用户名: 密码: 验证码:
新型结构调节剂制备溶聚丁苯橡胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界上合成溶聚丁苯橡胶(SSBR),普遍采用烷基锂作引发剂,通过添加极性结构调节剂来控制产物微观结构的阴离子溶液聚合技术,其关键是结构调节剂的选择,它对合成高性能溶聚丁苯橡胶至关重要,直接影响产品的结构及性能,然而目前生产中所常用的结构调节剂或调节能力低(THF),调节剂用量大,不易回收或容易导致活性链失活(2G),偶联效率降低,影响产品质量。论文在参考相关美国专利的基础上,针对这些问题采用Darzens缩合法合成了两种不对称醚:乙基四氢糠基醚(ETE)和乙氧基乙基吗啉(EOEM)以及两种烷氧基碱金属化合物:四氢糠醇钠(THFAONa)和吗啉乙醇钠(MEONa)。以正丁基锂(n-BuLi)为引发剂、环己烷和正己烷混合溶液为溶剂,将合成得到的四类新型结构调节剂应用于丁二烯/苯乙烯溶液阴离子聚合,全面考察了他们对聚合反应动力学、聚合产物以及后续偶联反应的影响规律。
     研究了不同调节剂用量、不同引发温度下的聚合动力学行为以及共聚物组成与单体转化率的关系,并分别求取了不同条件下的各单体表观竞聚率。动力学研究表明,调节剂的加入能显著提高聚合反应速率;调节剂用量增加,聚合反应速率加快,丁二烯表观竞聚率(r_1)减小而苯乙烯表观竞聚率(r_2)增大,反应趋向于无规共聚。产物微观结构的研究表明,四种调节剂对SSBR均具有很强的1,2-结构调节能力和无规化调节能力,控制引发温度在30~70℃之间变化,改变调节剂用量,可以控制SSBR中的1,2-结构含量在20%~80%之间灵活变化;其无规化调节能力大小依次为:THFAONa>MEONa>ETE>EOEM;引发温度升高,调节剂的1,2-结构调节能力以及无规化调节能力均减弱,且ETE体系和THFAONa体系受温度的影响要小于EOEM体系和MEONa体系。对SSBR分子量及其分布的研究表明,不对称醚体系以及MEONa体系对分子量及其分布的影响很小,而THFAONa的加入对分子量及其分布的影响较为明显,70℃引发时,THFAONa/Li=5.0的情况下,聚合产物的分子量分布能增至1.65。对SSBR后续偶联反应的研究表明,调节剂加入量的增加或引发温度的升高,均能降低偶联效率,四种调节剂对SSBR后续偶联反应的影响大小依次为:THFAONa>MEONa>ETE>EOEM。
     SSBR硫化胶的研究结果表明,四种调节体系下均能得到具有优异物理机械性能的SSBR产品,且MEONa体系和THFAONa体系下制得的SSBR产品,兼具高抗湿滑性和低滚动力的特点,综合性能优良;ETE体系下制得的SSBR产品具有优异的抗湿滑性能,但滚动阻力偏高。
It is well known that the solution styrene and butadiene rubber(SSBR) is produced fromanionic polymerization by organolithium initiators in the presence ofpolar modifiers, such asamines、ethers or alkoxyl metal compounds which are needed to adjust the vinyl content ofthe diene polymers. The key synthesis technology of SSBR is the selection of structuremodifiers which is increasingly attracted extensive attentions, and it has a direct effect onstructure and properties of SSBR.
     In this thesis, self-made asymmetric ethers and sodium alkoxides are used as modifiers inanionic copolymerization of styrene and butadiene in the cyclohexane and hexane mixingsolution with n-butyllithium as the initiator, in which asymmetric ethers are synthesizedfollowing the Darzens method include ethyl morpholinoethyl ether(EOEM) andtetrahydrofufury ethyl ether(ETE), sodium alkoxides include sodium salts of tetrahydrofufuryalcohol and sodium salts of morpholinoethoI. Furthermore, this thesis studies systematicallythe kinetic behavior of the copolymerization and the coupling reaction. The microstructure,molecular weight and its distribution of the copolymers are well discussed in detail. Inaddition, the physical mechanical properties and the dynamic mechanical analysis(DMA) arealso investigated.
