用户名: 密码: 验证码:
低含油饱和度油藏成因及渗流特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低含油饱和度油藏因其复杂的地质构造和成藏模式,对其成因的研究和系统认识可有效评价油藏品质和区域勘探形势,分析地层油水分布状态,有利于明确下一步的勘探方向和对已发现油藏的开发部署;储层渗流研究是油田开发最基本的研究工作,通过对低含油饱和度油藏渗流特征的研究,寻找其不同于常规油藏的规律,可为该类油藏的合理有效开发提供科学依据。
     论文以新疆准噶尔中部1区块为研究对象,针对研究目标和难点,制定了多学科综合研究的技术路线。首先研究了中部1区块储层的物性特征、流体特性以及其空间展布规律,借助地球化学和流体动力学分析方法,还原储层构造和流体分布的历史演变过程。在此工作的基础上,主要从三个方面研究低含油饱和度油藏形成机制:第一,通过分析多次排烃与多次构造调整时间、空间配置关系,研究构造调整对低含油饱和度油藏形成的影响;第二储层超压系统的成因对低含油饱和度油藏形成的影响;第三,储层层内纵向非均质性遮挡、低渗透毛细管自吸作用对油水饱和度分布的影响。
     在低含油饱和度成因研究的基础上,进一步开展了油藏渗流特征研究。通过模拟成藏条件和过程,采用微观水驱油模型、岩心水驱油试验及大物理模型模拟试验等方法系统研究了低含油饱和度油藏的渗流特征及微观水驱油机理,拟合出水驱特征经验公式,并针对油藏低渗透特点,开展了储层的损害评价和启动压力梯度研究,特别研究了启动压力对油水渗流特征的影响,修正了计算油水相对渗透率过程中启动压力的影响。
     研究结果表明,中部1区块低含油饱和度油藏是以油气藏调整为前提,以低幅构造低渗透储层为背景条件下形成,主要原因有以下几个方面:一、早期成藏,后期由于受喜山运动影响地层强烈掀斜,古油藏遭破坏,形成调整性油藏;二、油藏构造幅度低,渗透率低,主要形成油水过渡带;三、低渗隔夹层发育,加剧油水过渡带的形成;四、成藏动力弱,地层倾角小,油水分异不充分;五、受输导体系匹配不利的影响,油气供给不充足等等。低含油饱和度油藏的渗流特征主要表现在在两方面:(1)油水相对渗透率曲线上主要表现为油水共渗区间变窄;(2)水驱过程含水率的变化规律呈现“迅速上升—稳定—缓慢上升”三个阶段,采油初期含水迅速上升达到的高度和含水稳定采油时间的长短与低含油饱和度油藏原始状态含水饱和度的高低紧密相关。
     本论文综合应用多项评价技术完成了对低饱和油藏成藏机制和渗流特征的研究,成果对低含油饱和度油藏的研究和开发具有较广泛的指导意义,研究方法和手段,可以为今后相关领域研究提供很好的借鉴。
For the complex geologic structure and genetic model of the low saturated-oil reservoir, the research on the genesis and systematic study can help to evaluate reservoir and analyze the distribution of oil & gas as to make clear the further exploitation direction or development plan. The research on the reservoir filtration is the most basic work and the study to characteristics of the filtration of the low saturation as to find out the different features with normal reservoir can supply the scientific basis for the reasonable development of such reservoir.
     The paper made the No.1 area in the middle of the Zhunge'er Basin (Xinjiang, China) as the research object. According to the research objects and difficulties of the project, the technical line of multidisciplinary comprehensive study was made. Firstly, the physical features, fluid properties and space distribution were studied, and the reservoir structures and the historic evolved process of the fluid distribution were reduced with the help of the analytical methods for the geochemical and fluid dynamics. On base of above works, the form mechanism of the low saturation reservoir was researched from three main aspects: firstly, to research the affluence by the structure adjustment by the relationship between multi-expulsion and multi-structure and space allocation; Secondly, to research the affects by the genesis of the super low pressure system; thirdly, to research the affects by the vertical heterogeneous barrier within the layer, capillary effect of the low permeability.
