用户名: 密码: 验证码:
河流沉积物中重金属和农药的复合污染机理模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属和农药是水环境中较为常见的污染物,具有使用广泛、毒性大、排放量大、影响区域广的特点。近年来,随着工农业的迅速发展,重金属和有机农药在环境中的排放量、蓄积量越来越大。本文研究的铜和镉是两类不同性质的典型重金属污染物,近年来我国发生的重金属污染的公共事件很多与它们有关。随着农药的施用,残留的农药可以随着降雨进入河流、湖泊等水体,污染地表水,尤其是在我国东北地区。作为该区域广泛应用的除草剂和杀虫剂,阿特拉津和马拉硫磷的污染情况十分普遍,这两类污染物对环境和人类健康的危害日益凸显。它们在环境中共存而产生复合效应,可以大大改变某一或某些污染物的生理活性或毒性,对人类健康和水生态系统造成严重破坏。沉积物作为水环境中众多污染物的源和汇,对水环境中污染物的释放和迁移行为起着关键性作用。沉积物中的复合污染过程通常受到诸多因素的影响,包括外界影响因素(如环境条件)及内部因素(吸附质如沉积物组分、吸附剂如共存污染物)。各种影响因素对复合污染的影响是一个综合作用的过程,各因素间也可能存在相互制约、相互影响的关系。因此,研究重金属和有机污染物在沉积物上的复合吸附机理,明确作用于复合污染过程的各影响因素的贡献及相互关系,对受重金属、农药复合污染的河流进行环境修复有重要的理论指导意义。
     本文选择镉、铜作为重金属污染物的代表,阿特拉津和马拉硫磷为典型农药的代表,以重金属存在条件下农药在水-沉积物体系中的复合污染机理为主要研究内容,着重考察不同类型影响因素对复合污染过程的作用及各因素间的关系,主要研究内容和成果包括:(1)采用BP人工神经网络、多元非线性回归等统计分析方法,应用中心复合实验设计等实验手段,研究多种重金属和农药在河流沉积物及其主要组分中的吸附规律及复合污染特征,建立污染物的吸附过程模型,明确重金属与农药的交互作用对各自吸附过程的影响,探索复合污染机理。所建BP人工神经网络模型经验证具有较好的预测能力和准确度,回归模型均通过显著性检验和拟合优度检验,利用所建模型不仅可以预测污染物的吸附规律,还能进一步明确沉积物组分、共存污染物间的交互作用及对吸附过程的相对贡献;(2)考察不同环境因子(包括温度、pH值、离子强度、曝气强度等)对农药和重金属复合污染的影响作用,并分别应用BP人工神经网络,多元非线性回归等方法,借助析因实验设计等实验手段,建立描述环境因子与污染物吸附量之间相互关系的模型。所建模型同样满足各类准确度检验,且通过预测可得出环境因子间的交互作用类型及对污染物吸附量的贡献;(3)将区间规划方法引入吸附过程模型中,假设分别以沉积物组分含量以及环境因子为考察对象的案例,建立基于不确定性条件下的吸附过程优化模型,确定沉积物主要组分以及环境因子与复合污染物吸附量之间的关系,通过优化得出两种案例中阿特拉津在沉积物上的最大吸附量范围,并对其产生的生态风险进行评价,得出阿特拉津对水环境中水生生物的生态风险并不显著;(4)综合考虑复合污染的几类影响因素对复合污染过程的作用,建立可以反映各因素间相互作用的结构方程模型,并比较因素影响作用的大小。综合模型建立后,可同时考察复合污染过程中,外部因素(环境因子)和内部因素(吸附剂沉积物组分和吸附质共存污染物)对复合污染过程所产生的作用。共存污染物对阿特拉津吸附的主要作用点在于沉积物组分,而环境条件对阿特拉津的直接作用远大于对沉积物组分的作用。本文研究内容可为复合污染修复,有针对性的减弱复合污染的影响程度,提出相应建设性意见和对策。
In recent years, emissions and volume of heavy metals and organic pesticides in the environment are increasing along with the rapid development of agriculture and industry. Because of pesticides's characteristics of high toxicity, emissions from large, wide influence range, they have become an important pollutants in water environment. The pollution of heavy metals to the environment catches people's eyes widely, their pollution prevention and control has been included in the "12th Five-Year" special planning. Copper and cadmium are two different types of typical heavy metal pollutants. In recent years, many public events about contaminated soil or sediment occurred in our country are associated with heavy metals. Atrazine and malathionis widely used in corn and vegetables in northeast China, and the pesticides can be applied to the soil by rainfall, runoff, and other ways to enter the rivers, lakes and other water bodies, resulting in the contamination of surface water. The harm of these two types of pollutants on the environment and human health has become prominent day by day. They always co-exist in the environment and produce a composite effect, and could significantly alter the physiological activity or toxic of one or some of the pollutants. They will cause serious damage to human health and aquatic ecosystems. As sources and sinks of many pollutants in the water environment, sediments play a significant role in the release and migration behavior of pollutants in the water environment. The composite pollution process in sediment is usually influenced by many factors, including external factors (such as environmental conditions) and internal factors (adsorbate such as sediment components, and adsorbents such as coexisted pollutants). The impact of various factors affecting the composite pollution is a process of comprehensive roles. It might presents increasingly influent relationship among the factors. Therefore, it is important to study the composite adsorption mechanism of heavy metals and organic pollutants in sediment, to clear contribution and mutual relations of each factor in the process of combined pollution. This study will be benefit for understanding the theoretical significance of composite ecological restoration in polluted rivers contaminanted by heavy metals and pesticides.
