用户名: 密码: 验证码:
塔河油田集输系统内防腐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔河油田地层水矿化度高、呈酸性、产出介质含C02和H2S等腐蚀性气体,集输系统处于盐碱地带,塔河油田集输系统腐蚀环境十分复杂。
     .在过去的时间里,不少人对塔河油田的腐蚀问题进行过种种研究,油田本身也采取了防腐措施,但效果较差,腐蚀事件时有发生,且有越来越严重的趋势。究其原因,过去的研究和采取的防腐措施基本脱节,没有将腐蚀研究和防腐措施作为一个有机的统一体紧密地联系起来。由于各油气田的腐蚀环境和腐蚀本体存在差异,几乎不可能找到一种对所有油气田都能有效的防腐措施,因此,针对具体的油气田的腐蚀问题,开展腐蚀与防腐研究是十分必要的,也才是有意义的。
     通过对国内外在二氧化碳和硫化氢腐蚀研究成果方面的调研、学习,为本课题的研究提供了思想准备。
     论文进行了大量的试验研究。首先,开展了二氧化碳和硫化氢的腐蚀试验研究。对盐与二氧化碳共同作用下的腐蚀问题,完成了普通条件下的腐蚀试验,即模拟塔河油田大多数区块的腐蚀环境进行试验;然后,完成了腐蚀介质矿化度对腐蚀速率的影响试验,即在塔河油田极端矿化度条件下与二氧化碳共同作用的腐蚀试验;也即是覆盖了塔河油田输送介质温度条件下与二氧化碳共同作用的腐蚀试验;接着,在完成了普通条件下的腐蚀试验的基础上,开展了盐、二氧化碳和硫化氢共同作用下的腐蚀试验;最后,完成了腐蚀介质矿化度、温度对腐蚀速率的影响试验。
     在分析研究塔河油田产出液中各种离子组成和含量的基础上,本文研究了结垢理论和结垢预测方法,采用饱和指标法对塔河油田典型生产井的碳酸钙结垢趋势进行了预测,并以此为基础进行了模拟现场条件的防垢试验研究。
     本文筛选出了防垢剂FBR,再对FBR模拟典型井地层水进行防垢试验,在FBR加量大于25mg/L时,各井的防垢率均大于90%,完全能够满足现场需要。
     针对塔河油田的腐蚀环境,研制塔河油田专用缓蚀剂是本文的主要研究内容和重点。为了评价研制出的两种缓蚀剂,将它们和另外选取的现场在用的三种缓蚀剂HQ21、DA-1和CT2-1在同样的条件下,一起进行室内试验评价。结果表明:缓蚀剂THA-1和THA-2的缓蚀性能均优于所有在用的其它缓蚀剂;同时,我们对所研制出的两种缓蚀剂与油田生产过程中的其它化学加剂的配伍性能进行了配伍性试验。结果表明:缓蚀剂THA-1和THA-2具有良好的配伍性能。这充分说明,针对塔河油田所研制的缓蚀剂THA-1、THA-2是成功的,这是一项具有重要意义的技术创新。
     腐蚀在线监测技术是一项十分重要的防腐技术。本文首先对目前国内外在线腐蚀监测技术进行了分析,结合塔河油田的环境特点,选取了线性极化法、快速腐蚀速率测定法与试片失重法进行试验室对比试验。在此基础上,确定采用试片失重法与化学分析法相结合的腐蚀监测技术用于塔河油田集输系统腐蚀监测。
     利用在线监测网络,我们进行了两次检测分析,结果表明:塔河一厂的腐蚀情况比塔河二厂的腐蚀情况相对严重,尤其是1号联油阀组1。这与理论分析研究的结论和现场腐蚀事件的发生情况是一致的。这充分说明了该监测系统所采用的技术理论与方法是正确的。在线腐蚀监测系统从构思、理论研究分析、设计、建造到试件操作处理及腐蚀产物再试验再分析,是一个十分复杂的系统工程,它不仅涉及监测系统本身,还涉及到地面集输系统的工艺流程、设备、材料生产过程、生产状态等。该系统的建立,是塔河油田地面集输系统防腐工作的一大技术进步。
     本文中所完成的两次在线检测是在加注了缓蚀剂THA-1和THA-2后进行的,检测结果表明:THA-1的缓蚀率在80%以上,THA-2的缓蚀率接近80%,而国内一般商用缓蚀剂的缓蚀率都在50%~60%。同时,两种缓蚀剂都将塔河油田地面集输系统的腐蚀速率控制在了部颁标准(0.076mm/a)的范围内。这充分证明了针对塔河油田地面集输系统腐蚀环境所研制的缓蚀剂是可靠的,并在其后的现场应取得有了很好的效果。
A High salinity formation water in Tahe oilfield, Present acid. in Output medium, containing corrosive gas CO2 and H2S. gathering and transportation system in Tahe oil field locaked in salt lick. The corrosion environment is very complex for gathering and transportation system in Tahe oil field.
     In the past time, many of the corrosion problems of Tahe oilfield has various research, oilfield itself has taken anticorrosion measures, but the effect is poorer, corrosion incidents are increasingly serious trend.
