用户名: 密码: 验证码:
碳—碳键偶联共轭二烯—苯乙烯共聚物的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用四氯化锡为偶联剂制得的锡偶联溶聚丁苯聚合物中含有锡-碳弱键,其易受剪切和热的作用断裂,导致分子量下降,力学性能也下降。在分析多种偶联剂偶联机理的基础上,本文采用含可聚合基团的亲电试剂作偶联剂,合成碳-碳键偶联溶聚丁苯共聚物,以改善其综合性能。
     首先以丙烯酰氯(AC)、甲基丙烯酰氯(MAc)、甲基丙烯酸缩水甘油酯(GMA)、烯丙基氯(ALC)作偶联剂,偶联活性丁苯共聚物,发现仅有丙烯酰氯可以制备碳-碳键偶联的星形溶聚丁苯;
     研究了丙烯酰氯偶联低分子量活性聚苯乙烯的反应机理,考察了偶联剂用量、线型聚合物分子量、溶剂的极性、不同链末端等对偶联反应的影响,发现丙烯酰氯(AC)所含的三个活性点均可以参与偶联反应,而且丙烯酰氯偶联活性聚合物的偶联机理与其用量密切相关;
     以环己烷或抽余油为溶剂,考察了丙烯酰氯用量、线型聚合物分子量、偶联反应温度和时间、THF用量、不同链末端、单体浓度等对偶联反应的影响,确定了最佳的偶联反应条件是AC/BuLi=0.7~10(摩尔比),偶联反应温度在50~60℃,偶联反应时间60min,TH/Li≤50,[M]=12%(w);放大实验(2升反应釜)确定的偶联反应条件与小试基本一致;
     采用IR和~1H-NMR对所得碳—碳键偶联溶聚丁苯共聚物和无规SIBR进行结构分析,结果表明苯乙烯单元在分子链上呈无规分布,所得聚合物组成比与实验设计值基本一致;
     研究了碳—碳键偶联溶聚丁苯共聚物的力化学特性,发现素炼使C-C键偶联SSBR的分子链发生断链,导致分子量下降,聚合物的GPC曲线发生变化,高分子量级分减少,但是保持原有的位置,与锡偶联SSBR和ESBR相比,其素炼的分子量分布曲线变化更接近ESBR;
     研究了C-C键偶联SSBR和SIBR的力学和动态粘弹性能,结果表明两者均具有优异的抗湿滑性能和低的滚动阻力,而且力学性能也较好,是一种高性能胎面胶;其硫化胶性能指标分别如下:SSBR:300%定伸17.7 MPa,拉伸强
    
    北京化』二大学俘d匕学位论文
    度22.gMPa,撕裂强度39.SMPa,伸长率500%,tan6(ooC)0.4782,tan6(60
    。C)0.1049;SIBR:300%定伸15.4 MPa,拉伸强度24.3MPa,撕裂强度40.4MPa,
    伸长率480%,tan6(ooC)0.701,tan6(60oC)0.1 17;
     对比研究了末端改性对溶聚橡胶动态粘弹性能的影响,发现在聚合物分子量
    较低时,链末端改性可以改善橡胶的高温动态粘弹性能,tan6(60℃)明显下
    降,有助于降低滚动阻力;但在聚合物分子量较高时,橡胶的高温动态粘弹性
    能略有改善,tan6(60℃)略有下降,降低滚动阻力效果不明显。
    关键词:溶聚丁苯橡胶
    丙烯酞氯偶联剂
    苯乙烯一异戊二烯一丁二烯无规共聚橡胶偶联反应
     阴离子聚合胎面胶抗湿滑性滚动阻力
    II
Bond of the Sn-C in SSBR coupled with tetrachloride tin, namely tin coupled-SSBR, is easy broken by heat or shearing force, as a result the molecular weight of the Sn-SSBR were decreased, the mechanical properties were declined. In this paper, new diene-styrene copolymers coupled through carbon-carbon bond with novel coupling agent -acryloyl chloride ,were synthesized, and the mechanical properties and dynamic viscoelastic properties of the polymers were improved to some extent.Acryloyl chloride(AC), methacryloyl chloride, glycidyl methacrylate and allyl chloride were used as coupling agents for SSBR, and the star-polymers were prepared when the coupling agent was acryloyl chloride, while the others as coupling agents the obtained polymers mainly composed of the coupling of two prepolymers and with few star-like polymers.Mechanism of the reaction of living polystyrene with acryloyl chloride were investigated. It was found that the double bond, carbonyl bond, acyl chloride bond in the acryloyl