     The kinetic behaviors of the copolymerization、the relationship between polymercomposition and conversion at different modifier dosages、different initiation temperature arestudied. And the value of the monomer apparent reactivity ratios under different conditions isobtained. The kineties research indicates that the polymerization speed increases fast with theadding of the modifiers, and the value of the butadiene apparent reactivity ratios(r_1) declinesand the styrene apparent reactivity ratios (r_2) augments accordingly when the dosage ofmodifiers increased, so the styrene monomer is randomized along the polymer chain to formrandom SSBR. However, the value of r_1 augments and that of r_2 declines when the initiationtemperature rises from 50℃to 70℃.
     The microstructure research shows that the regulation ability of the modifiers are sostrong that the 1,2-content of polybutadiene in SSBR can be modified from 20%to 80%easily by altering the modifier concentration and the initiation temperature ranges from 30℃to 70℃; And the randomizers regulation ability decreased in following order: THFAONa> MEONa>ETE>EOEM; The regulation ability of the modifiers is getting smaller as theinitiation temperature rises, and the initiation temperature has more significant influence onthe regulation ability of EOEM and MEONa than that of ETE and THFAONa. The researchshows that the adding of the modifiers, such as ETE、EOEM and MEONa, have littleinfluence on the molecular weight and its distribution. However, THFAONa has a significantinfluence on them, and the molecular weight distribution of SSBR ranges from 1.04 to 1.65with the changing of THFAONa/BuLi(mol ratio) ranges from 0 to 5.0 at 50℃. It is found thatcoupling efficiency decreased with increasing modifier dosages or raising the initiationtemperature, and the sequence to the effect of the coupling efficiency is as follows:THFAONa>MEONa>ETE>EOEM.
     Furthermore, the results of the physical properties show that the resulting productspossesse good physical and mechanical properties. The products in MEONa/BuLi system orTHFAONa/BuLi system have both high wet skidding-resistance and low rolling-resistanceproperties, which are valuable for using in making automobile tire treads, and the products inETE system have excellent wet skidding-resistance properties which are valuable for using inmaking race tire treads and rain tire treads.
引文
[1] Morton M. Anionic Polymerization. New York: Academic Press, 1983: 33.
    [2] Szwarc M et al. Journal of the American Chemical Society, 1956, 78: 265-266.
    [3] 化工百科全书(17卷),北京:化学工业出版社,1998:490-492.
    [4] Bond R et al. A tailor-made polymer for tire applications. Polymer, 1984, 25(1): 132.
    [5] 鲍爱华.世界溶聚丁苯橡胶的主要进展.石油化工动态,1996,4(3):18-24.
    [6] 鲍爱华.世界合成橡胶工业现状与溶聚丁苯橡胶发展前景.橡胶工业,1996,43(7):433-439.
    [7] Halasa A F, Gross B, Hsu W L et al. European Rubber Journal, 1990, 176(6): 35-39.
    [8] 朱景芬.世界合成橡胶产品现状及发展趋势.橡胶工业,2002,49(9):563-567.
    [9] 鲍爱华.世界合成橡胶工业发展现状及市场供需分析与预测.化工科技,2000,8(4):55-59.
    [10] 刘大华,刘青.21世纪SSBR合成技术进展I SSBR的开发与改性技术.合成橡胶工业,1999,22(5):257-262.
    [11] 王真,赵素合,张建明.溶聚丁苯橡胶研兄进展.橡胶工业,1999,46(7):425-430.
    [12] 高枫.全球橡胶工业2005-2006年度现状和进展分析.世界橡胶工业,2007,34(3):38-42.
    [13] 王凤菊.我国丁苯橡胶需求预测及发展建议.橡胶科技市场,2006,14:5-7.
    [14] 张爱民.我国溶聚丁苯橡胶发展速度问题.合成橡胶工业,2006,29(5):319-321.
    [15] 赵玉中,李毅,王桂轮等.国外丁苯橡胶发展态势分析.弹性体,2003,13(4):55-60.
    [16] 李汉堂.绿色轮胎的结构设计及其材料应用.轮胎工业,2007,27(3):135-140.
    [17] 陈士朝.轮胎的性能要求与合成橡胶的发展.合成橡胶工业,1995,18(5):260-265.
    [18] 昌焰,陈士朝,曹振纲.溶聚丁苯橡胶结构与性能的关系.弹性体,1994,4(4):35-39.
    [19] Tatsuo F,Tomoharu Y,Seisuke T.Rubber composition for tires containing block copolymer having vinyl bonds.U S,Application,Patent,US4396743,1983.