     On base of the research on the genesis of the low oil saturation, the filtration characteristics had been studied. Through the simulation of the genetic condition and the process, the filtration characteristics and mechanism of the microscopic water drive oil were researched and the empirical equation were simulated; To the characteristics of the low permeability oil field, the damage evaluation and the starting pressure gradient were researched, especially the affects to the filtration characteristics of oil and water which had modified affects to relative permeability of oil & water.
     The research showed that the No.1 area is formed on premise of the adjusts of the oil&gas field and on background of the low latitude structure & low permeability. The main reasons are as follows: (1) the original reservoir was damaged by the later stage Himalayan movement and form the integrity reservoir. (2) the transition zone(oil & water) is form mainly because of the low latitude and low permeability.(3) the restraining barrier and interbed aggravates the formulation of the transition.(4) genesis dynamics is weak and the dip angle of formation is small and the separation of the oil and water is not enough. (5) The non-match of the transport and conductor lead the insufficient supplies of oil and gas. The filtration characteristics of the low saturation reservoir have two aspects: (a) the transition of oil and water in relative permeability plot turns narrow than normal reservoir; (b) the water cut have three stages:“rapidly rising; steady; slowly rising”. The rising degree of water cut in early stage has close relationship with the time of oil production and the original water saturation.
     Lots of evaluation techniques are adapted in this paper to research the genetic mechanism and filtration characteristics. The results are very valuable for the development of the low oil-saturated reservoir.
引文
[1] 江淑娟,吴松林. 石油开发. 北京:石油工业出版社,2002,Ver1:10-198
    [2] 廖健德 ,王绪龙 ,张明等. 陆梁油田低阻油层成因及其识别. 新疆地质,2003, 21(3):325-327
    [3] 刘复屏.长庆油田 H 井区储层低电阻率成因机理分析. 测井技术,2003,27(6):513-515
    [4] 施冬, 程启贵,张荣彬,李建雄. 靖安油田储层“上水下油”现象分析. 江汉石油学院学报, 2000,22(3):33-36
    [5] 边瑞雪,张立鹏. 靖安油田延长 6 组中低孔隙性储层物性研究. 石油大学学报(自然科学版),2001,25(6):32-34
    [6] 郑伟,陈京元,唐洪俊. 利用毛管压力计算充西区块香四气藏的含水饱和度. 天然气勘探与开发,2005-03,28(1):15-17
    [7] 董同武,张廷山,霍进等. 克拉玛依油田九区南低电阻率稠油油层成因. 新疆石油地质, 2005,26(3):257-258
    [8] 殷红. 吉林腰英台油田油水分布特征及成因探讨. 江苏地质,2005,29(1):38-31
    [9] Bymes A.P. and Bhattacharya S.. Influence of initial and residual oil saturation and relativity permeability on recovery from transition zone reservoirs in shallow shelf carbonates. SPE 99736, 2006
    [10] T.A. Obeida, Y.S. Al-Mehairi, and K. Suryanarayana, ADCO .Calculations of Fluid Saturations From Log-Derived J-Functions in Giant Complex Middle-East Carbonate Reservoir. SPE 95169, 2005
    [11] ZEMANEKJ. Low-resistivity hydrocarbon-bearing sand reservoirs.SPE 15713, 1987
    [12] Baskin D K,Hwang R J,Purdy R K.Predicting gas,oil and water intervals in Niger delta reservoirs using gas chromatography.AAPG Bulletin 1995,79(3):337-350
    [13] SCHULZERP,IVESGL,SMALLEYEA,et al. Evaluation of low-resistivity simps on series of formations.SPE. 1985:14-82
    [14] Souvick Sala, Schlumberger Nigeria. .Low-Resistivity Pay(LRP):Ideas for Solution. SPE 85675
    [15] Sheng Ding, Tai Phan, AnPing Yang, The use of integrated approach in estimation of water saturation and free water level in Tight gas reservoirs:case studies. SPE 84390.2003
    [16] Alfosail, K.A. and Alkaabi,A.U.. Water saturation in shaly formation. SPE. , 1997-04:555-563
    [17] Slot-Petersen,C., Eidsemo, T., White, J. and Rueslatten, H.G. . NMR formation evaluation application in a complex low resistivity hydrocarbon reservoir. SPWLA 39th Annual Logging Symposium, Paper TT, Keystone, 1998-05
    [18] Shokir, E.M.EI-M., Prediction of the hydrocarbon saturation in low resistivity formation via Artificial neural network. SPE 87001, 2004
    [19] 欧阳健, 王贵文. 油气藏中的测井储层描述. 石油学报。 1994. 15(增) :116-123
    [20] Skelt, C.: A relationship between height, saturation, permeability and porosity , Paper E018, 17th European Formation evaluation Symposium (SPWLA), Amsterdam, 1996
    [21] Aklin, S. and Kovscek, A.R.. Imbibition studies of low-permeability porous media. SPE 54590. 1999
    [22] Moddeton M.F., Murdoch U., K.Li, Spontaneous imbibition studies of Australian reservoir rocks with neutron. SPE 93634. 2005
    [23] Denekas,M.M.,Mattax,C.C.,and Davis,G.T.,effect of crude oil components on rock wettebility, Trans. AIME, 1959, 216,330.
