用户名: 密码: 验证码:
基于时间应力分析的地平仪关键部件故障预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地平仪是直升机的关键部件之一,其状态直接影响直升机工作的可靠性和战备完好性。在直升机工作过程中,其地平仪受振动、温度等环境应力因素的影响,故障率较高。因此,实现直升机地平仪关键部件故障的有效预测,对于尽早发现其故障苗头、减少或杜绝事故的发生具有重要意义。
     研究表明:振动、温度等环境应力历程(时间应力)是导致地平仪关键部件性能退化甚至失效的直接外因,对时间应力进行分析可以有效实现其故障预测。因此,本文以直升机地平仪关键部件为对象,系统地分析时间应力诱发其故障的机理与规律,深入研究基于时间应力分析的直升机地平仪关键部件的故障预测方法。
     论文的主要研究内容包括:
     1.时间应力诱发地平仪关键部件故障的机理分析与建模
     系统地分析了时间应力诱发地平仪关键部件故障的机理和规律;建立了基于随机Petri网的时间应力与损伤关系的动态描述模型,获得了时间应力历程与损伤间的转化关系。
     2.地平仪关键部件时间应力特征提取及其损伤计算
     以改进的“寿命消耗监控(Life Consumption Monitoring,LCM)技术思路为主线,研究了地平仪静态变流器时间应力数据的等级分析及特征提取方法,然后以金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transitor,MOSFET)为对象,基于热载流子退化模型进行其损伤计算,将时间应力历程转化为组件的损伤信息。
     3.基于损伤信息的地平仪关键部件故障预测方法
     为了实现地平仪关键部件的故障预测,给出了基于损伤信息的地平仪关键部件故障预测的总体思路,首先利用当前损伤信息进行故障预测;然后以当前损伤信息为基础,同时考虑预测结果的历史变化趋势,提出了基于损伤信息的自回归滑动平均模型(Auto-regression Moving Average,ARMA)故障预测方法。验证结果表明,所提出的方法能够较准确地实现地平仪关键部件的故障预测。
     4.故障预测系统设计与实验验证
     以某型直升机地平仪静态变流器为对象,设计并实现了其故障预测系统,并进行了试验验证,结果表明,本文所研究方法可以较准确的实现静态变流器的故障预测,为地平仪关键部件的故障预测提供了一条切实可用的途径。
The horizon is one of the key parts of helicopter,its working state directly influences the reliability and the readiness of the helicopter. Because the horizon is affected by such environmental factors as vibration, temperature and so on while the helicopter is in working process, its failure rate is always high. Therefore, it is of great importance to achieve the key components’effective failure prognostics to discover the failure symptom as early and to prevent the occurrence of accidents.
     Research indicates that environment stress course such as vibration, temperature is the direct external factor. It causes the performance of horizon’s key components degenerating or even invaliding. The fault prognostics can be achieved effectively by analysis of time stress. Therefore, the mechanism and rule that time stress induces the failure of helicopter horizon are systematically analyzed. The fault prognostics method based on time stress analysis for helicopter horizon is deeply investigated.
     The main contents of the research are as follows:
     1. The mechanism that time stress induces the horizon’s faults is analyzed and a relative model is built.
     Firstly, the mechanism that faults are induced by time stress is analyzed in detail. Secondly, a dynamic relation description model between time stress and damage is built based on Generalized Stochastic Petri Nets (GSPN). Then the evolution relationship between time stress and component’s damage is got.
     2. The time stress data feature extraction and calculating method of damage for the key components of the horizon is studied.
     Based upon the improved consumption monitoring methodology (LCM), the time stress data grade analysis and feature extraction method for the static converter are studied. Then, based on hot carrier degradation (HCD) model, the MOSFET’s damage is calculated and the time stress is transformed into information of components’damage.
     3. The fault prognostics method of helicopter horizon’s key components is studied based on damage information.
     To achieve fault prognostics for the horizon’s key components, the overall mentality of horizon key component’s failure prognostics is given based on the damage information. Firstly, the current damage information is used to carry out the failure prognostics. Then, considering the history trend of the prognostics result, a fault prognostics method is put forward based on damage information’s Auto-regression Moving Average (ARMA) model. The experimental result shows that this method can result in accurate fault prognostics for the horizon.