     In this paper, mechanism of combined pollution among heavy metals (cadmium, copper) and pesticides (atrazine, malathion) in river sediments-water system were investigated. Effect of different types of influencing factors on the process of combined pollution and their relationship were studied from different angles, mainly including:(1) artificial neural networks, multiple nonlinear regression and central composite experimental design were used to simulate the adsorption process of pollutants. The established BP models have been proven to have good predictive ability and accuracy, and the regression models have all passed the test of significance and goodness of fit test. This paper established an adsorption mechanism for prediction model, we also use a complex system to clear on the adsorption of atrazine adsorption mechanism of the establishment of the model discussed in atrazine under different conditionsthe strength and type of interaction effects of heavy metals from different coexisting;(2) Effect of different environmental factors (including temperature, pH, ion strength and aeration intensity) on combined pollution among pesticides and heavy metals were investigated. Artificial neural networks, multiple nonlinear regression and factorial experimental design were used to build a model to describe the relationship among environmental factors and atrazine adsorption. Interaction among co-exsited pollutants and environmental factors was also described by this model;(3) Interval programming was introduced into the adsorption process model. It is assumed that the cases were the subject for examination of the sediment components content as well as environmental factors, and the adsorption process model was established based on conditions of uncertainty. Relationship between sediment major components and the adsorption amount of pollutants was determined derived by the model and scope of atrazine maximum adsorption capacity in the two cases were educed by optimizing the models so that the ecological risk of atrazine could be evaluated, and the evaluated results showed that ecological risk of atrazine to aquatic organisms was not signifisant;(4) Considering effect of different types of influencing factors on combined pollution, the structural equation model which could reflect the interaction among various factors was established, and the role of factors were obtained. Comprehensive model can examine the combined pollution process, the role of external factors (environmental factors) and internal factors (adsorbent sediment (components) and adsorbate (coexistence pollutants) combined pollution process. The main role on atrazine adsorption of coexisted pollutants lies in sediments compounds, and environmental conditions on atrazine is much larger than the direct effect of the sediment fractions. This paper surposed corresponding constructive comments and countermeasures on combined pollution repair, weakening the impact of the combined pollution.
引文
[1]陈宝梁。土壤复合污染中持久性有机物的微界面行为及机理[EB/OL]。http://www.zjnsf.net/sjjk/。
    [2]束良佐,朱育晓。A13+和阳离子型表面活性剂复合污染对玉米幼苗的影响[J]。农村生态环境,2001,17(2):52-55。
    [3]Lee L S, Suresh P, Rao C, Nkedi-Kizza P, Delfino J J. Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems[J]. Environmental Science and Technology,1990,24(5): 654-661.
    [4]Bliss C J. The toxicity of poisons applied jointly[J]. Annals of Applied Biology, 1993,26(6):585-615.
    [5]De Zwart D, Slooff W. Toxicity of mixtures of heavy metals and petrochemicals to<i>Xenopus laevis</i>[J]. Bulletin of Environmental Contamination and Toxicology,1987,38(2):345-349.
    [6]Huq Z. An experimental design for conducting simulation studies in effect of shop control factors:Technology Management:the New International Language[C], 1991.