    [24] 李国欣, 欧阳健, 周灿灿, 刘国强. 中国石油低阻油层岩石物理研究与测井识别评价技术进展. 中国石油勘探, 2006, 2:43-50.
    [25] Harrison B.. and X.D. Jing. Saturation Height Methods and Their Impact on Volumetric Hydrocarbon in Place. SPE 71326. 2001
    [26] Camegie A. J. G., Schluberger. Understanding the pressure gradient imprves production from oil/water transition carbonate zones. SPE 99250. 2006
    [27] Hamada G.M., M.S. Al-Blehed, M.N.J. Al-Awad, Nuclear Magnetic Resonance Log Evaluation of Low- Resistivity Sandstone Reservoirs By-Passed by Conventional Logging Analysis. SPE 64406. 2000
    [28] 张连元. 油水过渡带储量计算方法. 江汉石油职工大学学报. 2006, 19(2)16-17
    [29] 韩济全. 用孔隙度与含水饱和度交会图识别储层流体性质. 勘探地球物理进展,2005, 28(4):294-296
    [30] Paul F Worthington, Gaffney. Scale Effects on the Application of Saturation-heightFunctions to Reservoir Petrofacies Units. SPE 63139. 2000
    [31] Worthington, P.F. Application of saturation-height functions in integrated reservoir description. Geological applications of well logs, AAPG, 2001
    [32] Shahin Negahban, BPAmoco; G. W. Gunter. An Improved Empirical Approach for Prediction of Formation Water Saturation and Free Water Level for Uni-modal Pore Systems.SPE 63282. 2003
    [33] Johnson E.F. and Bossler D.P.. Calculation of relative permeability from displacement experimmnts. Trans.AIME,1995,vol.216:370
    [34] Jones S.C. and Roselle W.O. Graphical techniques for determining relative permeability from displacement experiments. J.P.T. 1978:807-817
    [35] 沈平平,季京生,李秉智等. 油层物理实验技术. 北京:石油工业出版社,1995,ver.1 :89-179
    [36] 曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征.石油学报,1994,15(1):38-45
    [37] 闫庆来等.低渗透油层中单相液体渗流特征的实验研究.西安石油学院学报,1990,5(2):1-6.
    [38] 闫庆来,何秋轩,阮敏等.低渗透油层渗流机理研究, 低渗透油田开发技术.北京:石油工业出版社,1994
    [39] 吕成远,王建,孙志刚. 低渗透砂岩油藏渗流启动压力梯度实验研究.石油勘探与开发. 2002, 29(2):68-89
    [40] 苏法卿,孙同刚,任忠斌. 低渗透砂岩油藏油水两相最小启动压力梯度实验研究. 油气地质与采收率. 2004, 11(4):44-48
    [41] 李道品. 低渗透砂岩油田开发. 北京:石油工业出版社,1999,25-30
    [42] 李云鹃,胡永乐. 低渗透砂岩油藏注水见效时间与井距关系. 石油勘探与开发. 1999, 26(3):84-86
    [43] Leverett, Capillary M.C. behavior in porous solids.Transactions of the American Institute of Mining and Metallurgical Engineers 1941, 142:152-169.