chloride were all involved in the coupling reaction, and mechanism of the coupling reaction were effected by the amount of the acryloyl chloride used in the reaction.The effect of the amount of the acryloyl chloride, the molecular weight of living prepolymers, the time and temperature of coupling raction, the amount of THF, the monomer concentration, and different chain end group on the coupling reaction were studied. Cyclohexane and extracted oil as solvent, the optimism conditions of the coupling reaction were AC/BuLi=0.7~10 (mole ratio), temperature 50~60癈,time 60min,THF/BuLi<50 (mole ratio), [M]=12%(wt);the optimism coupling reaction conditions using 2 liter reactor were comply with above-mentioned conditions.The obtained SSBR and random SIBR coupled with acryloyl chloride respectivly were characterized by IR and 'H-NMR. The random distribution of the styrene unit in polymers were proved and the composition obtained by NMR were nearly as same as that of input ratio of the polymers.The mechanochemistry of SSBR coupled with AC during mastication were studied and the molecular chain were broken during mastication, as a result that the molecular weight of the polymer were declined ,the GPC curve were changed. But the
    
    behavior of the SSBR coupled with AC were like that of ESBR to some extent other than Sn-SSBR.Mechanical and dynamic viscoelasticity of SSBR and SIBR coupled with acryloyl chloride were studied respectively. Both rubbers with excellent wet traction and low rolling resistance and good mechanical properties were confirmed and both of them are excellent tread rubbers. The typical example of SSBR coupled with AC were with modulus at 300% 17.7 MPa, tensile strength 22.9MPa, tear strength 39.5MPa, elongation 500%, tan 5 (0 ) 0.4782, tan 5 (60 ) 0.1049; The typical example of SIBR coupled with AC were modulus at 300% 15.4 MPa, tensile strength 24.3MPa, tear strength 40.4MPa, elongation 480%, tan 6 (0 0.701, tan 6 (60) 0. 117.The effect of chain end modification of SSBR on viscoelasticity were also studied. It was found that viscoelasticity of SSBR at high temperature were improved by chain end modification when the molecular weight of SSBR were relatively low (nearly 105), and tan 5 (60 ) were went down. And when the the molecular weight of SSBR were relatively high (nearly 2xl05), the improvement were less effective.