     The reason, past research is separated from the anticorrosion measures basically, the corrosion and corrosion measures is an organic unity, but not be connected closely. Because of esch oil field corrosion environment and corrosion noumena are different, there is no possible to find one anticorrosion precautiont that is effectual for all oil fiel.therefore, corrosion and anticorrosion study is very necessary, also, is meaningful.it provides ideological preparation through investigation and research on the research outcome of carbon dioxide and sulfureted hydrogen corrosion.
     A large number of experimental research has been worked out. Firstly,the corrosion experiments for carbon dioxide and sulfide have been finished. For salt and carbon dioxide to the corrosion problems,the experiments in a general conditions, have been finished. Namely, exerperiments of simulation corrosion environment in most block of Tahe oilfied. Then,completed the experiment that salinity effect on corrosion rat.namely, experiment in a extremely salinity condition in Tahe oilfield. That is corrosion text finished with the temperature covereing all transportation medium in Tahe oilfield. after that, the corrosion experiments,under the combined action of salt,carbon dioxide and sulfide hydrogen, have been finished.first of all, the corrosion experiments have been worked out in a general condition and then corrosion rate experiment have been worked out in conditions of salinity and temperature effecting on
     In the study of ion composition and content in liquid output in Tahe oilfield, and on the basis of research to study scale formation theory and prediction scaling method, the method of saturated index of calcium carbonate scaling trend is forecasted in Tahe oilfield typical production wells, and based on that, anti-scaling experiments, simulation scene conditions, have been finished.
     Antiscale agent FBR Screened. For FBR, anti-scaling experiment finished simulation on formation water in typical well whill FBR quantity than 25mg/L, the scaling rate is larger than 90%, can fully satisfy meet the needs. Of the oil field production.
     To aim at the corrosion environment in Tahe oilfield, developing a corrosion inhibitor for Tahe oilfield is the main research content of this subject, but also the focus of research. In order to evaluate developed corrosion inhibitor THA-1 and HTA-2. evaluated THA-1,THA-2 and Three corrosion inhibitors (HQ21, DA-1 and CT2-1) be used in Tahe oilfield in the same condition. Results show that:the corrosion inhibitors THA-1 and THA-2 have better performance than the others. At the same time, compatibility experiments, for THA-1 and THA-2 and the other chemical additive used in oilfiel, have been finished. The results show that the developed two inhibitor have good compatibility. the study of corrosion inhibitor is successful and is an important significance of technology innovation.
     Corrosion on-line monitoring technology is an important anticorrosion technology. the methods, linear polarization method, rapid corrosion rate determination method, check bar weight-loss method, have been selected Combine with the environmental features of Tahe oilfield. The contrast experiment,the methods adopted, have been worked out. On this basis, the weight loss method Combined with chemical analysis method, as a corrosion monitoring technology used in Tahe oilfield gathering and transportation system monitoring, have been adopted.
     Using the on-line monitoring network, two detections have been worked out. Results showed that the corrosion situation of Tahe factory 1 than the corrosion situation of Tahe factory 2 relatively serious, especially oil valve group in the station 1. The theoretical analysis and research results and locale event is consistent. This fully explain that the technical theory and method adopted in this monitoring system are correct.
     Online corrosion monitoring system from conception, theoretical analysis, design, construction and operation treatment to specimens are analyzed, and then again experiment is a complicated system engineering. It involves not only monitoring system itself, but also involves gathering transportation system of the process, equipment, materials, production process and production status, etc. This system established, is a gigantic technology progress for the system of ground gathering and transportation in Tahe oilfield.
     Twice on-line detection has been completed after filling corrosion inhibitors THA-1 and THA-2. Test results show that:corrosion inhibitor THA-1 has a corrosion inhibition efficiency over 80% and corrosion inhibitor THA-2 has a corrosion inhibition efficiency close to 80%. But, in china, the corrosion inhibition efficiency of a General commercial corrosion inhibitor is from 50% to 60%。At the same time, using The two kinds of corrosion inhibitors, the corrosion inhibition rates are controlled in the standard (0.076 mm/a) range. This fully demonstrated these two kinds of corrosion inhibitors developed, to aim at the gathering and transportation system in tahe oilfield, is reliable,and have been applied in tahe oilfield.
引文
[1]林玉珍杨德钧.腐蚀与腐蚀控制原理[M].北京:中国石化出版社,2007.209-210.
    [2]Waard, C.De. and Milliams, D. E.:Corrosion[M],1975,31(5).
    [3]Schmitt, G.:Fundamental aspects of CO2 Corrosion[J], Corrosion/83,NACE, 1983(43).
    [4]Ogundel, G.L and White, W E.:Some Observations on Corrosion of Carbon Steel in Aqueou Environments Containing Carbon Dioxide[J], Corrosion,1986, 42(2).
    [5]Xia, Z. Chou, and K.-C. et al:Pitting Corrosion of Carbon Steel in CO2-Containing NaCl Brine[J], Corrosion,1989,45(8).
    [6]Nesic, S. and Postlethwaite.J.et al:An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions[J], Corrosion, 1996,52(4).
    [7]Hausler, R. H. and Stegmann, D. W.:CO2 Corrosion and its Prevention by Chemical Inhibition in Oil and Gas Produetion.Corrosion/88,NACE,1988(363).
