generation Model to Environmental Policy Evaluation [J]. Environmental Management,1993b,17(6):817-827.
    [115]Weining X. GIS-based riparian buffer analysis:injecting geographic information into landscape planning [J]. Landscape and Urban Planning,1996,34:1-10.
    [116]Yongbo L, Wanhong Y, Xixi W. GIS-Based integration of SWAT and REMM for estimating water quality benefits of riparian buffers in agricultural watersheds [J].Transactions of the ASABE,2007,50(5):1549-1563.
    [117]Dongquan Z, Jining C, Haozheng W et al. GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach:a case study in Macau [J]. Environ Earth Sci, 2009:59:465-472.
    [118]蔡建国,楼炉焕,李根有,等.浙江省河道植物调查研究[J].西南林学院学报,2006,2:23-26.
    [119]蔡婧,李小平,陈小华.河道生态护坡对地表径流的污染控制[J].环境科学学报,2008,28(7):1326-1334.
    [120]蔡永立.上海市河道绿化建设导则研究报告[R].上海:华东师范大学/上海市水务局/上海市绿化管理局,2008.
    [121]仓恒瑾,许炼峰,李志安,等.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,2005,24(2):173-177.
    [122]常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2005,25(6):994-1002.
    [123]陈吉泉.河岸植被特征及其在生态系统和景观中的作用[J].应用生态学报,1996,7(4):439-448.
    [124]陈小华,李小平.河道生态护坡关键技术及其生态功能[J].生态学报,2007,27(3):1168-1176.
    [125]陈子珊,高甲荣,包昱峰,等.河溪利用方式对河岸带木本植物多样性的影响——以安达木河上游为例[J].水土保持研究,2008,15(4):189-191.
    [126]程文辉,王船海,朱琰.太湖流域模型[M].南京:河海大学,2006.
    [127]邓红兵,王青春,王庆礼,等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    [128]董哲仁.河流健康的内涵[J].中国水利,2005,(4):15-18.
    [129]董哲仁.生态水工学的工程理念[J].中国水利,2003,1:63-67.
    [130]董哲仁.生态水利工程原理与技术[M].北京:中国水利水电出版社,2000.
    [131]范小华,谢德体,魏朝富.河岸带生态系统管理模型研究进展[J].中国农学通报,2006,22(1):227-231.
    [132]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社.2001.
    [133]高润梅,郭晋平.文峪上游河岸林的演替分析与预测[J].生态学报,2010,30(6):1564-1572.
    [134]郭笃发.黄河对沿岸缓冲带土地利用格局的影响——以近代黄河三角洲段为例[J].农业环境科学学报,2005,24(4):757-760.
    [135]郭怀成,黄凯,刘永,等.河岸带生态系统管理研究概念框架及其关键问题[J].地理研究,2007,26(4):789-798.
    [136]贺宝根,周乃晟,高效江,等.农田非点源污染研究中的降雨径流关系——SCS法的修正[J].环境科学研究,2001,14(3):49-51.
    [137]侯传庆.上海土壤[M].上海:上海科学技术出版社[M],1992.
    [138]黄凯,郭怀成,刘永,等.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1382.
    [139]黄沈发,唐浩,鄢忠纯,等.3种草皮缓冲带对农田径流污染物的净化效果及其最佳宽度研究[J].环境污染与防治,2009b,31(6):53-57.
    [140]黄沈发,吴建强,唐浩,等.滨岸缓冲带对面源污染物的净化效果研究[J].水科学进展,2008a,19(5):722-728.
    [141]蒋文燕.平原海岛地区非点源污染负荷估算及水环境效应研究——以上海崇明岛为例[D].上海,华东师范大学,2008.
    [142]孔凡哲,芮孝芳.处理DEM中闭合洼地和平坦区域的一种新方法[J].水科学进展,2003,14(3):290-294.
    [143]李博.上海高度城市化地区土地利用变化对雨水径流影[D].上海,华东师范大学,2008.