    [20] 陈贤益,郭少华,唐颂超等.溶聚丁苯橡胶的序列结构及玻璃化温度与力学性能关系的研究.合成橡胶工业,1990,13(1):37-40.
    [21] Kern W J, Futamura S. Effect of tread polymer structure on tyre performance. Polymer, 1988, 29: 1801-1806.
    [22] 林裔珍,李书琴,昌焰.乙烯基含量对S-SBR性能的影响.合成橡胶工业,1990,13(6):430-432.
    [23] 计福春,王雪,刘天鹤等.溶聚丁苯橡胶结构与性能研究.弹性体,2002,12(6):19-22.
    [24] Hiroyoshi T, Nobuyuki Y, Yuichi S. Rubber composition for tire treads. E P, Application, Patent, EP0265923A2, 1987.
    [25] Takeuchi Y. Styrene-butadiene random copolymerization. U K, Application, Patent, GB2075524A, 1981.
    [26] Hiroshi F, Yuichi S, Akio I et al. Diene rubber composition and tire using it in tread. U S, US4482678, 1984.
    [27] Weiss P, Hild G, Herz J et al. Preparation of crosslinked gels by anionic block-copolymerization of styrene and divinylbenzene. Die Angewandte Makromolekulare Chemie. 1970. 135: 249-256.
    [28] Antonius A. Process for preparation of polymers containing conjugated dienes and optionally monoalkenyl aromatic hydrocarbons. U S, US4530985, 1985.
    [29] Antonius A, Pieter L, Evert S J. Elastomersand tyres containing them. E P, Application Patent, EP0270178A2, 1988.
    [30] TAKAO H S, YAMAMOTO K S. An elastomer composition, a vulcanized composition and a tire employing said elastomer composition. E P, Application Patent, EP0067396A2, 1982.
    [31] Antonius A. Process for the preparation of branched polymers. E P, Application Patent, EP0135962A2, 1985.
    [32] Essel A, Salle R, Pham Q T et al. Polymerisation anionique des diehes. Ⅲ. Etude thermodynamique de la propagation du butadiene et de i'isoprene par les organo-alcalins. Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13: 1869.
    [33] Lewis H, Brown J. Journal of the American Chemical Society. 1970, 92: 4664.
    [34] Morton M, Ells F R. Absolute rates in anionic copolymerization. Journal of Polymer Science. 1962, 61(171): 25-29.
    [35] 陆逸,徐瑞清,金关泰.聚丁二烯1,2-结构含量和SBS中聚丁二烯段1,2-结构含量的调节.高等学校化学学报,1983,2(1):21-24.
    [36] 蹇锡高.正丁基锂/环己烷体系下的丁二烯聚合动力学.大连工学院学报,1981,20(增刊2):66-72.
    [37] 高占先,顾明初,应圣康.正丁基锂四氢呋喃为引发体系合成中乙烯基聚丁二烯橡胶.合成橡胶工业,1982,5(4):280-283.
    [38] 金关泰,杨大川,曹建平.2G/THF二元调节体系对丁二烯阴离子聚合产物微观结构的研究.弹性体,1997,7(3):18-21.
    [39] Morton M, Fetters L J, Bostick E E. Mechanisms of homogeneous anionic polymerization by alkyllithium initiators. Journal of Polymer Science Part C, 1968, 1: 311-323.
    [40] Sommer et al. Organolithium-Lewis base polymerization of 1, 3-butadiene and novel polybutadienes thus produced. U S, US4022959, 1997.
    [41] Hsu W L, Halasa A F. Modifier for anionic polymerization of diene monomers. U S, US5300599, 1994.
    [42] Robert T. Process for medium vinyl polybutadiene. U S, US4230841, 1980.
    [43] Jin G T, Yang D C. Method for controlling ethenyl content in butadiene homopolymer and copolymer. China, CN1089272A, 1994.
    [44] Takeuchi Y, Ohshima N. Styrene-butadiene random copolymer and process for the production thereof. U S, US4367325, 1983.
    [45] Halasa A F, Hsu W L. Process for preparing high vinyl polbutadiene rubber. U S, US5654384, 1997.
    [46] Kuntz I. The copolymerization of 1, 3-butadiene with styrene by butyllithium initiation. Journal of Polymer Science, 1961, 54: 569-586.
    [47] 程子胜,陈伟杰,应圣康.正丁基锂、四氢呋喃引发的丁苯共聚合(Ⅰ)合成及分子设计.高等学校化学学报,1984,(5):727-731.
    [48] 应圣康,郭少华.离子型聚合.北京:化学工业出版社,1997:330.