    [8]Linda, G. S. Gray and Bruce, Anderson, Get al:Effect of and Temperature an the Mechanism of Carbon Steel Corrosion by Aqueous Carbon dioxide[J], Corrosion/90,NACE,1990(40).
    [9]油气田腐蚀与防护技术手册编委会.油气田腐蚀与防护技术手册(下)[M].北京:石油工业出版社,1999:490.
    [10]傅献彩,陈瑞华,物理化学[M].北京:人民教育出版社1979.
    [11]陈卓元,张学元,王凤平等,二氧化碳腐蚀机理及影响因素[J].材料开发与应用,1998,13(5):34-40.
    [12]Dweaard C, Milinats D E, Carbon Acid Corrosion of Steel [J].corrsion. 1975,31(5):177.
    [13]Schmitt G Qdvance in CO2 corrosion [J].Corrosion Paper NACE,1985,1 (1):10.
    [14]Ikeda A, Vada M, Mukal S, CO2 Corrosion Behavior and Mechanism of Carbon Steel and Anoy Steel, Corrosion Paper, NACE,1983,No.45.
    [15]李春福,王斌,张颖等,油气田开发中C02腐蚀研究进展[J].西南石油学院学报,2004,26(2):42-46).
    [16]Schmitt G, CO2 corrosion of steels-An Attempt to Range Parameter and Their Effects[J]. In:Hausler R H,Giddard H P(Eds),Advances in CO2 Corrosion.Vol.1, NACE, Houston, Texas,1984:1.
    [17]张忠铧,郭金宝,C02对油气管材的腐蚀规律及国内外研究进展[J].宝钢技术,2000,(4):54~58.
    [18]Waard C De, Lotz V, Dugstad A. Flow Velocity Effects on CO2 Corrosion of Carbon Steel[J]. Corrosion 1995, Paper No.128(Houston, NACE International).
    [19]M. B. Kermani L. M. Smith. CO2 Corrosion Control in Oil and Gas Production[J].European Federation of Corrosion Publication. No.23.1997.
    [20]Kafsumi,Masamura. Corrosion[J],83.NACE,1993,Vol.2. No.55.
    [21]Mao X, Liu X R.W.Revie[J]. Corrosion Science.1994,50(9):651.
    [22]林雪梅.中36井油管腐蚀调查报告[J].天然气与石油,1990,8(2).
    [23]A.Ikeda,S.Mukai,M,Ueda.Corrosion.84NACE.New Orleans,Louisiana,1984.289
    [24]张学元,邸超,雷良才编著,二氧化碳腐蚀与控制[M],北京:化学工业出版社,2001.
    [25]苏俊华,张学元等,材料保护.1998,31(12).
    [26]U.Lotz,Van Bodegom,C.Outwehand.Corrosion.l991,47(8):637.
    [27]M Kimura,Y.Satio,Y.Nakano.Corrosion'94.NACE,Houston,Tx,1994.18.
    [28]A.Dugtad,L.Lunde,K.Videm.Corrosion'91.NACE,Houstom,Tx,1991.473
    [29]绮敏等编著,石油工业中的腐蚀与防护[M],北京:化学工业出版社,2001.
    [30]刘攀峰,李洪建,李宏伟,注水井井筒硫化氢腐蚀研究[J].内蒙古石油化工,2008:20:72~74.
    [31]李明,李晓刚,,陈华,在湿H2S环境中金属腐蚀行为和机理研究概述[J].腐蚀科学与防护技术,2005:12(3):107-111.
    [32]刘伟,蒲晓林,白小东等,油田硫化氢腐蚀机理及防护的研究现状及进展[J].石油钻探技术,2008:36(1):83-86.
    [33]谯英.油气管道内CO2腐蚀研究,西南石油大学硕士论文[D].
    [34]张天胜,缓蚀剂[M],北京:化学工业出版社,2001.12.
    [35]GB 10124-1988金属材料试验室均匀腐蚀全浸试验方法[S].
    [36]SY/T 5273-2000油田采出水用缓蚀剂性能评价方法[S].
    [37]SY/T 5329-1994碎屑岩油藏注水水质推荐指标及分析方法[S].
    [38]Linter B R,Burstein G T.Reaction of pipeline steels in carbon dioxide solutions[J], Corrosion Science,1999,42(2):117-139.
    [39]Dugstad A,Lunde L, Videm K. Parametric study of CO2 corrosion of carbon steel[J], Corrosion/94,paper NO.14,Houston:NACE,1994 CO2.
    [40]Nesic S, Thevenot N, Crolte J L, Drazic D. Electrochemical properities of iron dissolution in the presence of CO2 basics revisited[J], Corrosion/1996,paper NO.3,Houston:MACE,1996.
    [41]Newton L E,et al. CO2 corrosion in Oil and Gas production[J], NACE, 1984:131-166.
    [42]Mclmtire G, Lippert J. The effect of dissolved CO2 and O2 on the corrosion of iron[J]. Corrosion,1990,46(2):91-95.
    [43]谈士海,张文正,施杰.CO2生产井的腐蚀机理及预防[J].石油钻采工艺. 2001,23(4):72-74.