    [7]何勇田,熊先哲。复合污染研究进展[J]。环境科学,2003,14(6):823-828。
    [8]陈怀满,郑春荣。复合污染与交互作用研究——农业环境保护中研究的热点与难点[J]。农业环境保护,2002,21(2):192-194。
    [9]沈国清,陆贻通,周培。土壤环境中重金属和多环芳烃复合污染研究进展[J]。上海交通大学学报(农业科学版),2005,23(1):102-106。
    [10]周启星,孔敏翔,朱琳。生态毒理学[M]。北京:科学出版社,2004,69-72。
    [11]徐建,张平,穆洪,高敏苓。两种除草剂复合污染对蚯蚓的毒性效应[J]。农业环境科学学报,2006,25(5):1188-1192。
    [12]Gorzerino C, Quemeneur A, Hillenweck A, Baradat M, Delous G, Ollitrault M, Azam D, Caquet T, Lagadic L. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms[J]. Ecotoxicology and Environmental Safety,2009, 72(3):802-810.
    [13]Jantunen A, Tuikka A, Akkanen J, Kukkonen J. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments[J]. Ecotoxicology and Environmental Safety,2008,71(3):860-868.
    [14]徐卫红,王宏信,刘怀,熊治庭,Singh Balwant。Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J]。环境科学,2007,28(9):2089-2095。
    [15]王艳,代保清,辛士刚,康艳红,李娜。长药景天对Cr、Pb、Cd、Hg、Co复合污染的生理响应及吸收特征[J]。农业环境科学学报,2008,27(3):1051-1056。
    [16]郭观林,周启星。土壤-植物系统复合污染研究进展[J]。应用生态学报,2003,14(5):823-828。
    [17]Li J H, Zhou B X, Shao J H, Yang Q F, Liu Y Q, Cai W M. Influence of the presence of heavy metals and surface-active compounds on the sorption of bisphenol A to sediment[J]. Chemosphere,2007,68(7):1298-1303.
    [18]许超,夏北成,冯涓,林小方。玉米根系形态对土壤Cd和芘复合污染的响应[J]。生态环境,2007,16(3):771-774。
    [19]杨春璐,孙铁珩,和文祥。汞、豆磺隆复合污染对土壤脲酶活性及动力学特征的影响[J]。生态学杂志,2008,27(5):740-744。
    [20]苏璧耀。环境资源学[M]。南京:南京师范大学出版社,1998。
    [21]Samuel T, Pillal M K K. Impact of repeated application on the binding and persistence of [14C]-DDT and [14C]-HCH in a tropical soil[J]. Environmental Pollution,1994,74(4):205-216.
    [22]苏允兰,莫汉宏,杨克武,安凤春。土壤中结合态农药环境毒理研究进展[J]。环境科学进展,1999,7(3):45-51。
    [23]汪立刚,蒋新。土壤结合态农药残留生物效应研究进展[J]。农业环境科学学报,2003,22(3):376-379。
    [24]郜红建,蒋新。土壤中结合残留态农药的生态环境效应[J]。生态环境,2004,13(3):399-402。
    [25]Xu Z H, Huang M X, Gu Q B, Wang Y, Cao Y Z, Du X M, Xu D P, Huang Q, Li F S. Competitive sorption behavior of copper(II) and herbicide propisochlor on humic acids[J]. Journal of Colloid and Interface Science,2005,287(2):422-427.
    [26]Shen X Y, Huang W F, Yao C Y, Ying S T. Influence of metal ion on sorption of p-nitrophenol onto sediment in the presence of cetylpyridinium chloride[J]. Chemosphere,2007,67(10):1927-1932.
    [27]Morillo E, Undabeytia T, Maqueda C, A R. The effect of dissolved glyphosate upon the sorption of copper by three selected soils [J]. Chemosphere,2002,47(7): 747-752.
    [28]Morillo E, Undabeytia T, Maqueda C, A R. Glyphosate adsorption on soils of different characteristics. Influence of copper addition[J]. Chemosphere,2000, 40(40):103-107.
    [29]Feitosa-Felizzola J, Hanna K, Chiron S. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides[J]. Environmental Pollution,2009,157(4):1317-1322.
