用户名: 密码: 验证码:
水平井牵引机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产液剖面测试技术是水平井开发的重要配套技术,同垂直井相比,需要解决将测试仪器输送到水平目的井段的难题,水平井牵引机器人作为管道机器人的一种,在水平井测试过程中表现出的优势已被广泛认可。本课题来源于与大庆油田公司的合作课题“水平井牵引机器人研制”,并于2007年得到“863”国家高技术研究发展计划项目(2007AA06Z231)的支持。其目标是研制一种能将测井仪器输送到水平井目标测试段的管道机器人。本文围绕牵引机器人机械系统中的关键技术,采用优化与仿真方法对其进行研究。
     首先给出牵引机器人系统的组成,制定机械系统的总体方案,进行井下执行单元的设计及自动定心机构和电磁离合器的方案设计。井下执行单元是牵引机器人的核心,由动作机构和驱动机构组成,分别用来控制驱动臂张合与爬行轮转动。利用模块化设计思想,确定驱动单元的结构形式,建立牵引力调节机构的力学模型,并对其结构参数进行优化,对影响牵引力的因素进行深入研究。提出采用齿形轮结构来提高牵引力的方法,对轮齿与管壁间的压入情况进行计算,得到轮齿的压入角及齿形角的取值范围。
     牵引机器人系统工作的安全性也是非常重要的,对于采用轮式驱动的牵引机器人,驱动臂可靠张开与闭合是机器人正常工作的必要条件,为此设计一种新型螺旋槽式电磁离合器。集成牙嵌式离合器与电磁离合器的特点,利用螺管力与弹簧力组合作用,实现啮合与脱开。根据电磁离合器的结构特点及功能要求,建立力学模型。以线圈高度最小为优化目标,完成电磁参数和结构参数优化;并在ADAMS平台上对其工作状态进行仿真分析,验证设计的正确性,利用优化后的结构参数完成电磁离合器结构设计。
     接下来,对牵引机器人另一关键机构—自动定心机构进行优化研究,采用偏置式4对臂8轮结构形式,利用压缩弹簧蓄能。根据其不同工作状态下的受力特点,建立力学模型和仿真模型。利用ADAMS提供的DOE工具,通过研究优化目标与设计变量之间的敏感度,找出相关度最大的作为设计变量,完成结构参数优化。利用优化后的模型进行管内越障分析,发现原设计方案的不足之处,并提出新的结构方案。
     牵引机器人关键结构确定后,可以对牵引机器人整体进行仿真研究。先对爬行轮结构形式与机器人卡堵问题进行分析,得出无差速驱动是导致机器人无法越障的最直接原因。分析非越障轮与越障轮的速度匹配与驱动臂长度及爬行轮陷入接缝的深度之间的关系,对无差速驱动下驱动单元跨越不同宽度管接缝和管内台阶障碍时的运动状态进行仿真研究,进一步证明无差速驱动是造成机器人卡堵的原因。为了使机器人能顺利越障,必须使非越障轮具备打滑的条件。然后对牵引机器人整体在直管障碍和弯管情况下的通过性进行仿真研究,获得牵引机器人越障时各部件的工作特点,对牵引机器人通过油井圆弧段的工作状态进行分析,给出牵引机器人在油井中过弯的许可条件。
     最后进行试验验证,通过电磁离合器的功能试验,验证所设计的电磁离合器可以满足要求;通过地面管道爬行试验,全面检验牵引机器人井下执行单元工作情况,并在试验中对牵引力进行测量;通过现场试验,验证所研制的牵引机器人达到预期功能要求,为后续的性能提高,提供理论依据和技术参考。
Production section testing technique is an important kit technique of horizontal well development. comparing with perpendicular well, it needs to solve the hard nut of transporting logger to horizontal object well segment. The horizontal well traction robot is one of pipeline robot, expressing the advantage in the test process of horizontal well has already accredited broadly. This topic comes from "863" national high technique research development program items(2007AA06Z231). Its object is to develop a kind of pipeline robot that transports the logger to the horizontal well object testing segment. This text surrounds the traction robot mechanical key structure and make use of optimum and simulation way to carry on a research.