    [44]朱景龙,孙成,王佳,贾思洋.CO2腐蚀及控制研究进展[J].腐蚀科学与防护技术2007 Vol.19(5):350-353.
    [45]张忠烨,郭金宝.CO2对油气管材的腐蚀规律及国内外研究进展[J].宝钢技术.2000(4):54-58.
    [46]田红政.富含CO2凝析气井的腐蚀与防腐技术[J].海洋石油2006年2期.
    [47]傅广海.徐深气田CO2防腐技术分析[J].油气田地面工程,2008(4):66-67.
    [48]冯星安,黄柏宗,高光第.对四川罗家寨气田高含CO2、H2 S腐蚀的分析及防腐设计初探[J].油工程建设2004年第30卷第1期.
    [49]赵国仙,严密林,白真权等.N80钢的CO2腐蚀行为试验研究[J].石油机械.2000,28(12):14-16.
    [50]赵国仙,陈长风,李建平等.X52钢的CO2腐蚀行为[J].腐蚀科学与防护.2001,13(4):236-238.
    [51]李春福,张颖,王斌.X56钢油气集输管道的CO2腐蚀电化学研究[J].天然气工业.2004,24(12):145-148.
    [52]周琦,王建刚,周毅.二氧化碳的腐蚀规律及研究进展[J].甘肃科学学报.2005,17(1):37-40.
    [53]梅平,艾俊哲,陈武.二氧化碳对N80钢腐蚀行为的影响研究[J].腐蚀与防护.2004,25(9):379-382.
    [54]王志龙,艾俊哲,梅平.二氧化碳对钢腐蚀的影响因素研究[J].油气田环境保护.2004,11(1):48-50.
    [55]高洪斌.二氧化碳对油田集油管线腐蚀的预测[J].石油天然气学报(江汉石油学院学报).2006,28(4):410-413.
    [56]刘东,艾俊哲,郭兴蓬.二氧化碳环境中碳钢电偶腐蚀行为研究[J]天然气工业.2007,27(10):114-116.
    [57]郑向阳.二氧化碳吸收塔进料预热器的腐蚀与防护[J].石化技术.2003,10(4):15-16,28.
    [58]王凤平,张学元,雷良才.二氧化碳在A3钢大气腐蚀中的作用[J].金属学报.2000,36(1):55-58.
    [59]龚敏,蒋伟,金永中,曾宪光CO2对2205DSS在盐卤中的孔蚀影响[J].腐蚀科学与防护技术2008 Vol.20(2):91-95.
    [60]李党国,冯耀荣,白真权,郑茂盛.Cl-对N80钢在CO2水溶液中腐蚀行为的影响[J].腐蚀科学与防护技术2007 Vol.19(5):329-332.
    [61]马丽,郑玉贵.钙离子对NC-55E钢CO2腐蚀产物膜性能的影响[J].腐蚀科学与防护技术2008 Vol.20(2):79-85.
    [62]王磊,马颖澈,高明,赵秀娟,刘奎.NaCl沉积盐引起的1Cr25Ni20Si2合金 在700℃~900℃的腐蚀行为研究[J].腐蚀科学与防护技术2007 Vol.19(2):87-91.
    [63]白李,郭学辉,郝建华等.A3钢在不同CO2盐溶液中的腐蚀规律研究[J].内蒙古石油化工.2007(12):11-14.
    [64]陈海燕.BFe10-1-1合金在NaCl溶液中点蚀行为的研究[J].腐蚀科学与防护技术2006 Vol.18(4):289-291.
    [65]郭育霞,贡金鑫.盐水条件下不同混凝土中钢筋的快速腐蚀行为的研究[J].腐蚀科学与防护技术2007 Vol.19(3):218-220.
    [66]Vasudevan T. Inhibition of Corrosion of Mild Steel in Acid Solutions by Quartemary Salts of Pytidinium Bases[J]. Snti-Corrosion Methods and Materials,1996,43(2):120-126.
    [67]魏斌,严密林,白真权,冯耀荣.镍基合金Inconel718与抗硫油套管钢在模拟气田地层水中的电偶腐蚀[J].腐蚀科学与防护技术2007 Vol.19(5):319-322.
    [68]陈东,柳伟,路民旭.钢的高温高压CO2腐蚀产物膜研究进展[J].腐蚀科学与防护技术2006 Vol.18(3):192-195.
    [69]任呈强,刘道新,白真权.N80油管钢的CO2高温高压腐蚀电化学行为与机理研究[J].西安石油大学学报(自然科学版).2004,19(6):52-56.
    [70]周琦,张俊喜,贾建刚.X70钢在高温高压二氧化碳酸性溶液中的腐蚀行为[J].2008,34(3):15-18.
    [71]高欣,吴欣强,关辉,韩恩厚.高温高压水环境中腐蚀产物膜的研究现状[J].腐蚀科学与防护技术2007 Vol.19(2):110-113.
    [72]吴玮巍,蒋益明,廖家兴,钟澄,郭峰,李劲.0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究[J].腐蚀科学与防护技术2006 Vol.18(4):285-288.
    [73]S2H腐蚀Shoesmith D W, Taylor P, Bailey M G,et al,electrochemical behavior of iron in alkaline sulfi solutions [J].Electrochim.Acta 1978,23:903-916.