    [30]王果。Cu2+对3种农药在Ca蒙脱石和δ-A1203上吸附的影响[J]。环境科学学报,1996,16(1):23-29。
    [31]贾继元。铅与苄嘧磺隆复合污染对苄嘧磺隆的降解及土壤微生物生物量的影响[D]。杭州:浙江大学,2005。
    [32]王果。三种农药对Cu2+在蒙脱石和δ-A1203上吸附的影响[J]。土壤学报,1994,33(4):344-350。
    [33]夏立江,王宏康。土壤污染及其防治[M]。上海:华东理工大学出版社,2001。
    [34]Gao Y Z, Xiong W, Ling W T, Xu J M. Sorption of phenanthrene by soils contaminated with heavy metals[J]. Chemosphere,2006,65(8):1355-1361.
    [35]朱江。镉-菲复合污染对安德爱胜蚓|(Eisenia andrei)和白线蚓(Fridericia bulbosa)的生态毒理效应研究[D]。上海:上海交通大学,2008。
    [36]赵作媛,朱江,陆贻通,周培。镉-菲复合污染对蚯蚓急性毒性效应的研究[J]。上海交通大学学报(农业科学版),200624(6):553-557。
    [37]沈国清,陆贻通,洪静波,程国华。菲和镉复合污染对土壤微生物的生态毒理效应[J]。环境化学,2005,24(6):662-665。
    [38]许艳秋。克百威-镉、氯嘧磺隆-镉复合污染对土壤酶活性影响研究[D]。长春:东北师范大学,2006。
    [39]侯宪文。铅-苄嘧磺隆/甲磺隆复合污染的土壤微生物生态效应的研究[D]。杭州:浙江大学,2007。
    [40]展惠英。环境化学[M]。兰州:甘肃科学技术出版社,2008。
    [41]朱广伟,陈英旭。沉积物中有机质的环境行为研究进展[J]。湖泊科学,2001,13(3):272-277。
    [42]Boivin A, Cherrier R, Schiavon M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils[J]. Chemosphere,2005, 61(5):668-676.
    [43]Sajidu S, Persson I, Masamba W, Henry E. Mechanisms of heavy metal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS[J]. Journal of Hazardous Materials,2008,158(2-3):401-409.
    [44]He Y, Xu J M, Wang H Z, Zhang Q C, Muhammad A. Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soils[J]. Chemosphere,2006,65(3):497-505.
    [45]Pu X C, Cutright T J. Sorption-desorption behavior of PCP on soil organic matter and clay minerals[J]. Chemosphere,2006,64(6):972-983.
    [46]李勇,徐瑞薇,靳伟,安琼。杀虫脒在红壤和菜园土中的吸附[J]。土壤学报,1999,36(2):261-265。
    [47]Drouillard K G, Ciborowski J J H, Lazar R, Haffner G D. Estimation of the uptake of organochlorines by the mayfly Hexagenia limbata (Ephemeroptera: Ephemeridae)[J]. Journal of Great Lakes Research,1996,22(1):26-35.
    [48]Wallschlaeger D, Desai M V M, Spengler M, Windmoeller C C, D W R. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments[J]. Journal of Environmental Quality,1998,27(5):1044-1054.
    [49]Liu Z Z, He Y, Xu J M, Huang P M, Jilani G. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils[J]. Environmental Pollution,2008,152(1):163-171.
    [50]郭志勇。自然水体中多种固相物质对有机农药的吸附特性研究[D]。长春:吉林大学,2010。
    [51]Wang M, Zhou Q X. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum[J]. Ecotoxicology and Environmental Safety,2005,60(2):169-175.
    [52]P G J, J M, P S, A K. Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany)-I:Equilibrium assessments, effect of organic carbon content and pH[J]. Water Research,1998,32(5):1662-1672.
    [53]Gao J. P., Maguhn J., Spitzauer P., Kettrup A.。 Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany)。 Ⅱ:Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon[J]。 Water Research,1998,32(7):2089-2094.
    [54]陶庆会,汤鸿霄。阿特拉津在天然水体沉积物中的吸附行为[J]。环境化学,2004,23(2):145-151。
    [55]徐晓白。有毒有机物环境行为和生态毒理论文集[M]。北京:中国科学出版社,1990。
    [56]娄保锋。有机污染物在沉积物上的竞争吸附效应及影响因素[D]。杭州:浙江大学,2004。
    [57]Piatt J, Baekhus D A, Capel P D, Eisenreich S J. Temperature-dependent Sorption of naphthalene, Phenanthrene, and pyrene to low organicarbon aquifer sediments[J]. Environ. Sci. Techno,1996,30(3):751-760.