    [49] 薛联宝,金关泰.阴离子聚合的理论和应用.北京:中国友谊出版社,1990.
    [50] 佐伯康治著,杨大海译.聚合物制造工艺.北京:化学工业出版社,1993:330.
    [51] Koichi M, Atsushi N. Process for preparing a polymer using lithium initiator prepared by in situ preparation. U S, US5625017, 1997.
    [52] Hseieh H L. Kinetics of polymerization of butadiene, isoprene and styrene with alkyllithiums. Part Ⅰ. Rate of polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1965, 3: 153-162.
    [53] Hseieh H L. Kinetics of polymerization of butadiene, isoprene and styrene with alkyllithiums. Part Ⅱ. Rate of initiation. Journal of Polymer Science Part A: Polymer Chemistry, 1965, 3: 163-172.
    [54] Hseieh H L. Kinetics of polymerization of butadiene, isoprene and styrene with alkyllithiums. Part Ⅲ. Rate of propagation. Journal of Polymer Science Part A: Polymer Chemistry, 1965, 3: 173-180.
    [55] 应圣康.阴离子聚合(Ⅳ).合成橡胶工业,1979,2(4):341-355.
    [56] Ralph C F, Bartlesville O. Polymerization of conjugated dienes or monovinyl aromatic monomers with multifunctional initiators from diisopropenylbenzene. U S, US3652516, 1972.
    [57] Ralph C F, Bartlesville O. Mutifunctional polymerization initiators from vinylsilanes or vinylphosphines and organomonolithium compounds. U S, US3784637, 1974.
    [58] Ralph C F, Bartlesville O. Polymerization with multifunctional initiators prepared from vinylsilanes or vinylphosphinesand organomonolithium compounds. U S, US3624057, 1971.
    [59] Ralph C F, Bartlesville O. Multifunctional polymerization initiators. U S, US3787510, 1974.
    [60] 张兴英,赵素合,金关泰.应用高分子分子设计合成节能型丁苯橡胶I共聚物的分子设计、合成及性能.弹性体,1994,4(4):15-18.
    [61] 刘大华译.合成橡胶工业,1987,专辑Ⅰ:34-36.
    [62] Eschwey H, Burchard W. Star polymers from styrene and divinylbenzene. Polymer, 1975, 16: 180-184.
    [63] Young R N, Fetters L J. Star-branched polymers. 2. The reaction of dienyllithium chains with the isomers of divinylbenzene. Macromolecules, 1978, 11(5): 899-904.
    [64] 洪良构,应圣康.聚丁二烯锂与工业二乙烯基苯的共聚合—星形聚丁二烯的合成及动力学研究.合成橡胶工业,1987,10(5):347-351.
    [65] 张兴英,金关泰.用氯代醋酸乙酯偶联的溶液丁苯橡胶的合成.北京化工学院学报,1991,18(1):18-23.
    [66] Iatrou H. Eadjichristidis N. Synthesis of a model 3-Miktoarm star terpolymer. Macromolecules, 1992, 25(18): 4649-4651.
    [67] Higashihara T, Kitamura M, Haraguchi N et al. Synthesis of well-defined star-branched polymers by using chain-end-functionalized polystyrenes with a definite number of 1,3-hutadienyl groups and its derivatized functions. MacromolecuIes, 2003, 86(28): 8730-6738.
    [68] 梁爱民,王世朝.以GSA为结构调节剂合成高乙烯基SSBR.橡胶工业,2003,50(8):470-472.
    [69] 班锡广,金关泰.醚类调聚的丁二烯阴离子聚合体系的研究.石油化工,1986,15(9):547-553.
    [70] Ogle C A, Strickler F H, Gordon B. Reaction of polystyryllithium with tetrahydrofuran. Macromolecules, 1993, 26(21): 5803-5805.
    [71] 金关泰,韩丙勇,张兴英等.路易氏碱在阴离子聚合领域中的应用Ⅶ其它作用.弹性体,1999,9(2):35-39.
    [72] Gatzke A L. Chain transfer in anionic polymerization. Determination of chain-transfer constants by using carbon-14-labeled chain transfer agents. Journal of Polymer Science Part A: Polymer Chemistry, 1969, 7: 2281.
    [73] Higginson W C E, Wooding N S. Anionic polymerisation. Part Ⅰ. The polymerisation of styrene in liquid ammonia solution catalysed by potassium amide. Journal of the Chemical Society, 1952: 760.