引文
[1] Marwede G.W., Stollfuβ B., Sumner A.J.M. Current status of tyre elastomers in Europe. Kautschuk Gummi Kunststoffe, 1993,46(5):380~388
    [2] 王登祥.当前全球轮胎市场的竞争战略和技术开发动向.轮胎工业,1998,18(1):3~13
    [3] 王登祥,Immel K.绿色轮胎.轮胎工业,1999,19(4):195~199
    [4] 刘力,张立群,冯予星,田明,吴友平,金日光.绿色轮胎研究的发展.橡胶工业,1999,46(4):245~248
    [5] 国家自然科学基金委员会.高分子材料科学.北京:科学出版社.1994:181
    [6] 施良和,胡汉杰.高分子科学的今天与明天.北京:化学工业出版社,1994:238
    [7] 吕百龄,林裔珍.我国轮胎用合成橡胶现状及发展趋势.石化技术,1999,6(1):48~49
    [8] 李扬,张淑芬,刘青,洪定一.我国锂系聚合物发展的前景展望.合成橡胶工业,1995,18(5):266~270
    [9] 鲍爱华.21世纪世界合成橡胶发展趋势与建议.石油化工动态.1998,6(5):6~12
    [10] 高敏惠.国内外合成橡胶工业现状及展望.现代化工.1999,19(3):4~8
    [11] 陈志宏.我国轮胎原材料现状与发展趋势.橡胶工业,1999,46(10):621~628
    [12] 张乔.我国的SBR市场及SBR在轮胎中的应用.轮胎工业,1997,17(11):643~646
    [13] 梁俐.天然橡胶/溶聚丁苯橡胶胎面载重轮胎的研制.橡胶工业,1991,38(5:273~278
    [14] 林裔珍,陈鼎希,李书琴,曹香珠.溶聚丁苯橡胶在轮胎中的应用研究.轮胎工业,1998,18(9):535~538
    [15] 李鹤松,王剑波,张建军,任福君.国产溶聚丁苯橡胶在轿车轮胎胎冠中的应用.轮胎工业,1998,18(9):543~544
    
    [16] 张元盛,王万洪.溶聚丁苯橡胶在农业轮胎中的应用.轮胎工业,1999,19(2):98~99
    [17] 刘大华.合成橡胶工业手册,北京,化学工业出版社,1990:308
    [18] [日]梅野昌,杉原喜四郎,金谷显义.丁苯橡胶加工技术.北京:化学工业出版社,1983:343
    [19] Saltman W.M.张中岳,王梦蛟,曾泽新,汪岳新,林燕芳译.立构橡胶.北京:化学工业出版社,1987:210
    [20] Aggarwal S.L., Hargis I.G., Livigni R.A. The synthesis of diene elastomers with controlled structure and their properties. Polymer prepr., 1981,22(2): 134~135
    [21] Fabris H.J., Hargis I.G., Livigni R.A., Aggarwal S.L. Structure and properties of a new synthetic tire rubber: high-trans SBR. Rubber Chem Tech ,1987,60(4):721~741
    [22] A. Onishi, R. Fujio, M. Kojima, H. Kawamoto. Method of preparing conjugated diene polymers by using organolithium barium-containing compound catalyst system. U S patent US 3629213 (1971)
    [23] Hargis I.G., Livigni R.A.preparation of solution polymers using a barium-ditert alkoxides and a di-butyl magnesium catalyst complex. U S Patent 3846385 (1975)
    [24] Hargis I.G., Livigni R.A, Aggarwal S.L. Sythesis and properties of diene elasomers with controlled structure. Elastomers and Rubber Elasticity. Ed by Mark J.E., Lal J. ACS Symposium Series 193,ACS washington, 1982:73
    [25] Hargis I.G., Livigni R.A, Aggarwal S.L. Recent developments in synthetic rubbers by anionic polymerization. Developments in Rubber Technology-4. Ed by Whelan A., Lee K.S., Elsevier Applied Sci Pub Ltd. 1987:1