    [58]郑继岱,徐国谦,储炬,王永红,庄英萍,张嗣良。利用氧化还原电位调控乳酸发酵[J]。生物加工过程,1999,20(5):27-30。
    [59]王岙。共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究[D]。 长春:吉林大学,2009。
    [60]杨志辉,李辉勇,熊远福,刘军鸽,葛旦之。淹水土壤中Se(Ⅵ)还原反应的机理及条件[J]。环境科学学报,2001,21(6):742-747。
    [61]李涛,王东升。模拟扰动条件下太湖沉积物悬浮特征及对磷酸盐的吸附:中国化学会第八届水处理化学大会暨学术研讨会论文集[C],2006。
    [62]王小庆,郑乐平,孙为民。淀山湖沉积物孔隙水中重金属元素分布特征[J]。中国环境科学,2004,24(4):400-404。
    [63]路永正,董德明,沈秀娥,刘亮,李莹。曝气对河流沉积物中重金属Cu,Pb,Zn和Cd释放的影响[J]。吉林大学学报(理学版),2005,43(6):877-881。
    [64]黎颖治,夏北成,谢小茜,张弛。沉积物-水界面磷交换模拟研究中环境因子的动态规律分析[J]。中山大学学报(自然科学版),2007,46(3):117-121。
    [65]Raton B, Arbor A. Predistive risk assessments of chemicals. [M]//Chapter, Ecological risk assessment. Boca Raton, Ann Arbor:LewisPublishers,1993:49-90.
    [66]USEPA. EPA/230/10-88/041 Review of ecological risk assessment methods.[S]. 1988.
    [67]胡二邦。环境风险评价实用技术和方法[M]。北京:中国环境科学出版社,2000。
    [68]Agency U S E P. EPA63(93):26846-26924 Guidelines for Ecological Risk Assessmen[S]. Washington:U. S. Environmental Protection Agency,1998.
    [69]谢春庆。环境风险评价简介[J]。四川环境,1994,13(4):65-69。
    [70]王咏,徐镜波。生态风险评价[J]。松辽学刊(自然科学版),1999,5(2):10-13。
    [71]王沫。农药管理学[M]。北京:化学工业出版社,2003。
    [72]叶亚平,单正军。我国农药环境管理状况及对策研究[J]。农村生态环境,2002,18(1):62-64。
    [73]寇俊卿,张海涛,杨德五,王跃明。生态风险分析及研究进展[J]。河南科技大学学报(农学版),2003,23(1):71-74。
    [74]殷浩文。水环境生态风险评价程序[J]。上海环境科学,1995,14(1):11-14。
    [75]张珞平,洪华生,陈宗团,陈伟琪,Calamari Davide。农药使用对厦门海域的初步环境风险评价[J]。厦门大学学报(自然科学版),1999,38(1):96-102。
    [76]叶常明,雷志芳,弓爱君,王杏君。阿特拉津生产废水排放对水稻危害的风 险分析[J]。环境科学,1999,20(3):82-84。
    [77]李清波,黄国宏,王颜红,刘孝义。阿特拉津生态风险及其检测和修复技术研究进展[J]。应用生态学报,2002,13(5):625-628。
    [78]王薇宇。复合污染条件下水环境中污染物质的迁移转化研究[D]。北京:清华大学,2009。
    [79]汪家权,陈众,武君。河流水质模型及其发展趋势[J]。安徽师范大学学报(自然科学版),2004,27(3):242-247。
    [80]崔宝侠,高鸿雁,左传金,张理平。人工智能在水质模型改进中的应用[J]。沈阳工业大学学报,2004,26(5):543-546。
    [81]崔宝侠,左传金,高鸿雁。基于GIS的河水污染预测及其影响的可视化研究[J]。沈阳工业大学学报,1999,26(3):297-299。
    [82]李如忠,王超,汪家权,钱家忠,金菊良。基于未确知信息的河流水质模拟预测研究[J]。水科学进展,2004,15(1):35-39。
    [83]龙腾锐,郭劲松,冯裕钊,霍国友。二维水质模型横向扩散系数的人工神经网络模拟[J]。三峡环境与生态,2002,24(2):25-28。
    [84]张行南,耿庆斋,逢勇。水质模型与地理信息系统的集成研究[J]。水利学报,2004,1(1):90-94。
    [85]Basheer L A, Hajmeer M. Artificial neural networks:fundamentals, computing, design and application[J]. Fuel,2000,43(3):30-31.