    [74] Nakhmanovich B I, Zolotareva I V, Litvinenko G I et al. Anionic polymerization of butadiene initiated by tributyltin sodium. Kinetic analysis of induction periods generated by transfer to initiator precursor. Macromolecular Chemistry and Physics, 2001, 202: 3536-3642.
    [75] Halasa A F, Hsu W L. Synthesis of high vinyl elastomers via mixed organolithium and sodium alkoxide in the presence of polar modifier. Polymer, 2002, 43(2): 7111-7118.
    [76] Nakhmanovich B I, Zolotareva I V, Arest-Yakubovich A A. Macromolecular Chemistry and Physics. 1999, 200:2015-2021.
    [77] Nakhmanovich B I, Zolotareva I V, Arest-Yakubovich A A. Study on the mechanism of anionic polymerization with mixed RLi-ROK initiators, 1. Polymerization of butadiene. Macromolecular Chemistry and Physics, 1999, 200(9): 2015-2021.
    [78] Arest-Yakubovich A A. Chemistry Review. 1994, 19: 1-72.
    [79] Tobolsky A V, Kelly D J, Hsieh H. Polymerization of isoprene with lithium dispersions and lithium alkyls using tetrahydrofuranas solvent. Journal of Polymer Science, 1957, 26(113): 240.
    [80] Kuntz I. The copolymerization of 1,3-butadiene with styrene by butyllithium initiation. Journal of Polymer Science, 1961, 54: 569.
    [81] Antkowiak T A, Oberster h E, Halasa A F. Temperature and concentration effect on Polar-Modified Alkyl lithium Polymerization and copolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1972, 10(2): 1319-1334.
    [82] Halasa h F, Schulz D N, Tare D Pet al. Organolithium catalysis of olefin and diene polymerization. Advances in Organometallic Chemistry. 1980, 18: 55-97.
    [83] Halasa A F. Modifier for lithium catalysts. U S, US4696986, 1987.
    [84] 班锡广,金关泰.HMPA调节丁二烯阴离子聚合体系的研究.高分子材料科学与工程,1986,2(1):9-13.
    [85] 张春庆.不对称醚及TMEDA存在下的丁二烯、异戊二烯、苯乙烯阴离子聚合研究:(博士学位论文).大连:大连理工大学,2005.
    [86] Hsu W L, Halasa A F, Matrana B A. Anionic polymerization of conjugated dienes modified with alkyltetrahydrofurfuryl ethers. U S, US5231153, 1992.
    [87] Viola G T, Trombini C, Musiani L. Anionic copolymerization of conjugated dienes and vinyl arenes in the presence of alkyl ethers of tetrahydropyranyl methanol. U S, US5914378, 1999.
    [88] Wofford C F. Preparation of conjugated diene polymers. U S, US3294768, 1966.
    [89] Halasa A F, Hsu W L. Lithium initiator system. U S, US5906956, 1999.
    [90] Halasa A F, Hsu W L. Synthesis of high vinyl rubber. U S, US6140434, 2000.
    [91] W R Kirner. Alpha-tetrahydrofurfuryl chloride and Alpha-tetrahydrofurfuryl ethers. Journal of the American Chemical Society. 1930, 5, 3251-3256.
    [92] 刘铖.不对称醚/烷氧基钠复合调节剂体系合成高乙烯基聚丁二烯:(硕士学位论文).大连:大连理工大学,2006.
    [93] 应圣康,余丰年.共聚合原理.北京:化学工业出版社,1984:88.
    [94] 利帕托夫.聚合物物理化学手册 第三卷 聚合物的红外光谱和核磁共振谱.北京:中国石化出版社,1995:519.
    [95] 赵方园.苯乙烯-丁二烯共聚物微观结构调剂及溶聚丁苯(SSBR)的设计合成:(硕士学位论文).北京:北京化工大学,2006.
    [96] 应圣康,余丰年.共聚合原理.北京:化学工业出版社,1984:54.
    [97] 桂祖桐,达建文,张延山等.竞聚率及其测定技术进展.齐鲁石油化工,1997,25(2):134.
    [98] Cochet P, Petit D, Barriquand Let al. Interest of highly dispersible precipitated silica in tire application. Rubber Division 156th Technical Meeting. Orlando, Florida: 1999.76.
    [99] Nordsiek K H. The integral rubber concept-an approach to an ideal tire tread rubber. Kauts gum Kunst, 1985, 38(2): 178-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700