    [144]李怀恩,庞敏,杨寅群,等.植被过滤带对地表径流中悬浮固体净化效果的试验研究[J].水力发电学报,2009,28(6):176-181.
    [145]李怀恩,张亚平,蔡明,等.植被过滤带的定量计算方法[J].生态学杂,2006,25(1):108-112.
    [146]李睿华,管运涛,何苗,等.河岸混合植物带处理受污染河水中试研究[J].环境科学,2006,27(4):651-654.
    [147]刘兰岚.上海中心城区土地利用变化对径流的影响及其水环境效应研究[D].上海,华东师范大学,2007.
    [148]罗坤.崇明岛河岸植被缓冲带宽度规划研究[D].华东师范大学,2007.
    [149]罗晓娟,余勇利.植被缓冲带结构与功能对水质的影响[J].水土保持应用技术,2006(4):1-3.
    [150]牟溥,王庆成,AnneE.Hershey,等.土地利用、溪流级别与溪流河水理化性质的关系[J].生态学报,2004,24(7):1486-1492.
    [151]潘响亮,邓伟.农业流域河岸缓冲区研究综述[J].农业环境科学学报,2003,22(2):244-247.
    [152]钱进,王超,王沛芳,等.河湖滨岸缓冲带净污机理及适宜宽度研究进展[J].水科学进展,2009,20(1):139-144.
    [153]饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学,2008, 6(4):121-128.
    [154]桑保良.上海市平原河网地区的水土流失及其治理[J].中国水土保持,2003,1:22-23.
    [155]邵波,方文,王海洋.国内外河岸带研究现状与城市河岸林带生态重建[J].西南农业大学学报(社会科学版),2007,12(5):43-47.
    [156]史刚荣,马成仓.外来植物成功入侵的生物学特征[J].应用生态学报,2006,17(4):727-732.
    [157]宋家永,李英涛,宋宇,等.农业面源污染的研究进展[J].中国农学通报,2010,26(11):362-365.
    [158]唐文魁,康彩霞,龙华丹.我国农业非点源污染现状研究[J].水科学与工程技术,2011,1:33-35.
    [159]汪权方,李家永,陈百明.基于地表覆盖物光谱特征的土地覆被分类系统——以鄱阳湖流域为例[J].地理学报,2006,61(4):359-369.
    [160]汪松年,阮仁良.上海市水资源普查报告[M].上海:上海科学技术出版社,2001.
    [161]王船海,王娟,程文辉,等.平原区产汇流模拟[J].河海大学学报(自然科学版),2007,35(6):627-632.
    [162]王忖,赵振兴.河岸植被对水流影响的研究现状[J].水资源保护,2003,19(6):50-53.
    [163]王和意,刘敏,刘巧梅,等.城市暴雨径流初始冲刷效应和径流污染管理[J].水科学进展,2006,17(2):181-185.
    [164]王建中,刘凌,燕文明.坡面氮素流失模型的建立与应用[J].水电能源科学,2008,26(6):45-47.
    [165]王敏,吴建强,黄沈发,等.不同坡度缓冲带径流污染净化效果及其最佳宽度[J].生态学报,2008,28(10):4951-4956.
    [166]王益民.黄河兰州段水环境污染对鱼类毒性效应研究[D].兰州大学,2010.
    [167]吴阿娜.河流健康评价:理论、方法与实践[D].上海:华东师范大学,2008.
    [168]吴浩云.大型平原河网地区水量水质耦合模拟及联合调度研究[D].南京:河海大学,2006.
    [169]吴健,王敏,吴建强,等.滨岸缓冲带植物群落优化配置试验研究[J].生态与农村环境学报,2008,24(4):42-45,52.
    [170]夏继红,严忠民,蒋传丰.河岸带生态系统综合评价指标体系研究[J].水科学进展,2005,16(3):345-348.
    [171]夏继红,严忠民.生态河岸带的概念及功能[J].水利水电技术,2006,5(37):14-19.