     4. A fault prognostics system is designed and fault prognostics technology based on time stress is validated.
     In order to evaluate the efficiency of fault prognostics technology, a fault prognostics system for static converter of the horizon is built and implemented. Then, some experiment of time stress is executed on the static converter. According to the test results, the fault prognostics technology in this paper have been proved to be successful. It provides an effective and feasible way for the fault prognostics of the helicopter horizon’s key components in the actual application.
引文
[1]梁旭,李行善,张磊,等.支持视情维修的故障预测技术研究[J].测控技术, 2007,26(6): 5~8.
    [2]曾声奎, Pecht M,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报, 2005,5: 626~632.
    [3]张宝珍,曾天翔.先进的故障预测与状态管理技术[J].测控技术, 2003,11: 4~6.
    [4]徐萍,康锐.预测与状态管理系统(PHM)技术研究[J].测控技术, 2004,12: 58~60.
    [5] Kalgren P W, Byington C S, Roemer M J, et al. Defining PHM-a lexical evolution of maintenance and logistics[A]. Systems Readiness Technology Conference[C], 2006,9: 353~358.
    [6] Orsagh R F, Brown D W, Kalgren P W, et al. Prognostic health management for avionic systems[A]. Proceedings of the IEEE Aerospace Conference, Big Sky, Montana[C], USA. 2006: 1~7.
    [7] Smith G, Schroeder J B, Navarro S, et al. Development of a prognostics & health management capability for the joint strike fighter[A]. Autotestcon Proceedings[C], 1997: 676~682.
    [8] Massam S. Verification of PHM Capabilities: A joint customer/industrial perspective[A]. 2002 Aerospace Conference, 2002 IEEE Proceedings[C]. 2002.
    [9] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/02.pdf.
    [10] Pecht M, Dube M, Natishan M, et al[J]. An Evaluation of Built-In Test, IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 1, pp. 266-272, January 2001.
    [11] Kirkland, Pombo L V, Nelson T, Berghout K, Avionics health management: searching for the prognostics grail[A],Aerospace Conference,. Proceedings. 2004 IEEE[C], 2004.
    [12] Hess A, Fila L. The joint strike fighter ( JSF) PHM concept: potential impact on aging aircraft problems[A]. Proceedings of IEEE Aerospace Conference[C]. 2002.
    [13] Gill J. Lessons learned from rotary and fixed2wing HUMS applications[A]. Proceedings of IEEE Aerospace Conference[C]. 2000: 423 -431.
    [14] Greitzer F L, Pawlowski R A. Embedded prognostics health monitoring[A]. Proceedings of the International Instrumentation Symposium[C].2002.
    [15] Byington C S, Roemer M J, Galie T. Prognostic enhancements to diagnostic systems for improved condition-based maintenance[A]. 2002 AerospaceConference 2002 IEEE Proceedings, Vol. 6: 2815~2824.
    [16] Kacprzynski G J, Roemer M J, Hess A J. Health management system design. Development, simulation and cost/benefit optimization[A]. Aerospace Conference Proceedings[C]. 2002.
    [17] Mishra S, Ganesan S, Pecht M, and Xie J. Life consumption monitoring for electronics prognostics[A]. 2004 Aerospace Conference, 2004 IEEE Proceedings[C], Big Sky, MT, 2004,3,Vol.5: 3455~3467.
    [18] Ramakrishnan A, Pecht M. A life consumption monitoring methodology for electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2003,9,Vol.26. 3: 625~634.
    [19] Smeulers M, Zeelen R, Bos A. PROMIS-a generic PHM methodology applied to aircraft subsystems[A]. 2002 Aerospace Conference, 2002 IEEE Proceedings[C].2002.
    [20] Kacprzynski G J, Roemer M J, Modgil G, et al. Enhancement of physics-of-failure prognostic models with system level features[A]. 2002 Aerospace Conference, 2002 IEEE Proceedings[C]. 2002.
    [21] Byington C S, Roemer M J, Galie T.[A].Aerospace Conference Proceedings 2002 IEEE[C].2002.
    [22] http://www.ridgetop-group.com/docs/News_Release_C&D_Tech.pdf.
    [23] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/07.pdf.
    [24] Kirkland L V, Pombo T, Nelson K, et al. Avionics health management: searching for the prognostics grail[A]. 2004 Aerospace Conference, 2004 IEEE Proceedings[C].2004.
    [25] Williams R, Banner J, Knowles I, et al. An investigation of 'cannot duplicate' failure[J]. Quality and Reliability Engineering International, 1998,Vol.14: 331~337.