    [74]郭红,何晓英,伍远辉.H2S对X70钢在弱酸性溶液中的腐蚀行为的影响[J].腐蚀科学与防护技术2006 Vol.18(4):258-261.
    [75]冯拉俊,马小菊,雷阿利.硫离子对碳钢腐蚀性的影响[J].腐蚀科学与防护技术2006 Vol.18(3):180-182.
    [76]张星,李兆敏,张志宏,董斌.深井油管H2S腐蚀规律试验研究[J].腐蚀科学与防护技术2006 Vol.18(1):16-19.
    [77]刘富胜,许春磊,方德明,袁军国.16MnR钢在含H2S介质中的慢应变速率腐蚀试验研究[J]腐蚀科学与防护技术2007 Vol.19(2):131-133.
    [78]李明李晓刚陈华.在湿H2S环境中金属腐蚀行为和机理研究概述[J].腐蚀科学与防护技术2005年2期.
    [79]Newman R C,Rumask K, Webster B J. Effect of pre-corrosion on the corrosion rate of steel in neutral solutions containing sulfide relevance to microbially influenced corrosion[J]. Information & Management,1992,23(5):1877-1884.
    [80]Tsai S Y and Shih H C. A statistical failure distribution and lifetime assessment of the hsla steel plates in H2S containing environments [J]. Corrosion Science,1996,38(5):705-719.
    [81]刘树明,张亮,关凯书.渗铝钢耐饱和H2S溶液腐蚀的研究[J].腐蚀科学与防护技术2007 Vol.19(5):316-318.
    [82]杨波,田松柏,赵杉林.金属粉末腐蚀法对硫醇类硫化物腐蚀性的研究[J].腐蚀科学与防护技术2006 Vol.18(2):92-94.
    [83]Alego V O, Huynh N, Notoya T. Inhibitive effect of 4-and 5-carboxyben zotriazole on copper corrosion in acidic sulphate and phdrogen sulphide solutions.Corrosion Science,1999,41(4):685-697.
    [84]张玉芳.H2S分压对SM80SS油管钢腐蚀行为的影响[J].腐蚀科学与防护技术2007 Vol.19(4):290-292.
    [85]周卫军,严密林,王成达.N80抗硫油管钢在含CO2、微量H2S及高浓度Cl-腐蚀介质中的腐蚀行为[J].腐蚀科学与防护技术2007 Vol.19(3):192-195.
    [86]高辉,朱建华.MPTA型原油脱金属剂对20#碳钢腐蚀性影响的研究[J].腐蚀科学与防护技术2008 Vol.20(3):209-212.
    [87]周琦,徐鸿麟.管线钢在含硫化氢及高压二氧化碳饱和的NACE溶液中的腐蚀行为[J].兰州理工大学学报.2005,31(1):31-34.
    [88]Luo H. Corrosion inhibition of x mild steel by aniline and alkylamines in acidic solutions[J]. Corrosion,1998,54(9):721-724.
    [89]陈碧凤,杨启明.常减压设备环烷酸腐蚀分析[J].腐蚀科学与防护技术2007 Vol.19(1):74-76.
    [90]曹玉亭,申海平.石油加工中的环烷酸腐蚀及其控制[J].腐蚀科学与防护技术2007 Vol.19(1):45-48.
    [91]李淑华,朱晏萱,毕启玲.H2S和CO2对油管的腐蚀机理及现有防腐技术的特点[J]石油矿场机械2008年第37卷第2期37卷2期.
    [92]张清,李全安,文九巴,白真权.温度与油管CO2/H2S腐蚀速率的关系[J].焊管2004年4期15-18.
    [93]朱世东,刘会,白真权,林冠发,尹成先.模拟油田C02/H2S环境中P110钢的动态腐蚀行为[J].石油与天然气化工2009年01期25-28.
    [94]李勇.含H2S和CO2天然气管道防腐技术[J].油氣田地面工程Vol.28 No.2:67-68.
    [95]邓洪达,李春福,王朋飞.高含H2S和CO2环境中L80钢的腐蚀规律[J].钢铁研究学报2008年第20卷第08期.
    [96]高辉,朱建华.MPTA型原油脱金属剂对20#碳钢腐蚀性影响的研究[J]网络版发布日期2008-05-25Copyright 2008 by腐蚀科学与防护技术.
    [97]吴玮巍,蒋益明,廖家兴,钟澄,李劲.Cl离子对304、316不锈钢临界点蚀温度的影响[J].腐蚀科学与防护技术2007 Vol.19(1):16-19.
    [98]朱义吾.油田开发的结垢机理及防治技术[M].西安:陕西科学技术出版社,1995.95-102.
    [99]陆柱,郑士忠,钱滇子.油田水处理技术[M].北京:石油工业出版社,1988.169-170.
    [100]SY/T 5673-1993油田用防垢剂性能评定方法[S].
    [101]程启生,初伟,潘桐,毛秀敏,牛宏伟,高敬瑜,祝英剑.某油田锅炉腐蚀结垢原因分析及防护对策研究[J].腐蚀科学与防护技术2008 Vol.20(3):227-228.