    [44] 阎庆来,何秋轩,任晓娟等. 低渗透油层渗流机理研究,低渗透油田开发技术. 北京:石油大学出版社,1994:350-363
    [45] 任晓娟,闵琪. 特低渗储层岩石中流体的渗流特征.低渗透油气田,1997, 2(2):13-15
    [46] 姚约东, 葛家理. 石油非达西渗流的新模式. 石油钻采工艺. 2003,25(5) :40-42
    [47] 姚约东, 葛家理. 低渗透油藏不稳定渗流规律的研究. 石油大学学报(自然科学版). 2003,27(2):55-62
    [48] 黄延章,严衡文等. 低渗透油层渗流机理. 北京:石油工业出版社,1998:80-158
    [49] 郭永存,卢德唐,曾清红等. 有启动压力渗流的数学模型. 中国科技大学学报,2005,35(4):492-498
    [50] 姚约东,葛家理,魏俊之. 低渗透油层渗流规律研究. 石油勘探与开发,2001,28(4):73-75
    [51] 时佃海. 低渗透砂岩油藏平面径向渗流流态分布. 石油勘探与开发,2006,33(4):491-494
    [52] 宋付权,刘慈群. 含启动压力梯度油藏的油水两相渗流分析. 石油大学学报(自然科学版),1999,23(3):47-56
    [53] 谷建伟,毛振强. 启动压力和毛管压力对低渗透油田生产参数影响. 大庆石油地质与开发,2002,21(5):30-31
    [54] Christenson H K, Israelachvili J N, Rashley R M. Properties of capillary fluid at the microscopic level[J].SPERE.1987,2(1):155-165.
    [55] Horn R G,Smith D T, Haller W. Surface silica and viscosity of water between sheets.Chem.Phy.Lett.1989,162(4/5):404-408.
    [56] Chowdiah P. Influnce of water-desaturation technique and stress on laboratory measurement of hydraulic properties of tight sandstone[J]. SPEPE.1988,2(4): 679-685.
    [57] 高旺来. 安塞低渗油田孔隙结构对渗流特征曲线的影响. 石油勘探与开发. 2003.2, 30(1):79-80
    [58] 张曙光, 石京平, 刘庆菊, 贺承祖. 低渗致密砂岩气藏岩石的孔隙结构与物性特征. 新疆地质. 2004, 22(4):438-441
    [59] 刘德新, 岳湘安, 燕松等. 吸附水层对低渗透油藏渗流的影响机理. 油气地质与采收率. 2005, 12(6):40-42
    [60] Geffen, T.M., Owens, W.W., Parrish,D. R., and Morse, R. A., Experimental investigation of factors affecting laboratory relative permeability measurements, Trans. AIME, 1951, 192, 99.
    [61] Osoba, J. S. , Richardson, J. K. ,Hafford, J. A. , and Blair, P. M. , Laboratory measurements of relative permeability, Trans. AIME, 1951, 192, 47.
    [62] Caudl, B. H. , Slobod, R. L. and Brownscombe, E. R. , Further developments in the laboratory determination of relative permeability, Trans. AIME, 1951, 192, 145.
    [63] Snell, R. W. , Measurement of gas-phase saturation in porous media, J. Inst. Pet 1959, 45, 428
    [64] Emmet, W. R. , Reaver, K. W. , and McCaleb, J. A. , Little Buffalo Basin Tensleep heterogeneity and its influence on drilling and secondary recovery, J. Pet. Technol. , 1971, 2, 61.
    [65] Donaldson, E. C. and Dean, G. W. , Two and three-phase relative permeability studies, report # 6826, U. S. Department of the Interior, Brueau of Mines, Bartlsville, Okla. 1976.
    [66] Sarem, A. M. , Significance of water-oil relative permeability data calculate from displacement test, Proc. , Theory of Fluid Flow in Porous Media Conference, University of Oklahoma, Norman, 1959, 189.