    [172]熊丽君,刘凌,徐祖信,等.张家港西南片地区非点源的计算研究[J].环境科学与技术,2007,30(8):3-5,23.
    [173]徐成斌,于宁,马溪平,等.不同河岸植物带对非点源污染河水污染物降解试验研究[J].气象与环境学报,2008,24(6):63-66
    [174]徐化成.景观生态学[M].北京:中国林业出版社,1996.
    [175]徐洁思.上海市河岸带植物配置研究[D].华东师范大学,2007.
    [176]徐祖信,尹海龙.黄浦江水环境模拟计算边界条件影响分析[J].同济大学学报:自然科学版,2006,34(1):74-79.
    [177]许士国,高永敏,刘盈斐.现代河道规划设计与治理--建设人与自然相和谐的水边环境[M].北京:中国水利水电出版社,2006.
    [178]颜兵文,彭重华,胡希军.河岸植被缓冲带规划及重建研究——以长株潭湘江河岸带为例[J].西南林学院学报,2008,28(1):57-60.
    [179]颜昌宙.湖滨带的功能及其管理[J].生态环境,2005,14(2):294-298.
    [180]杨胜天,王雪蕾,刘昌明,等.岸边带生态系统研究进展[J].环境科学学报,2007,27(6):894-905.
    [181]杨学军,林源祥,胡文辉,等.上海城市园林植物群落的物种丰富度调查[J].中国园林,2000,3:67-69.
    [182]叶碎高,王帅,张锦娟.河道植物措施与生物多样性研究进展与展望[J].水利与建筑工程学报,2008,6(2):41-43.
    [183]尹澄清.内陆水-陆地交错带的生态功能及其保护与开发前景[J].生态学报,1995,15(3):331-335.
    [184]袁雯,杨凯,吴建平.城市化进程中平原河网地区河流结构特征及其分类方法探讨[J].地理科学,2007,7(3):401-407.
    [185]岳隽,王仰麟.国内外河岸带研究的进展与展望[J].地理科学进展,2005,24(5):33-40.
    [186]岳勇,程红光,杨胜天,等.松花江流域非点源污染负荷估算与评价[J].环境科学学报,2007,27(2):231-236.
    [187]曾立雄,黄志霖,肖文发,等.河岸植被缓冲带的功能及其设计与管理[J].林业科学,2010,46(2):128-133.
    [188]张大弟,周建平,陈佩青.上海市郊4种地表径流深的的测算[J].上海环境科学,1997,16(9):1-3.
    [189]张东旭,郭晋平.河岸带边界界定中的关键问题[J].山西林业科技,2010,39(2):29-32.
    [190]张鹏,张旭东,黄玲玲,等.不同宽度硬头黄竹林河岸缓冲带对地表径流的拦截效应[J].水土保持学报,2009,23(6):23-27.
    [191]张群,崔心红,夏檑,等.上海临港新城近60a筑堤区域植被与土壤特征[J].浙江林学院学报,2008,25(6):698-704.
    [192]张善发,李田,高廷耀.上海市地表径流污染负荷研究[J].中国给水排水,2006,22(21):57-60.
    [193]张政.浦东新区水资源环境管理控制系统研究[D].上海:同济大学,2007.
    [194]章明奎,方利平.河岸水稻缓冲带宽度对排水中氮磷流失的影响[J].水土保持学报,2005,19(4):10-13.
    [195]赵广琦,崔心红,张群,等.河岸带植被重建的生态修复技术及应用[J].水土保持研究,2010,17(1):252-258.
    [196]中华人民共和国环境保护总局.中国环境状况公报,2006.
    [197]朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度[J].生态学报,2005,25(9):2406-2412.
    [198]诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探[J].水资源与水工程学报,2006,17(2):63-67.
    [199]左俊杰,蔡永立,罗坤,等.上海地区河岸带结构:类型、分布及改进[J].水资源保护,2009,25(6):24-28.
    [200]左俊杰,蔡永立.平原河网地区汇水区的划分方法——以上海市为例[J].水科学进展,2011,22(3):43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700