    [26] 陈尔凡,焦书科.Co系Ziegler-Natta催化剂催化丁二烯-苯乙烯共聚合Ⅰ高顺式-1,4-丁二烯-苯乙烯共聚物的合成与表征.合成橡胶工业.1990,13(4):244~248
    [27] 焦书科,陈尔凡.Co系Ziegler-Natta催化剂催化丁二烯-苯乙烯共聚合Ⅱ溶剂对聚合的影响及竟聚率测定.合成橡胶工业.1991,14(1):30~33
    [28] 吴一弦,武冠英,戚银城,魏永康.改性稀土催化丁苯共聚合—共聚物的合成、表征及反应机理.合成橡胶工业.1992,15(3):154~159
    [29] 吴一弦,武冠英,戚银城,魏永康.改性稀土催化丁苯共聚合—催化剂中第三组分结构对聚合的影响.合成橡胶工业.1993,16(3):149~151
    [30] 于永良,宋杰,陈滇宝,唐学明.WCl_6—Al(I-Bu)_2Cl催化丁二烯-苯乙烯共聚合—丁苯共聚合—共聚物的结构组成和竟聚率测定.合成橡胶工业.1994,17(4):216~219
    [31] 刘大华,刘青.20世纪SSBR合成技术进展ISSBR的开发与改性技术.合成橡胶工业,1999,22(5):257~262
    [32] 刘大华,刘青.20世纪SSBR合成技术进展Ⅱ聚合工艺及工程设备的开发.合成橡胶工业,1999,22(6):325~329
    [33] 孙玉琴.生产溶聚丁苯橡胶的连续聚合技术.合成橡胶工业,1997,20(1):54
    [34] 刘大华.溶聚丁苯橡胶的连续法聚合工艺.石油化工动态,1999,7(5):35~38
    [35] 王军,薛宏,张春庆,穆瑞凤,张青.溶聚丁苯连续聚合凝胶抑制技术进展.弹性体,1999,9(2):49~52
    [36] 张兴英,金关泰.节能型溶聚丁苯橡胶的合成Ⅰ共聚物组成、序列分布、微观结构及分子量分布.合成橡胶工业,1991,14(6):391~394
    [37] 张兴英,金关泰.节能型溶聚丁苯橡胶的合成Ⅱ玻璃化温度及力学性能.合成橡胶工业,1992,15(1):8~11
    [38] 张兴英,赵素合,金关泰.应用高分子分子设计合成节能丁苯橡胶Ⅰ共聚物的分子设计、合成及性能.弹性体,1994,4(4):15~19
    [39] 赵素合,张兴英,严荣华.胎面材料锡偶联型溶聚丁苯橡胶的研究.合成橡胶工 业,1995,18(4):212~215
    [4
    
    [40] 赵素合,张兴英,金关泰.锡偶联型溶聚丁苯胶性能评价.弹性体,1995,5(3):25~28
    [41] 王金良,陈伟洁,余丰年,彭勤纪.叔丁氧基钾/正丁基锂体系合成无规丁苯橡胶的结构与性能.高分子材料科学与工程,1997,13(6):44~49
    [42] 薛宏,汪晓红,王军,张春庆,穆瑞凤,刘青.丁二烯-苯乙烯溶液共聚体系的偶联反应.合成橡胶工业,1998,21(4):228~229
    [43] 薛宏,王军,付建军,张春庆,穆瑞凤,李伟,刘青.2G/n-BuLi体系丁二烯-苯乙烯溶液共聚体系的偶联反应.弹性体,1999,9(1):12~14
    [44] Xue Hong, Ji Fuchun, Tian Jianhua, Wang Jun, Zhang Chunqing, Mu Ruifeng, Li Wei, Liu Qing. Effects of different coupling agents on properties of SSBR. 合成橡胶工业, 1999,22(5):311
    [45] Xue Hong, Ji Fujian, Tian Jianhua, Wang Jun, Zhang Chunqing, Li Wei, Liu Qing. Effects of different polar modifiers on properties of SSBR. 合成橡胶工业,1999,22(5):310
    [46] 薛宏,王军,计福春,张春庆,李伟,刘青.溶液聚合二元丁二烯-苯乙烯共聚物的研究.弹性体,2000,10(1):1~3
    [47] 应圣康.溶聚丁苯和嵌段共聚物的技术开发—非极性溶剂中锂系阴离子聚合的基础理论研究.合成橡胶工业,1988,11(1):21~33
    [48] 范赤,应圣康,刘青.可溶性烷氧基钾/正丁基锂/四氢呋喃体系溶聚丁苯橡胶的合成.合成橡胶工业,1999,22(5):273~275
    [49] 范赤,应圣康,刘青.溶剂对低 1,2-结构无规溶聚丁苯橡胶合成的影响.合成橡胶工业,1999,22(6):342~345
    [50] Schuring D.J., Futamura S. Rolling Loss of Pneumatic Highway Tires in the Eighties. Rubber Chem. Tech., 1990, 63(3):315
    [51] Grosch K. A. The rolling resistance, wear and traction properties of tread compounds. Rubber Chem. Tech., 1996, 69(3):495