     First, give the composition of traction robot system, confirm the general layout of machanical system, completed the function and principle design of the downhole driving unit, made sure the structure layout of auto-centralizer and electromagnetic clutch in the meantime. The downhole execution unit is the hardcore of traction robot, include actuating mechanism and driving mechanism, use to control the driving arm open and close, driving wheel running respectively. According to modulization idear, designed the general structure of driving unit, built the mechanics model and traction force regulates mechanism, and carried on an optimization to the structure parameters, carried on a thorough research to the factor that effects a traction force. Put forward adoption tooth wheel to increase a traction force, and according to the cutting force of disc milling cutter, carried on a calculation to the corresponding cutting depth of the tooth into the tube wall, passed to actually measure to acquire positive pressure and the relation between pressing depth and pressing width, give the value range of wheel tooth angle.
     The operate safety of traction robot system is also count for much, for the traction robot with wheel drive, driving arm's dependablely opening and close is the essential condition of robot regular running. Therefore designed a new kind of electromagnetic cluth that integrated the characteristics of tooth type clutch and electromagnetic clutch, make use of the interaction of solenoid force and spring force to engages and disengages. Created the mechanics model of electromagnetic clutch, with winding height minimum for optimum object, completed the optimization of electromagnetism parameter and structure parameter; Combine at ADAMS platform to carried on a simulation analysis of its running states, verified the validity of design, completed the structure design of electromagnetic clutch with the optimized structure parameter.
     Then carried on an optimization research to another key mechanism auto-centralizer of traction robot. Adopt bias structure with 4 pari of arms and 8 wheels, made use of a compression spring save energy. built a mechanics model, made use of DOE that ADAMS provides, passed the sensitivity of research optimization object and design variable, find out a related degree maximum of design variable, completed the optimization of structure parameters. Carry on over obstacles analysis with the optimized model, discovered shortage of original design, and give solution.
     After the two greatest key structures of traction robot confirmed, carry on a simulation to the whole traction robot .First carried on analysis to structure form and the question that robot block up while crawls along a tube gap, find the most direct reason, which cause robot can not over obstacles is use the non differential drive. Analyzed the relation between the speed of driving arm length of wheel not overing obstacle and wheel overing obstacle and the depth of a wheel sink into the gap. Carried on a simulation research of the running status of driving unit over different width gap and obstruction inside the tube with non differential drive, and proved further the non differential drive is the reason that makes the robot blocked. In order to make robot over obstacles smoothly, the wheel not overing obstacle must have a slippery condition. Then carried on a simulation research of the whole traction robot pass capability under the ascending tube obstruction and the bend tube, explicit the characteristics of each unit while traction robot over obstacles, analyzed the operate condition that the traction robot passes an arc well segment, verified the overbending capability of traction robot in the oil tube.
     Finally carried on an trial research, through the function test of electromagnetic clutch, verified the electromagnetic clutch can satisfy driving unit’s request; Crawl along tube on the ground, inspected the operate status of traction robot driving unit completely, at the same time measured the traction force in the test; Through the locale test, proved the developed traction robot system satisfied the request, and provided theory foundation and technique for the follow-up improve performance.