    [86]郭创新,梁年生,景雷,叶鲁卿,曾杰。自适应鲁棒BP算法及其应用研究[J]。模式识别与人工智能,1996,9(2):78-86。
    [87]李建峰,樊宇红,任长明。基于B-P神经网络的非线性系统预测控制的研究田[J]。天津大学学报,1999,32(6):720-723。
    [88]顾凡及,李训经,阮炯。神经网络的动态模型:中国神经网络学术大会论文集[C],1991。
    [89]殷春根,骆仲映,倪明江。煤的工业分析与元素分析的BP神经网络预测模型[J]。燃料化学学报,1999,27(5):408-414。
    [90]Maier H R, Morgan N, Chow C. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters[J]. Environmental Modelling & Software,2004,19(5):485-494.
    [91]张立明。人工神经网络的模型及其应用[M]。上海:复旦大学出版社,1995。
    [92]屈忠义,陈亚新,史海滨,魏占民。地下水文预测中BP网络的模型结构及算法探讨[J]。水利学报,2004,1(2):88-93。
    [93]Yetilmezsoy K, Demirel S. Artificial neural network (ANN) approach for modeling of Pb(Ⅱ) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells[J]. Journal of Hazardous Materials,2008,153(3):1288-1300.
    [94]Singh K P, Ojha P, Malik A, Jain G. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution[J]. Chemometrics and Intelligentalaboratory Systems,2009,99(2):150-160.
    [95]Recknagel F, French M, Harkonen P. Artificial neural network approach for modeling and predication of algal blooms[J]. Ecological Modeling,1997,96(6): 11-18.
    [96]Gumrah F, Oz B, Guler B, Evin S. The Application of Artificial Neural Networks for the Prediction of Water Quality of Polluted Aquifer[J]. Water, Air, & Soil Pollution,2000,119(1):275-281.
    [97]Sahoo G B, Ray C, Wade H F. Pesticide prediction in ground water in North Carolina domestic wells using artificial neural networks[J]. ECOLOGICAL MODELLING,2005,183(1):29-46.
    [98]陈炳禄,王志刚,陈新庚。广州市生活垃圾处理方式及物流管理方案优化[J]。上海环境科学,2000(1):511-516。
    [99]胡治飞,郭怀成。城市生活垃圾管理规划优化研究[J]。环境工程,2004,24(4):45-49。
    [100]苏婧,席北斗,李秀金,魏自民,姜永海,张蕾,霍守亮。城市固体废物不确定性多目标优化管理模型[J]。环境科学研究,2007,20(1):129-133。
    [101]曾光明,焦胜,黄国和,王玲玲,何理,曹麻茹,朱舟,周建飞。城市生态规划中的不确定性分析[J]。湖南大学学报(自然科学版),2006,33(1):102-105。
    [102]Tucker W, Moulton V. Reconstructing Metabolic Networks Using Interval Analysis[M]//CASADIO R, MYERS G. Algorithms in Bioinformatics. Springer Berlin /Heidelberg,2005:192-197.
    [103]Li Y P, Huang G H. Two-stage planning for sustainable water-quality management under uncertainty[J]. Journal of Environmental Management,2009,90(8): 2402-2413.
    [104]Maqsood I, Huang G H. A two-stage interval-stochastic programming model for waste management under uncertainty[J]. Journal of the Air and Waste Management Association,2003,53(5):540-552.
    [105]Maqsood I, Huang G H, Yeomans J C. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty[J]. European Journal of Operational Research,2005,167(1):208-225.
    [106]Maqsood I, Huang G, Huang Y, Chen B. ITOM:an interval-parameter two-stage optimization model for stochastic planning of water resources systems[J]. Stochastic Environmental Research and Risk Assessment,2005,19(2):125-131.
    [107]Huang G H, Sae-lim N, Chen Z, Liu L. Long-Term Planning of Waste Management System in the City of Regina-an Integrated Inexact Optimization Approach[J]. Environmental Modeling and Assessment,2001,6(4):285-291.