    [102]孙莉,江元汝,许启明.坪桥油田采油管道结垢机理与防治措施[J].腐蚀科学与防护技术2008 Vol.20(3):232-234.
    [103]唐酞峰.循环冷却水阻垢缓蚀剂的研制[J].腐蚀科学与防护技术2007 Vol.19(6):444-446.
    [104]Williams B. Corrosion inhibitors-The way forward[J]. Concrete Engineering International,2003,7:24-26.
    [105]Godinez L A, Meas Y, Borges R O, Corona A. Corrosion inhibitors[J]. Revistade Metalurgia,2003,39:140-158.
    [106]Duda Y, Rueda R M, Galicia B,Hiram I, Zamudio R, Luis S. Corrosion inhibitors:Design,Performance,and computer simulations[J]. Journal of Physical Chemistry B,2005,109:22674-22684.
    [107]Durnie W, Marco R D,Jefferson A,et al. Development of a stucture-activity relationship for oil field corrosion inhibitors [J]. Journal of The Electrochemical Society,1999,146(5):1751-1756.
    [108]赵景茂,顾明广,左禹等.CO2腐蚀的气液双相新型缓蚀剂的开发[J].腐蚀与防护.2005,26(10):436-438,454.
    [109]张军平,张秋禹,颜红侠.高效气/液双相CO2缓蚀剂的研究[J].腐蚀科学与防护技术.2003,15(4):241-243.
    [110]Haslegrave J A, Hedges W M, Monntgomerie H T R, Brien T M O. Development of corrosion inhibitors with low-environmental toxicity[J]. Proceedings-SPE Annual Technical Conference and Exibition,1992, Pi:833-844
    [111]鞠虹,李焰.金属锌、铝的缓蚀剂研究进展[J].腐蚀科学与防护技术2006Vol.18(5):353-356.
    [112]李言涛,侯保荣.天然环保型缓蚀剂近期研究进展[J].腐蚀科学与防护技术2006 Vol.18(1):37-40.
    [113]Prabhu-Gaunkar G V, Raman A. Corrosion inhibitors in fertilizer production and handling[J]. Corrosion Reviews,1998,16:393-416.
    [114]马涛,张贵才,葛际江.改性咪唑啉缓蚀剂的合成与评价[J].石油与天然气工业.2004,33(5):359-361.
    [115]龚敏,曾宪光,蒋伟,李洋.从竹叶中提取酸洗缓蚀剂的研究[J].腐蚀科学与防护技术2007 Vol.19(5):361-363.
    [116]孙磊,张敏卿.适用于带钢酸洗的盐酸缓蚀剂[J].腐蚀科学与防护技术2007 Vol.19(5):364-366.
    [117]张军平,张秋禹,尹成先,赵雯,袁定重,张和鹏.盐酸介质中苯并三氮唑衍生物的缓蚀机理研究[J].腐蚀科学与防护技术2007 Vol.19(4):251-254.
    [118]杨晓红,廖双泉,廖建和.壳聚糖季铵盐在硫酸介质中的缓蚀性能研究[J].腐蚀科学与防护技术2007 Vol.19(4):255-258.
    [119]蒋伟,龚敏,赵金平.天然植物绿色缓蚀剂的研究进展[J].腐蚀科学与防护技术2007 Vol.19(4):278-281.
    [120]王治安,刘素琴,黄健涵,黄可龙,李倩倩.还原态聚苯胺的制备及其防腐性能研究[J].腐蚀科学与防护技术2007 Vol.19(3):200-202.
    [121]刘峥,林原斌,高炅杨.植物型缓蚀剂提取及灰色系统对其效果评价[J].腐蚀科学与防护技术2007 Vol.19(2):137-140.
    [122]程莎,尹衍升,闫林娜,常雪婷.盐酸溶液中羧甲基壳聚糖对碳钢的缓蚀吸附性能研究[J].腐蚀科学与防护技术2007 Vol.19(1):24-26.
    [123]辛爱渊,朱晓明,栾永幸.复配咪唑啉型缓蚀剂体系的缓蚀性能研究[J].腐蚀科学与防护技术2006 Vol.18(5):317-320.
    [124]Little B, Ray R. A perspective on corrosion inhibition by bio films. Corrosion[J].2002,58:424-428一个观点生物膜的缓蚀性能.
    [125]Bogdanova T I, Shekhter Y N, Kozlova A I, Reznik S I. Classification and properties of solvent removable inhibited thin film coatings. Chemistry and Technology of Fuels and Oils(english translation of Khimiya Tekhnologiya TopliviMasel) [J]. Nov-dec,1977,13(11-12):809-814分类和性能的溶剂可抑制薄膜涂层.
    [126]Migahed M A. Corrosion inhibition of steel pipeline in oil fields by N, N-di(polyoxy ethylene)amino propyl amide[J]. Progress in Organic Coatings, 2005,54:91-98.
    [127]SY/T 5273-2000油田采出水用缓蚀剂性能评价方法[S].
    [128]尹成先,兰新哲,冯耀荣,白真权.在高CO2和Cl-环境中硫脲的缓蚀行为及其对复配缓蚀剂性能的影响[J].腐蚀科学与防护技术2006 Vol.18(5):334-336.