引文
1吴月先,钟水清,徐永高等.中国水平井技术实力现状及发展趋势.石油矿场机械. 2008,37(3):33~36
    2吴林.世界机器人技术发展的新方向一特种机器人.中国宇肮学会机器人学术年会,1990:1
    3张永顺.管道机器人技术与微管道机器人.浙江大学博士后学位论文. 2001:1~5
    4常玉连,邵守君,高胜.石油工业中管道机器人技术的发展与应用前景.石油机械. 2006年,第34卷,第9期:122~126
    5刘大维,彭商贤,龚进峰.地下管道检测移动机器人的发展现状.吉林工业大学学报. 1998, 28 (1): 109~112
    6 Shuxiang Guo, Yasuhiro Sasahi. A New Kind of Microrobot in Pipe Using Driving Fin. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2003:697-702
    7 Shuxiang Guo. A New Type of Microrobot for Biomedical Application, Proceedings of the 2004 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2004: 867-872
    8 Shuichui. A Micro Snake-like Robot for Small Pipe Inspection. IEEE International Symposium on Micromechatronics and Human Science, 2003:303-308
    9 Zhang Li-Xun, Lu Dun-Min, Wang Lan, Shen Jin-Hua, Bernhardt R. Dynamics analysis of five-bar COBOT based on differential mechanism, Robot, 2004,26(2):123
    10 Chakraborty, Nilanjan, Ghosal, Ashitava. Kinematics of wheeled mobile robots with toroidal wheels on uneven terrain. Proceedings of the 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2003:1331-1341
    11 A. Brunete, M. Hernando, E. Gambao. Modular Multiconfigurable Architecture for Low Diameter Pipe Inspection Microrobots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, 2005:490-495
    12 C. Birkenhofer, M. Hoffmeister. Compliant Motion of a Multi-segmented Inspection Robot. Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona,Spain,2005:190-195
    13 Gao Hai-Bo, Deng Zong-Quan, Wang Shao-Chun, Hu Ming. Dynamics analysis of the lunar rover with planetary wheel. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology,2005,37(1):32-35
    14 Korayem, M.H., Rostam, T.Bani. Experimental analysis for measuring errors in wheeled mobile robots. International Journal of Engineering, Transactions B:Applications,2005,18(2):115-133
    15 Chakraborty, Nilanjan, Ghosal, Ashitava. Kinematics of wheeled mobile robots on uneven terrain. Mechanism and Machine Theory,2004,39(12):1273-1287
    16 Kawaguchi Y. Internal Pipe in Section Robot. Proceedings of IEEE International Conference on Robotics and Automation,California,1995:857-862
    17张松扬.水平井生产测井技术的现状和发展.石油物探译丛. 1999:12:13~15
    18韩易龙等.水平井生产测井技术应用.测井技术,2003,27(4):320~324
    19赵炜译.电缆牵引机器人在水平井中的成功应用.国外石油机械1997年10月,第8卷第5期:45~48
    20 Halliburton, Welltec etc. Well Tractors for Highly Deviated and Horizontal Wells. SPE 28871.1994:345~348
    21 Halliburton,SPE,Welltec .Reduction of Cost with New Well intervention Technology. Well Tractors.SPE 30405.1995:476~478
    22 Gerald Mclnally,Maritime Well Serview, Weelltec. The Application of New Wireline Well Tractor Technology to Horizontal Well Logging and Intervention: A review of Field Experience in the North Sea. SPE 38757.1997:654~659
    23 Stragiotti etc. New Applications for 2 1/8 in Well Tractor inside 5 in Drill Pipe. SPE 71373.2001:756~758
    24 Lan A. Allahar etc. Horizontal Production Logging using Tractor Technology first for Trinidad. SPE 81118.2004:432~436
    25 Eddie Local. Wireline Tractor Production Logging Experience in Australian Horizontal Wells. SPE 49994.1998:378~382
    26 Henderson. Cost Saving Benefits of Using a fully Bi-directional Tractor System. SPE 65467.2000:1123~1125