    [52] 王真,赵素合,张建明.溶聚丁苯橡胶研究进展.橡胶工业,1999,46(7):425~430
    [53] 昌焰,陈士朝,曹振纲.溶聚丁苯橡胶结构与性能的关系.弹性体,1994,4(4):35~39
    [54] 林平超.低滚动阻力轮胎的开发.弹性体,1994,4(4):40~45
    [55] 陈士朝.轮胎的性能要求与合成橡胶的发展.合成橡胶工业,1995,18(5):260~265
    [56] 刘其林,董长征.降低轮胎滚动阻力方法的初步探讨.轮胎工业,1999,19(3):131~136
    [57] 王登祥.轮胎滚动阻力文献述评.轮胎工业,1997,17(12):707~712
    [58] Nordsiek K.H. The "Integral Rubber" Concept—an Approach to an Ideal Tire Tread Rubber. Kautschuk Gummi Kunststoffe, 1985,38(3):178~185
    [59] Satio Y. New polymer Devleopment for low rolling resistance tyres. Kautschuk Gummi Kunststoffe, 1986,39(1):30~32
    [60] Bond R., Morton G.F., Krol L.H. A tailor-made polymer for tyre application. Polymer, 1984,25(1):132~140
    [61] 齐藤章.溶液重合SBR.日本协会言志,1998,71(6):315~323
    [62] Day G., Futamura S. A Comparison of styrene and Vinyl Butadiene in tire tread. Kautschuk Gummi Kunststoffe, 1987,40(1):39~43
    [63] 孙红涛.苯乙烯含量对丁苯橡胶热性能及动态力学性能的影响.橡胶工业,1989,36(6):324
    [64] Aggarwal S.L. Advances in elastomers and rubber elasticity. New York 1982/6
    [65] 原永威,唐迎春.溶聚SBR抗湿滑性能和滚动阻力的影响因素.合成橡胶工业,1993,16(1):21~23
    [66] 陈贤益,郭少华,唐颂超,应圣康.溶聚丁苯橡胶的序列结构及玻璃化温度与力学性能关系 的研究.合成橡胶工业,1990,13(1):37
    [6
    
    [67] Yoshimura N., Okuyama M., Yamagishi K. The present status of research on rolling resistance in Japan. The 151st meeting of rubber division, ACS, Anaheim, California, May 6~9, 1997,No.31
    [68] Kern W.J., Futamura S. Effect of tread polymer structure on tyre performance. Polymer, 1988,29:1801~1806
    [69] Takao H.,Imai A.低滚动阻力橡胶的聚合物设计.刘大华译.合成橡胶丁业,1987,专辑1:33
    [70] Tsutsumi F., Sakakibara M.,Oshima N. Structure and dynamic properties of solution SBR coupled with tin compounds. Rubber chem tech, 1990,63(1):8~21
    [71] Ayala J. A., Hess W. M., Kistler F.D., Joyce G. A. Carbon-black-elastomer interaction. Rubber Chem Tech, 1991,64(1): 19
    [72] Ayala J. A., Hess W. M., Joyce G. A., Kistler F.D. Carbon-black-elastomer interaction Ⅱ. Rubber Chem Tech, 1993,66(5):772
    [73] Sierra C.A.,Galan C.,GomezFatou J.M., Ruiz Santa Quiteria V. Dynamic-Mechanical properties of tin-coupled SBRs. Rubber Chem Tech, 1995,68(2):259~266
    [74] Herrmann C., Hellermann W.,Fuchs H., Nordsiek K.,Wolpers J., AB block copolymers based on butadiene,isoprene and styrene, process for their preparation and their use 1991 US 4,981,911