    [108]邹锐,郭怀成。经济开发区不确定性环境规划方法与应用研究[J]。环境科学学报,2001,21(1)。
    [109]陈祥荣,席北斗,孙春宝,苏婧,宋波,姜永海,纪丹凤。不确定性城市生活垃圾管理规划及其应用[J]。环境科学研究,2009,22(2):1489-1494。
    [110]张雪花,郭怀成。SD-MOP整合模型在秦皇岛市生态环境规划中的应用研究[J]。环境科学学报,2002,22(1):92-97。
    [111]侯杰泰,温忠麟,成子娟。结构方程模型及其应用[M]。北京:教育科学出版社,2004。
    [112]金玉国。从回归分析到结构方程模型:线性因果关系的建模方法论[J]。山东经济,2008,145(2):19-24。
    [113]谷晓燕。基于结构方程模型的岗位评价研究[J]。中国管理科学,2009,19(2):146-151。
    [114]雷蕾。结构方程建模及AMOS软件在应用语言学研究中的应用[J]。中国外语,2009,(1):39-44。
    [115]吴林海,侯博,高申荣。基于结构方程模型的分散农户农药残留认知与主要影响因素分析[J]。中国农村经济,2011,(3):35-48。
    [116]苏鑫,王继军,郭满才,姜志德,李慧,牛艳利。基于结构方程模型的吴起县农业生态经济系统耦合关系[J]。应用生态学报,2010,21(4):937-944。
    [117]王林秀。清洁生产驱动因素及调控机制研究[D]。北京:中国矿业大学,2009。
    [118]董德明,李鱼,杨帆,花修艺,张菁菁,纪亮。采集的生物膜对铅、镉吸附过程中的相互干扰[J]。环境科学动态,2003,3(3):67-68。
    [119]王倩。环境因子对沉积物吸附阿特拉津的影响研究[D]。华北电力大学(北京)华北电力大学工科:环境工程,2012。
    [120]王婷。表层沉积物上多溴联苯醚的吸附行为及其毒性特征研究[D]。北京:华北电力大学(北京),2012。
    [121]Li Y, Gao Q, Wang X L, Dong D M, Wang A. Synergetic and Antagonistic Effects of Cadmium on Adsorption of Atrazine on Surficial Sediments[J]. Chemical Research in Chinese Universities,2009,25(2):155-160.
    [122]Holger R M, Nicolas M, Christopher W K C. Use of artificial networks for predicting optimal alum doses and treated water quality parameters[J]. Environmental Modeling and Sofeware,2004,19(2):485-494.
    [123]孟凡欣,郭伟良,逯家辉,杜林娜,李又欣,滕利荣。纤维堆囊菌发酵液中埃博霉素含量的HPLC法分析[J]。高等学校化学学报,2009,10(10):1960-1964。
    [124]尚钢,吴代华.基于神经网络对扁壳结构载荷位置识别问题的研究[J]。固体力学学报,2001,22(1):61-63。
    [125]朱利中,Cn Mail. Hz. Zj.,徐霞,胡松,邹忠利,鲍卫民,陈宝梁。西湖底泥对水中苯胺、苯酚的吸附性能及机理[J]。环境科学,2000,21(2):28-31。
    [126]张东平。城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测[D]。杭州:浙江大学,2003。
    [127]李鱼,王晓丽,张正,郭书海。表层沉积物(生物膜)非残渣态组分的选择性萃取分离及其吸附铜/锌的特性[J]。高等学校化学学报,2006,27(12):2285-2290。
    [128]Zhang J H, Lion L W, Nelson Y M, Shuler M L, Ghiorse W C. Kinetics of Mn(II) oxidation by Leptothrix discophora SS1[J]. Geochimica et Cosmochimica Acta, 2002,66(5):773-781.
    [129]Saison C, Perrin-Ganier C, Amella L S, Morel J L, Schiavon M. Effect of metals on the adsorption and extractability of 14C-phenanthrene in soils[J]. Chemosphere, 2004,44:477-485.
    [130]Meng Z, Robert C W. Effects of hydration on the molecular structure of metal ion-atrazine dimmer complexes:a MOP AC (PM3) study[J]. J. Mol. Struc. Theochem,2000,531(2):89-98.
    [131]Hernandez-Soriano M C, Mingorance M D, Pena A. Interaction of pesticides with a surfactant-modified soil interface:Effect of soil properties[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,306(1-3SI):49-55.
    [132]Muralidhar R V, Chirumamila R R, Marchant R, Al E. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical Engineering Journal,2001,21(9): 17-23.
    [133]Li Y, Wang A, Gao Q, Dong D M. Competitive adsorption between atrazine and copper on the surficial sediments and natural surface-coating samples [J]. Fresenius Environmental Bulletin,2009,18(12):2373-2379.
    [134]LI S, GAO Q, WANG X, Al E. Using multiple regression adsorption models to estimate Zn and Cu adsorptions onto Fe oxides, Mn oxides, organic materials and their blends in surficial sediments[J]. Fresenius Environmental Bulletin,2009, 19(8):1466-1473.