    27 Reciprocating Running Tool. Patent No. US 6345669
    28杨宜民,黄明伟.能源自给式管道机器人的机械结构设计.机器人,2006,28(3):326~330
    29钟映春,杨宜民.新型能源自给式管道机器人的原理设计与研究.机床与液压.2006,(7):5~6
    30孟浩龙,李著信,王菊芬等.管道内差压驱动机器人相关流场数值模拟研究.应用力学学报,2007,24(1):102~107
    31 M. Yoshida, K. Endo, N. Masuda etc. Corrosion Inspection Pig for Gas Pipeline. NKK Technical Report,1990,133:43~48
    32 Ernest Appleton. Dynamic Characteristics of a Novel Self-Drive Pipeline Pig. IEEE Transaction on Robotics,2005,21(5):781~789
    33张学文.管道机器人三轴差动式驱动单元设计与可靠性研究.吉林大学博士学位论文. 2006年3月:4~6
    34 Zheng Hu, Ernest Appleton. Dynamic Characteristics of a Novel Self-Drive Pipeline Pig. IEEE TRANSACTIONS ON ROBOTICS. VOL.21,NO.5,October 2005:781~789
    35杨理践,王玉梅,冯海英.智能化管道漏磁检测装置的研究.无损检测. 2002年3月,第24卷第3期:101
    36 K.Sato. Necessary for Useful Technology. Journal of the Robotics Society of Japan. 1994,12( 8): 1132-1136
    37 S.Yamamoto, K.Sato, H.Fukushima, H.Saito. A Study of a Pipe Inside Mover with Elastic Bristles. Transactions of the Japan Society of Mechanical Engineers. 1988,54( 506): 2471-2474
    38 S.Yamamoto, K.Sato, K.Kikuchi, T.Matui. A Study of a Pipe Inside Mover with Elastic Bristles. Transactions of the Japan Society of Mechanical Engineers. 1991,57( 540): 2675-267
    39彭商贤,刘斌,龚进峰.履带式管道机器人及侧倾问题的研究.机器人, 2000,22(4):247~250
    40秦卫东,欧阳卫强,赵小军. TL-I型履带式管道机器人双型控制系统设计.九江学院学报(自然科学版), 2005,(4):17~21
    41 Johann Borenstein and Adam Borrell. The OmniTread OT-4 Serpentine Robot. 2008 IEEE International Conference on Robotics and Automation.Pasadena, CA, USA, May 19-23, 2008:1766~1767
    42 Grzegorz Granoisk, Johann Borenstein. Integrated Joint Actuator for Serpentine Robots. IEEE/ASME Transaction on Mechatronics,2005,10(5):473~481
    43 Andreas Zagler, Friedrich Pfeiffer.”MORITZ”a Pipe Crawler for Tube Junctions. Proceeding of the 2003 IEEE International Conference on Robotics &Automation Taipei,Taiwan.2003:2954~2959
    44王嵩,曹志奎.一种基于SMA的管道里蠕动机器人及其反馈控制.传动技术. 2005年3月,第19卷第1期:29~31
    45 Li Chen, Yuechao Wang, Shugen Ma. Analysis of Traveling Wave Locomotion of Snake Robot. Proceeding of the 2003 IEEE International Conference on Robotic, Intelligent Systems and Signal Processing,2003:365~369
    46刘晓洪,郑毅,高隽恺,陶国良.新型蠕动式气动微型管道机器人.液压气动与密封.2007年第1期:16~18
    47赵铁石,林永光,缪磊,王春雨.一种基于空间连杆机构的蛇形机器人.机器人. 2006年11月,第28卷第6期:629~632
    48徐从启,解旭辉,戴一帆等.一种新型蠕动式微小管内机器人的研制.机械设计与研究. 2008年12月,第24卷第6期:42~45
    49叶长龙,马书根,李斌.蛇形机器人的转弯和侧移运动研究.机械工程学报. 2004年10月,第40卷第10期:119~126
    50 Huitao Yu, Peisun Ma, Chongzhen Cao. A Novel In-Pipe Worming Robot Based on SMA. Proceeding of the IEEE International Conference on Mechatronics&Automation Niagara,2005:923~927
    51吴艳花.蛇形机器人越障研究.机床与液压. 2009年2月,第37卷第2期:21~23
    52胡文君,李著信,苏毅等.管道机器人在三通处的通过性分析.后勤工程学院学报,2005,(3):49~53
    53刘帅民,尚唯坚.小型螺旋轮式管道机器人设计.机械. 2009年第2期,第36卷:76~78
    54 Sangdeok Park, Hee Don Jeong. Design of a mobile Robot System for Automatic Integrity Evaluation of Large Size Reservoirs and Pipelines in Industrial Fields. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems Las Vegas,Nevada,2003,(10):2618~2623
    55 Agrawal, Sunil K, Yan Jin. A Three-Wheel Vehicle with Expanding Wheels: Differential Flatness, Trajectory Planning, and Control. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,2003:1450~1455