    [129]王慧龙,姜文凤.3-苯基-4-苯亚甲基氨基-5-巯基-1,2,4-三唑与碘化钾的缓蚀协同效应[J].腐蚀科学与防护技术2006 Vol.18(4):246-248.
    [130]朱元良,赵艳娜,刘斌.乙醇冷媒液中复配缓蚀剂的研究[J].腐蚀科学与防护技术2006 Vol.18(4):295-297.
    [131]林修洲,龚敏,仵建平.植物废料提取液作为盐酸酸洗缓蚀剂的研究[J].腐蚀科学与防护技术2006 Vol.18(3):222-224.
    [132]刘晶姝,李强.钛纳米聚合物涂层在胜利油田的应用[J].腐蚀科学与防护技术2006 Vol.18(3):225-227.
    [133]Iofa Z A, Batrakov V V. Influence of anion阴离子adsorption吸附on the action of inhibitors on the acid corrosion of iron and cobalt钴[J]. Electrochim. Acta, 1964,9:1645-1653.
    [134]Gireesh V S, Shibli S M A. Inhibition characteristics of tungstates for corrosion prevention on steel[J]. Corrosion Prevention and Control,2001,48:11-20.
    [135]李焰,赵澎,侯保荣.黄连提取物在1 mol/L HCl中对Q235的缓蚀作用[J].腐蚀科学与防护技术2006 Vol.18(1):1-4.
    [136]闫莹,李伟华,邢少华,侯保荣.新型杂环化合物在1 mol/L HCl中对Q235钢的缓蚀性能研究[J].腐蚀科学与防护技术2007 Vol.19(6):414-418.
    [137]魏爱军,霍富永,程世宝等.CO2对碳钢腐蚀影响的模拟试验及缓蚀剂评价.腐蚀与防护[J].2008,29(7):378-380,388.
    [138]Rocchini G. The evaluation of the corrosion inhibitor performance in hot HC1 solutions by the impedance technique[J]. Corrosion Reviews,2002,20:509-530.
    [139]Xometl O O, Likhanova N A D, Hallen J M, Zamudio L S, Arce E. Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic enviroment[J]. Applied Surface Science,2006,252(6):2139-2152.
    [140]Hinton B R. Corrosion inhibition with rare earth metal salts, Journal of Alloys and Compounds[J].1992,180:15-25.
    [141]Szyprowski A J. Methods of investigation on hydrogen sulfide corrosion of steel and its inhibitors[J]. Corrosion,2003,59:68-81.
    [142]Vukasovich M S. Applications for the versatile molybdate inhibitor[J]. Materials Performance,1990,29:48-51.
    [143]Migahed M A, Mohamed H M, Al-Sabagh A M.Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amideand its ethoxylated derivaties[J]. Materials Chemistry and Physics,2003, 80:169-175.
    [144]Ebenso E E, Ekpe U J, Ita B I,Offiong O E, Ibok Uj. Effect of molecularstructure on the efficiency of amides and thiosemicarbazones used for corrosion inhibition of mild steel in hydrochloric acid[J]. Materials Chemistry and Physics,1999,60:79-90.
    [145]Abd E K, Warraky A A,Aziz A M. Corrosion inhibition of mild steel by sodium yungstate in neutral solution. Part 3:Coinhibitors and synergism[J]. British Corrosion Journal,1998,33(2):152-157.
    [146]Loto C A, A DELEKE A H. The effect of potassium dichromate inhibitor on the corrosion of stsinless steels in sulphuric acid mixed with sodium chloride[J]. Corrosion Prevention and Control,2004,51(2):61-69.
    [147]Ergun M, Bektas D. Evaluation of corrosion inhibitors for aluminum in chloride containing solutions [J]. Turkish Journal of Engineering & Environmental Sciences,1996,20(5):289-293.
    [148]Rehim S S, Hassan H H, Amin M A. Corrosion and corrosion inhibition of Al and som alloys in sulphate solutions containing halide ions investigated by an impedance technique[J]. Applied Surface Science,2002,187(3):279-290.
    [149]Oguzie E E. Corrosion inhibition of mild steel in hydrochloric acid solutionby methylene blue dye[J]. Materials Letters,2005,59(8):1076-1079.
    [150]Soror T Y.New naturally occurring product extract as corrosion inhibitor for 316 stainless steel in 5% HCl. Journal of Materials[J]. Science and Technology, 2004,20(4):463-466.
    [151]Bockris J M, Yang B. Mechanism of corrosion inhibition of iron in acid solution by acetylenic alcohols[J]. Journal of the Electrochemical Society,1991,138(8): 2237-2252.
    [152]Jovancicevic V. Inhibition of CO2 corrosion of mild steel by imidazolines and their precursors [J]. Corrosion,1998,NACE paper No.18.
    [153]Zhao Y T, Guo X P, Dong Z H. Rapid evaluation of corrosion inhibitors in acidic solution using the coulostatic method[J]. Corrosion Engineering Science and Technology,2004,39(3):245-249.
    [154]Monticelli C, Runoro G, Frigani A, et al. Evaluation of corrosion inhibitors by electrochemical noise analysis[J]. J.Electrochem. Soc,1992,139(2):706-711.