    [67] Henderson, J. H. and Yuter, S. T. Relative Permeability Study, Would Oil, 1958, 3, 139
    [68] M 霍纳波,.L.科德里茨,A.H.哈维,油藏相对渗透率. 北京:石油工业出版社,1989, Ver.1:19-120
    [69] 杨仁林,刘知国. 束缚水饱和度与储层流体性质的判别. 天然气工业. 2004, 23(增):46-48
    [70] Ezeddin Shirif, Gary Zao, Waterflooding Performance of Stratified Reservoirs with Bottom-Water Conditions. SPE 77965, 2002-10
    [71] Hunt J. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG, 1990, 74(1):1-12
    [72] 解习农,李思田,刘晓峰. 异常压力盆地流体动力学. 北京:中国地质大学出版社,2006,ver.1:14-75,107-136
    [73] 罗晓容,杨计海,王振峰. 盆地内渗透性地层超压形成机制及钻前压力预测. 地质论评, 2000, 46(1):22-31.
    [74] 王显东,姜振学等.古油气水界面恢复方法综述,地球科学进展,2003,18(3):412-419.
    [75] 刘光鼎,贾承造. 准噶尔油气勘探. 北京:石油工业出版社,2004,ver.1:47-156
    [76] 刘玉瑞,翟爱军,张雅君等. 准噶尔盆地中部 1 区块三工河组沉积微相及含油气性研究. 江苏油田,2005
    [77] 李华东,马英俊,何禹斌等. 准噶尔盆地中部 1 区块隐蔽油气藏特征及钻探目标优选. 江苏油田,2006
    [78] 徐运亭,徐启,郭永贵等. 低渗透油藏渗流机理研究及应用. 北京:石油工业出版社,2006,ver.4:84-86.
    [79] 徐霜,张兴焰,闫志军等. 低渗透储层微观孔隙结构及其微观剩余油分布模式.西部探矿工程,2005,9(9):57-59.
    [80] 高锡兴. 中国含油气盆地油田水. 北京:石油工业出版社,1994,ver.1:263-387
    [81] A.G.柯林斯 著,林文庄,王秉忱译. 油田水地球化学. 北京:石油工业出版社,1984, ver.1:202-244
    [82] 张年富 ,王 静 ,贾希玉等. 准噶尔盆地陆梁地区水动力条件与油气运聚关系. 新疆石油地质,2003,1224(6):505-508
    [83] 童益珍,马英俊,张雅君. 准噶尔盆地中部 1 区块油藏描述与储量计算. 江苏油田,2004
    [84] 邹华耀,曾治平,王敏芳. 成藏动力学与准噶尔腹部油气勘探综合分析. 中国地质大学(北京),2002
    [85] 李伟,张枝焕,李海平等, 准噶尔盆地中部区侏罗系油藏古今油水界面及成藏史分析. 现代 地质,2005,19(3):433-439
    [86] 张义杰,柳广弟.准噶尔盆地复合含油气系统特征演化与油勘探方向.石油勘探与开发,2002,29(1):36-38.
    [87] 张春明,方孝林等. 用热解和气相色谱技术确定碳酸盐岩储集层油水界面. 石油勘探与开发,1998,25(2):24-261
    [88] 邱楠生.中国中西部地区沉积盆地地热演化和成烃史分析. 油勘探与开发,2002,29(1):6-8.
    [89] 杨永泰,王社教,培东宏等.准噶尔盆地腹部深层成藏条件及探领域分析. 石油勘探与开发,2002,29(4):32-34.
    [90] 宋岩,王喜双,房德权.准噶尔盆地含油气系统的形成与演化. 石油学报,2000,21(4):20-25.
    [91] 许讲桥,梁文波等. 准噶尔盆地江苏探区隐蔽圈闭识别与烃类检测技术研究.江苏油田,2002
    [92] 谭明友,张云银等,准噶尔盆地油气幕式成藏规律探讨. 石油勘探与开发,2004,31(1):28-31
    [93] 张 年 富 . 准 噶 尔 盆 地 腹 部 莫 索 湾 地 区 油 气 成 藏 条 件 与 成 藏 模 . 石 油 勘 探 与 开发,2000,27(3):17-20.