    [26] Pecht M, Dube M, Natishan M, et al. An evaluation of built-in test[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,1, Vol. 37.1: 266~272.
    [27] Pecht M, Ramappan V. Are components still themajor problem: a review of electronic system and device field failure returns[J]. IEEE Transactions on Hybrids, and Manufacturing Technology, 1992,9, Vol.15: 1160~1164.
    [28] Williams J H, Davies A, Drake P R. Condition-based maintenance and machine diagnostics[M], Chapman & Hall, 1994.
    [29] Natke H G, Cempel C. Model-aided diagnosis of mechanical systems: fundamentals, detection, localization, and assessment[M]. Springer Verlag, 1997.
    [30] Ohring M. Reliability and failure of electronic materials and devices[M]. Academic Press,1998.
    [31] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/06.pdf.
    [32] Sandborn P. A decision support model for determining the applicability ofprognostic health management (PHM) approaches to electronic systems[J]. Reliability and Maintainability Symposium, 2005,1: 422~427.
    [33] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/09.pdf.
    [34] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/05.pdf.
    [35] http://www.calce.umd.edu/whats_new/upcoming/2004/workshop/03.pdf.
    [36] Kacprzynski G J, Roemer M J, Modgil G, et al. Enhancement of physics-of-failure prognostic models with system level features[A]. 2002 Aerospace Conference, 2002 IEEE Proceedings[C].2002.
    [37] Skormin V A, GorodetskiV I, Popyack L J. Datamining technology for failure prognostic of avionics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (2): 388 - 403.
    [38] Skormin V A, Popyack L J. Reliability of flight critical system components and their "history of abuse"[A]. Aerospace and Electronics Conference[C]. 1995, vol.1: 376~381.
    [39] Mishra S, Pecht M, Smith T, et al. Remaining life prediction of electronic products using life consumption monitoring approach[A]. European Microelectronics Packaging and Interconnection Symposium [C]. Cracow, Poland, June 16-18, 2002.
    [40] Mishra S, Pecht M. In-situ sensors for product reliability monitoring[J]. Proceedings of SPIE, 2002: 10~19.
    [41] Pecht M, Dube M, Natishan M, et al. An evaluation of built-in test[A]. IEEE Transactions on Aerospace and Electronic Systems[C]. 2001,1,Vol.37.1: 266~272.
    [42] Ramakrishnan A, Pecht M. Load characterization during transportation[J]. Microelectronics Reliability, 2004,1,Vol.44. 2: 333~338.
    [43] Middendorf A, Griese H, Grimm W, Reichl H. Embedded life-cycle information module for monitoring and identification of product use conditions[A]. 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing[C]. 2003,12: 733~740.
    [44] Ginart A, Barlas I, Goldin J, et al. Automated feature selection for embeddable prognostic and health monitoring (PHM) architectures[A]. Systems Readiness Technology Conference[C]. 2006,9: 195~201.
    [45] Brotherton T, Luppold R, Padykula P, et al. Generic integrated PHM / controller[A]. IEEE System Aerospace Conference[C]. 2005,3: 1~11.
    [46] Nickerson B, Lally R. Development of a smart wireless networkable sensor for aircraft engine health management[A]. 2001 Aerospace Conference, 2001 IEEE[C].2001, Vol.7: 3255~3262.
    [47] Deliverable report 16 of the environmental life cycle information management and acquisition for consumer products[R]. Project Funded By the EuropeanCommunity under the 'Competitive and Sustainable Growth Programmed', 2005,5.
    [48] Jonathan Cook, James Gourlay, Boardman. Contrasting Approaches to the Validation of Helicopter HUMS-A Military User’s Perspective[A].2004 IEEE Aerospace Conference Proceedings[C].2004.
    [49] Cronkhite J, Dickson B, Martin W, et al. Operational Evaluation of a Health and Usage Monitoring System(HUMS)[R]. NASA/CR-1998, 1998,4.
    [50]左丽华.国外直升机HUMS系统的应用[J].直升机技术, 2000,3: 48~53.
    [51]樊菊.直升机自动驾驶仪故障诊断专家系统的研究[D].北京:北京航空航天大学,2003.
    [52]李瑰贤,于广滨,马良.基于模糊故障树直升机起落架液压系统的故障诊断方法研究[J].机床与液压, 2007,5: 214~219.