    [135]LI Y, LI S, GAO Q, Al E. Effect of interaction of non-residual fractions on atrazine adsorption onto surficial sediments and natural surface coating samples[J]. Chemical Research in Chinese Universities,2011,27(2):212-216.
    [136]Li Y, Wang A, Gao Q, Wang X L. Measurement of Atrazine Adsorption onto Surficial Sediments (Natural Surface Coatings)-New Evidence for the Importance of Fe Oxides[J]. Chemical Research in Chinese Universities,2009,25(1):31-36.
    [137]Dong D M, Liu L, Hua X Y, Lu Y Z. Comparison of lead, cadmium, copper and cobalt adsorption onto metal oxides and organic materials in natural surface coatings[J]. Microchemical Journal,2007,85(2):270-275.
    [138]Dong D M, Nelson Y M, Lion L W. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions:new evidence for the importance of Mn and Fe oxides[J]. Water Research,34(2):427-436.
    [139]Li S S, Gao Q A, Wang X L, Li Y. Using meltiple regression adsorptions onto Fe oxides, Mn oxides, organc materials and their blends in surficial sediments [J]. Fresenius Environmental Bulletin,2010,19(8):1466-1473.
    [140]李鱼,王檬,高茜,李珊珊。引入Cu2+的沉积物吸附阿特拉津多元回归模型[J]。深圳大学学报(理工版),2012,29(1):7-11。
    [141]Gao Q, Wang A, Li Y. Combined effect of co-existing heavy metals and organophosphate pesticide on absorption of atrazine to river sediments[J]. The Korean J. Chem. Eng,2011,28(5):1200-1206.
    [142]Jiang X, Jin X C, Yao Y, Li L H, Wu F C. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China[J]. Water Research,2008,42(8-9):2251-2259.
    [143]王珂,逢勇,高光。不同扰动条件下微囊藻和栅藻竞争能力的比较[J]。江苏环境科技,2006,19(2):40-42。
    [144]卢少勇,金相灿,胡小贞,梁丽丽,辛玮光。扰动与钝化剂对水/沉积物系统中磷释放及磷形态的影响[J]。中国环境科学,2007,27(4):437-440。
    [145]Li Y, Wang X L, Wang Y, Dong D M, Zhang H P, Li Q S, Li X C. Comparison of Pb and Cd adsorption to the surface coatings and surficial sediments collected in Xianghai Wetland[J]. Journal of Environmenal Sciences-China,2005,17(1): 126-129.
    [146]石健,邹开云,丁建东。阿特拉津在土壤中的解吸行为研究[J]。安徽农业科学,2010,38(2):6441-6443。
    [147]Moore R E. Interval Analysis[M]. New York:Prentice-Hall,1996.
    [148]Huang G H, Loucks D P. An inexact two-stage stochastic programming model for water resources management under uncertainty[J]. Civil Engineering and Environmental Systems,2000,17(17):95-118.
    [149]Han Y C, Huang G H, Li C H. An Interval-Parameter Multi-stage Stochastic Chance-Constrained Mixed Integer Programming Model for Inter-basin Water Resources Management Systems under Uncertainty:Fuzzy Systems and Knowledge Discovery [C], FSKD'08. Fifth International Conference,2008.
    [150]Huang G H, Baetz B W, G P G. Grey integer programming:an application to waste management planning under uncertainty[J]. European Journal of Operational Research,1995,83(3):594-622.
    [151]Huang G H. IPWM:An interval parameter water quality management model[J]. Engineering Optimization,1996,26(1):79-103.
    [152]Huang G H, Baetz B W, Patry G G. An interval linear programming approach for municipal solid waste management planning under uncertainty[J]. Civil Engineering Systems,1992,9(9):319-335.
    [153]张永春等。有害废物生态风险评价[M]。北京:中国环境科学出版社,2002。
    [154]周玳,张文华,王连生。毒物风险评价外推方法[J]。环境科学进展,1995,3(2):42-48。
    [155]高茜。河流沉积物中重金属与有机物的复合污染研究[D]。北京:华北电力大学(北京),2012。
    [156]苏一兵,雷坤,孟伟。陆域活动对渤海海岸带的影响[J]。中国水利,2003,2(6):78-81。
    [157]张潮枪。消费者—品牌关系的持续性[D]。大连:大连理工大学,2006。
    [158]马文军,潘波。问卷的信度和效度以及如何用SAS软件分析[J]。2000,17(6):364-365。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700