    [155]Guo X P, Chen Z Y, Qu J E. Novel quantitative method for evaluation inhibition effciency on pitting corrosion using electrochemical noise analysis[J]. Journal of Materials Science(in press).
    [156]Lopez D A, Schreiner W H, De Sanchez S R,et al. The influence of inhibitor smolecular structure and steel microstructure on corrosion layers in CO2 corrosion:An XPS and SEM characterization[J]. Applied Surface Science,2004, 236:77-97.
    [157][美]A.W.皮博迪原著,R.L.比安切蒂主编.管线腐蚀控制[M](原著第二版).化学工业出版社,2004.
    [158]战征,蔡奇峰,汤晟,董刚,汤天遴.塔河油田腐蚀原因分析与防护对策[J].腐蚀科学与防护技术2008 Vol.20(2):152-154.
    [159]李振安,高云.腐蚀监测技术在油田集输系统的应用[J].化工之友,2007,(13):18-19.
    [160]郑立群.石油化工工业腐蚀监检测技术[J].石油化工腐蚀与防护,2001,18 (6):61-64.
    [161]沈功田,李光海,景为科.埋地管道泄漏监测检测技术[J].无损检测,2006,28(5):261-265,271.
    [162]庞喆龙,马新飞.炼油装置在线腐蚀监测技术状况[J].石油化工腐蚀与防护,2008,25(1):62-64.
    [163]李爱英,王凯全,邵辉.管道泄漏监测技术及其研究进展[J].江苏石油化工学院学报,2002,14(4):14-17.
    [164]李久青,杜翠薇.腐蚀试验方法及检测技术[M].北京:中国石化出版社,2007:222-224.
    [165]吴荫顺,方智.腐蚀试验方法与腐蚀监测技术[M].北京:化学工业出版社,1996.
    [166]朱卫东,陈范才.智能化腐蚀监测仪的发展现状及趋势[J].腐蚀科学与防护技术,2003,15(1):29-32.
    [167]郑立群.石油化工工业腐蚀监测技术的最新发展[J].石油化工腐蚀与防护,2005,22(1):11-15.
    [168]M·G·方坦纳,N·D-格林.腐性工程[M].第二版,北京:化学工业出版社,1982
    [169]E·海兹,等.腐性试验指南[M].北京:化学工业出版社,1991.
    [170](加)Pierre R. Roberge编著;吴荫顺,李久青,曹备,等译.腐蚀工程手册[M].北京:中国石化出版社,2003.
    [171]美国腐蚀工程师协会标准NACE RP-0775-2005[S].
    [172]张敏,黄红军,李志广,万红敬.金属腐蚀监测技术[J].腐蚀科学与防护技术2007 Vol.19(5):354-357.
    [173]柏任流,董泽华,郭兴蓬,杨全安,李琼玮,李明星.基于温度补偿的电阻探针腐蚀监测原理的研究[J].腐蚀科学与防护技术2007 Vol.19(5):338-341
    [174]王萍,路民旭,柳伟,马群.CO2腐蚀数据库的设计和实现[J].腐蚀科学与防护技术2006 Vol.18(2):152-154.
    [175]郑立群,杨永宽,吴勇华,董俊华,许文虎.一种交流阻抗和弱极化相结合的腐蚀速度测量方法[J].腐蚀科学与防护技术2006 Vol.18(6):457-460.
    [176]汤天遴,张建军,葛建滨,刘岩,石伟,刘浩,从腐蚀监测谈中原油田注采系统腐蚀特点腐蚀科学与防护技术[J].2005年2期.
    [177]侯素霞,罗积军,徐军,马进.基于声发射技术的压力容器应力腐蚀检测研究[J].腐蚀科学与防护技术2006 Vol.18(3):220-221.
    [178]吴瑾,吴文操.混凝土结构中钢筋腐蚀智能监测技术[J].腐蚀科学与防护技术2007 Vol.19(2):122-125.
    [179]赵妍妍,罗德贵,李晓刚,高瑾,杜翠薇.钢铁企业产品腐蚀网络数据库的设计与开发[J].腐蚀科学与防护技术2007 Vol.19(4):310-312.
    [180]江旭,柳伟,路民旭.钢铁海洋大气腐蚀试验方法的研究进展[J].腐蚀科学与防护技术2007 Vol.19(4):282-286.
    [181]付安庆,邢少华,张胜涛,李焰.交流阻抗技术监测碳钢在海洋大气中的腐蚀[J].腐蚀科学与防护技术2007 Vol.19(4):243-246.
    [182]刘宏伟,刘振宏,许铁群,王兴.硝酸装置的腐蚀与防腐蚀方案设计[J].腐蚀科学与防护技术2008 Vol.20(1):76-78.
    [183]胡会利,李宁,程瑾宁.电化学噪声在腐蚀领域中的研究进展[J].腐蚀科学与防护技术2007 Vol.19(2):114-118.
    [184]王萍,马群.N80钢点蚀试验数据的统计分析[J].腐蚀科学与防护技术2006 Vol.18(3):233-235.
    [185]杨建设,牛显春,何剑辉,许镇楷.茂名输油管线腐蚀与控制调查研究[J].腐蚀科学与防护技术2007 Vol.19(3):233-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700