    56 Dixon W.E, Galluzo T, Hu G, Crane C. Adaptive velocity field control of a wheeled mobile robot. Proceedings of the Fifth International Workshop on RobotMotion and Control, RoMoCo'05:145~150
    57 Riggins R, Snider J, Mutter B. Design and analysis of an autonomous ground robotic vehicle. AUVSI's Unmanned Systems North America 2004 Proceedings:295~309
    58 Amir A. F. Nassiraei, Kazuo Ishii. Concept of Intelligent Mechanical Design for Autonomous Mobile Robots. Journal of Bionic Engineering. 4 (2007):217~226
    59 Korayem M. H,Rostam T. Bani,Nakhai A. Design, modeling and errors measurement of wheeled mobile robots. International Journal of Advanced Manufacturing Technology,2006,28(3-4):403~416
    60 Stefan Cordes, Karsten Berns, Martin Eberl, etc. Autonomous sewer inspection with a wheeled, multi-articulated robot. Robotics and Autonomous Systems. 21 (1997):123~135
    61 Chakraborty, Nilanjan, Ghosal, Ashitava. Dynamic modeling and simulation of a wheeled mobile robot for traversing uneven terrain without slip. Journal of Mechanical Design, Transactions of the ASME,2005,127(5):901~909
    62莫建清,黄茂林,杜力等.自适应机构的综合方法.中国机械工程, 2004,15(8):1661~1665
    63曹冲振,马培荪,王凤芹等.海底石油管道超声检测柔性无级变径系统.机械科学与技术,2006,25(7):57~69
    64张云伟,颜国正,丁国清等.煤气管道机器人管径适应调整机构分析.上海交通大学学报,2005,39(6):50~53
    65徐小云,颜国正,丁国清等.管道机器人适应不同管径的三种调节机构的比较, 2004,12(1):121~124
    66 Qin Chang-jun, Ma Pei-sun, Yao Qin. A prototype micro-wheeled-robot using SMA actuator. Sensors and Actuators. A 113 (2004): 94~99
    67陆麒,章亚男,沈林勇,钱晋武.适应管径变化的机器人.机械设计, 2007,24(1):16~18
    68 Haiming Qi, Xiaohua Zhang, Hongjun Chen, etc. Tracing and localization system for pipeline robot. Mechatronics, 19 (2009): 76~84
    69 S.M.Ryew, S.H.Baik, H.R.Choi. In-pipe Inspection Robot System with Active Steering Mechanism. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and System,2000:1652~1657
    70 S.G.Roh, S.M.Ryew, J.H.Yang, H.R.Choi. Actively Steerable In-pipe Inspection Robots for Underground Urban Gas Pipelines. IEEE Int. Conf. Robotics andAutomation(ICRA2001),2001:56~61.
    71吴爽,王新智,吴俊飞,姜生元. c8051F单片机在多功能管道机器人上的应用.电气自动化. 2006,28(3):12~14
    72邓宗全,陈军,姜生元等.六独立轮驱动式管内机器人的研制.高技术通讯. 2004,9:54~58
    73谢文彬,杨建国,李蓓智等.管道机器人的研制.机械工程师. 2005,1:14~16
    74周晓.管内移动机器人在弯管处的环境识别及控制技术研究.哈尔滨工业大学博士论文.1999
    75邓宗全,陈军,姜生元等.六独立轮驱动管内检测牵引机器人.机械工程学报. 2005,41(9):67~71
    76姜生元.管内X射线探伤机器人技术及理论研究.哈尔滨工业大学博士学位论文,2001,6
    77姜生元,叶锐汉,江旭东,李建永.三轴差动式管内移动机器人驱动单元的研究.第三届CAE技术年会论文集,2007:306~310
    78江旭东,姜生元,叶锐汉,焦宏章.三轴差速器虚拟样机技术研究.第三届CAE技术年会论文集,2007:311~314
    79姜生元,邓宗全,李斌等.内置动力源管内X射线探伤机器人的研制.机器人, 2001,23(3):211~216
    80张学文,姜生元,贾亚洲,江旭东.三轴差动式管内移动机器人的可靠性分析.吉林大学学报(工学版),2008,38(2):365~369
    81刘帅民;尚唯坚.小型螺旋轮式管道机器人设计.机械. 2009年第2期:76~78
    82解旭辉,王宏刚,徐从启.微小管道机器人机构设计及动力学分析.国防科技大学学报,第29卷第6期,2007:48~50
    83陆麒,章亚男,沈林勇,钱晋武.适应管径变化的管道机器人.机械设计,第24卷,第1期2007年1月:48~51
    84唐德威,梁涛,姜生元,邓宗全等.机械自适应管道机器人的机构原理与仿真分析.机器人.第30卷第1期2008(1):66~69
    85马建中,祁振萍,相九涛.水平井测井仪器输送方法.石油仪器.2004(06):20
    86 Taguchi, K.; Kawarazaki, N; Development of in-pipe locomotion robot, Advanced Robotics, 1991. 'Robots in Unstructured Environments', 91 ICAR., Fifth International Conference on 19-22 June 1991 Page(s):297 - 302 vol.1日本ADEK株式会社研制的一种轮式管内移动机器人系统.