    [53]曹振锋,高喜银,程光明.基于模糊推理的陆航飞机机电故障诊断专家系统设计研究[J].高科技信息, 2006,12: 111~112.
    [54]柳新民,邱静,刘冠军.基于连续高斯密度混合HMM的滚动轴承故障诊断研究[J].机械传动, 2005,1: 7~9.
    [55]陈仲生,杨拥民,胡政,等.基于循环统计量的直升机齿轮箱轴承故障早期检测[J].航空学报, 2005,5: 371~375.
    [56] Havey G, Louis S, Bruska S. Micro-time stress measurement device development[M]. Rome Laboratory Air Force Materiel Command Griffiss Air Force Base, New York.1995.
    [57]章新瑞,任占勇.可靠性试验中环境应力与产品故障机理间关系研究[J].环境技术, 2000,5: 7~11.
    [58]邓永孝.半导体器件失效分析[M].北京:宇航出版社, 1991.
    [59]夏泓.电子元器件失效分析及应用[M].北京:国防工业出版社, 1998.
    [60]许凤和.航空非金属件失效分析[M].北京.科学出版社, 1993.
    [61]章黎明,叶迪镇.电子设备组件环境应力筛选分析—潜在缺陷、故障模式和失效机理[J].电子产品可靠性与环境试验, 1997,6: 28~31.
    [62]梁劲松.军用直升机可靠性的综合化发展[J].航空科学技术, 2005,5: 6~9.
    [63]孙东红.直升机振动环境与机载设备振动环境试验若干问题的探讨[J].航空标准化与质量, 200,4: 46~49.
    [64] Jaw L C, Friend R. ICEMS: a platform for advanced condition based health management[A]. Proceedings of the 2001 IEEE Aerospace Conference[C]. 2001: 2909 - 2914.
    [65]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D].长沙:国防科技大学, 2008.
    [66]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展, 1999,2: 43~65.
    [67]赵少汴.变幅载荷下的有限寿命疲劳设计方法和设计数据[J].机械设计, 2000.1: 5~8.
    [68]盐见弘.失效物理基础[M].杨家坚,关成勋(译).北京:科学出版社,1982.
    [69]周传月,郑红霞,罗慧强. MSC. Fatigue疲劳分析应用于实例[M].北京:科学出版社, 2005.
    [70]林创.随机Petri网和系统性能评价[M].北京:清华大学出版社, 2005.
    [71]孙俊清,王鹏涛,于长云.随机Petri网对可修复系统的建模和分析[J].天津大学学报, 2004.3: 258~263.
    [72]褚卫华.模块级电子产品可靠性强化试验方法研究[D].长沙:国防科学技术大学, 2003.
    [73]王考.基于PQFP的试验剖面优化与缺陷激发效果分析[D].长沙:国防科学技术大学, 2003.
    [74] Gary Havey, Steven Louis, Steven Bruska. Micro-time stress measurement device development[R]. Rome Laboratory Air Force Materiel Command Griffiss Air Force Base, New York.1995.
    [75] Vincent Rouet, Bruno Foucher. Development and Use of A Miniaturized Health Monitoring Device[A]. 42nd Annual International Reliability Physics Symposium[C]. 2004: 645-646.
    [76]温熙森,徐永成等.智能机内测试理论与应用[M].北京:国防工业出版社. 2002:146-149.
    [77] Hu C, Tam S C, Hsu F C, et al. Hot-electron-induced MOSFET degradation[J]. IEEE Trans Electron Devices, 1985,2: 375~384.
    [78]庄奕琪.微电子器件应用可靠性技术[M].北京:电子工业出版社, 1996.
    [79] Son K I, Soma M. Dynamic life-estimation of CMOS ICs in real operating environment: precise electrical method and MLE[J]. IEEE Transactions on reliability, 1997,3, vol.46: 31~37.
    [80] Mepherson J W, Khamankar R B. Molecular model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics and the reliability implications for hyper-thin gate oxide[J]. Semicond Sci-Technol, 2000: 462~469.
    [81] Montoya J, Levit L, English A. A study of the mechanisms for ESD damage to reticules[A]. Electrical Overstress/Electrostatic Discharge Symposium Proceedings[C]. 2000,9: 394~405.
    [82]张树京,齐立心.时间序列分析简明教程[M].北京:清华大学出版社,北方交通大学出版社, 2003.
    [83]林晓玲.加速寿命试验数据处理方法的研究[D].广州:华南理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700