    [94] 曲江秀,查 明. 准噶尔盆地异常压力类型及成因探讨. 石油实验地质,2003. 25(4):333—336
    [95] 郭尚平,黄延长等. 物理化学渗流微观机理. 北京:科学出版社,1990:56-95
    [96] 孙卫,曲志浩,陈付星等. 砂岩微观孔隙模型在安塞油田水驱油机理研究中的应用,低渗透油田开发技术. 北京:石油大学出版社,1994:364-369
    [97] 何秋轩,高永利,任晓娟等. 沈阳油田储层微观驱油效率研究. 西南石油学院学报,1996,18(2):20-24
    [98] 刘柏林. 苏北盆地陈堡油田微观水驱油机理及水驱油效率影响因素研究. 石油实验地质,2003, 25(2):178-182
    [99] 朱怀玉,曲志浩,孔令荣. 靖安油田长 6、长 2 油层驱油效率影响因素.石油与天然气地质. 1999, 20(4):333-335
    [100] 杨胜来,魏俊之. 油层物理学. 北京:石油工业出版社,2004,10:199-204.
    [101] Sutanto E., Davis H.T. and Striven L.E.. Liquid Distributions in Porous Rock Examined by Cryo Scanning Electron Microscopy.SPE 20518, 1990:459-474.
    [102] Kute, J. R et. al. Microscopic behavior of Fluids in Porous System. API, 476, 1957
    [103] Dave R. A. and Wright R. J. Oil Reservoir Behavior in the Microscale. The Royal School of Mines Journal,1998
    [104] 康毅力,罗平亚.储层伤害源—定义、作用机理和描述体系.西南石油学院学报, 1997, 19(3):31-35
    [105] 廖锐全,徐永高等.水锁效应对低渗储层的损害及抑制和解除方法. 天然气工业,2002, 22(6)
    [106] 秦积舜,李爱芬等。油层物理学. 山东:石油大学出版社,1998:154-276
    [107] A.T.戈尔布诺夫著. 李树保译. 异常油田开发. 北京:石油工业出版社,1987: 181-209
    [108] 阎庆来 ,马宝岐 ,邓英尔. 界面分子力作用与渗透率的关系及其对渗流的影响. 石油勘探与开发 ,1998,25 (2) :46~51.
    [109] 冯文光.非达西低速渗流的研究现状与进展.石油勘探与开发,1986,13(4):76-80.
    [110] 沈平平. 驱替实验计算相对渗透率的方法综述. 北京石油勘探开发研究,1986
    [111] 张建国,雷光伦,张艳玉. 油气层渗流力学. 石油大学出版社,2004-06,ver.1:33-77
    [112] Lisk M., O Brien G. W. , Eadington P. J. , Quantitative evaluation of the oil-leg potential in the Oliver gas field, Time Sea, Austrlia . AAPG Bulluetin, 2002, 86(9):1531-1542
    [113] Rodriguez A.A. and Araujo M.. Upscaling of Two-Phase Relative Permeability in Heterogeneous Porous Media. SPE 66390,2001
    [114] Patrick L. and Mohd. Ismail Omar, 20 years of laboratory oil-water relative permeability data in the Malay Basin. SPE 64375. 2000
    [115] 鄢捷年. 油藏岩石润湿性对注水过程中驱油效率的影响.石油大学学报(自然科学版).1998,22(3):43-46
    [116] Morrow N R. Wettability and its Effect on Oil Recovery, PT, Dec,1990:1476-148
    [117] Jadhunandan P P, Morrow N R. Effect of Wettability on Waterflood Recovery for Crude Oil/Brine/Rock Systems.SPE Reservoir Engineering, 1995: 40-46
    [118] Jill Marcelle-De Silva and Richard A Dawe. Effects of Permeability and Wettability Heterogeneities on Flow in Porous Media.SPE 81164, 2003:1-17
    [119] 张艳娟,郝艳秋,于涛等. 低渗油藏水驱油室内物理模拟实验方法研究. 特种油气藏,2007,4(2):101-104.
    [120] 王尤富,鲍颖. 油层岩石的孔隙结构与驱油效率的关系.河南石油,1991,No.1:23-26
    [121] 贺承祖,华明琪. 油气藏中水膜的厚度. 石油勘探与开发,1998,4(2):75-77.
    [122] 何蓉霞. 加强机理研究指明挖潜方向. 石油科技论坛,2003,12(6):79-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700