    87艾兴,肖诗纲.切削用量简明手册.机械工业出版社. 2007年9月第3版:110.
    88 Julio C. Guerrero, Falk W. Doering, Carl J. Roy. OPEN HOLE TRACTOR WITH TRACKS [P]. United States Patent Application Publication. PN:7156192B2, Jan.2,2007
    89 Roger A.Post, Todor K.Sheiretov, Carl J.Roy. BI-DIRECTIONAL GRIP MECHANISM FOR A WIDE RANGE OF BORE SIZES [P]. United States Patent. PN:US6629568B2, Oct.7,2003.
    90 Todor K. Sheiretov, Roger A. Post, Carl J. Roy. CONSTANT FORCE ACTUATOR [P]. United States Patent Application Publication. PN:2003/0173076A1, Sep.18,2003
    91 Jolio C. Guerrero. MECHANISM THAT ASSISTS TRACTORING ON UNIFORM AND NON- UNIFORM SURFACES [P]. United States Patent Application Publication. PN:US2003/0183383A1, Oct.2, 2003
    92 Duane Bloom, Anaheim, Norman Bruce Moore. GRIPPER ASSEMBLY FOR DOWNHOLE TOOLS [P]. United States Patent. PN:US7191829B2, Mar.20,2007
    93王斌斌,张杨.钻杆防磨保护套在水平井水平段中的仿真分析[J].石油机械. 2006,34(1): 33-36.
    94何志平.抽油杆扶正器的改进与应用[J].石油矿场机械. 2007, 36(7):78~81.
    95耿鲁营. HW管、杆自动扶正防偏磨装置的研制与应用[J].内蒙古石油化工. 2008,24:19.
    96魏学成,夏书林.叠片式可膨胀套管扶正器设计[J].石油矿场机械. 2007,36(2):56~58.
    97舒中选,陈德东,郑严等.常用套管扶正器扶正力及其变形关系的探讨[J].石油钻探技术. 2003, Oct. 31(5):82-84.
    98赵金秋,邵芳.八臂滚轮扶正器的设计[J].石油仪器. 2006,20(5):23-24,27.
    99曾庆良,刘文,韩虎.基于虚拟样机技术的新型机器人弹射装置的参数化仿真分析[J].中国工程机械学报,2006年4月第4卷第2期:187~191.
    100靳晓雄,张强,彭为.基于ADAMS的混合动力轿车动力总成悬置系统的优化设计[J].中国工程机械学报, 2008年6月,第6卷第2期: 180~183.
    101王洪伦,龚烈航,肖斌安.基于虚拟样机技术的工程机械仿真分析与应用研究[J].机床与液压, 2008年7月第36卷第7期:140~141.
    102 LUCA P, PAUL B, NICK P. ADAMS Custom Interface for Power train MountingSystem Design[C].ADAMS Inc. Proceedings 15th ADAMS User Conference. Chicago: ADAMS Press, 2000:15-17.
    103陈耀东,屈力刚,辛斌等.湿式多片电磁离合器的应用[J].沈阳航空工业学院学报.2004年2月第21卷第1期:63~64.
    104梁静,顾玲.牙嵌离合器的优化设计.机械设计与制造[J], 2005年10月第10期:51~52.
    105王珍华,付微,赵立德.牙嵌式电磁离合器的设计与计算[J].一重技术. 2003年第4期:8~11.
    106张冠生,陆俭国.电磁铁与自动电磁元件[M].机械工业出版社, 1982:70~77
    107苏劲明, MATLAB6.1的实践应用指南[M],电子工业出版社,2002:48-55.
    108 Zhao Lijun, Liu Tao, and Song Baoyu. Optimum Design of Automobile Diaphragm [J]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China:1-4.
    109 Sun Yilan, Liu Hongyi, Luo Zhong, Wang Fei. Robot Mechanical Structure Optimization Design [J]. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics. December 2007, Sanya, China:1919-1923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700