    [75] Hellermann W., Herrmann C., Fuchs H., Nordsiek K.,Wolpers J.,Portatius H. ABC block copolymers based on butadiene and isoprene, process for their preparation and use 1989 US 4,814,386
    [76] Wen-Liang Hsu,A.F. Halasa. Segmented elastomer 1991 US 5,070,148
    [77] Halasa A., Gross Bill, Bill Hsu, Chang C C. SIBR for high performance tyres Europ. Rubb. J. 1990,35(6):35~38
    [78] Nissim Calderon. 工业用一新合成.日本协会言志,1996,691(2):88~92
    [79] Morton M著,余鼎声 范治群泽.阴离子聚合的原理和实践.北京:烃加工出版社,1988
    [80] Hsiech H.L, Quirk R.P. Anionic Polymerization: Principles and Practical Applications. New York: Marcel Dekker Inc., 1996
    [81] 应圣康,郭少华 离子型聚合.北京:化学工业出版社:1988
    [82] 薛联宝,金关泰.阴离子聚合的理论和应用.北京:中国友谊出版公司,1990
    [83] Yong R.N., Quirk R. P., Fetters L.J. Anionic polymerization of non-polar monomers involving lithiun. Advances in polymer science 56. Springer-Verlag Berlin:1984:1~90
    [84] 席尔奈希特C.E.,斯凯斯特Ⅰ.唐示培.杨新源 译.聚合过程.北京:化学工业出版社,1984:278
    [85] Morton M著,余鼎声 范治群 译.阴离子聚合的原理和实践.北京:烃加工出版社,1988:171
    [86] Halasa A. F. Preparation and characterization of solution SIBR via anionic polymerization. Rubber Chem Tech. 1997, 70(3):295~308
    [87] Chang C.C., Halasa A.F., Miller J.W,, Hsu W.L. Modelling studies of the controlled anionic copolymerization of butadiene and styrene. Polymer International, 1994,33(2):151~159
    [88] 加尔莫诺夫.合成橡胶.北京:化学工业出版社,1988:222
    [89] 张华,张兴英,程珏,金关泰.理想的胎面材料---集成橡胶SIBR Ⅰ集成橡胶及其合成方法.弹性体,1997,7(1):34~37
    
    [90] 张华,张兴英,程珏,金关泰.理想的胎面材料---集成橡胶SIBR Ⅱ集成橡胶的结构和性能.弹性体,1997,7(4):44~47
    [91] 李杨,洪定一,顾明初.国外苯乙烯—异戊二烯—丁二烯橡胶的合成.合成橡胶工业,1998,21(1):7~15
    [92] 朱景芬.集成橡胶SIBR的研究现状及发展前景.兰化科技,1998,16(3):172~175
    [93] 严自立,王新,金关泰,张兴英.SIBR用于胎面胶的进展.石化技术,1998,5(4):237~241
    [94] 陈士朝.溶聚丁苯橡胶的技术进展.合成橡胶工业,1997~20(1):6~9
    [95] 鲍爱华,世界溶液丁苯橡胶的主要技术进展,石油化工动态,1996,4(3):18~24
    [96] Fumitoshi Suzuki.王真 译.低滚动阻力橡胶.轮胎工业,1998,18(8):475~478
    [97] 王作龄 译 分子末端改性丁苯橡胶.世界橡胶工业,1999,26(2):53~58
    [98] Nagata N., Kobatake T., Watanabe H., Ueda A., Yoshioka A. Effect of chemical modification of solution-polymerized rubber on dynamic mechanical properties in carbon-black-filled vulcanizates. Rubber Chem.Tech. 1987,60(4):838~855
    [99] Shuichi A., Toshio N. Rubber composition. US Patent 4,550,142(1985)
    [100] Hiroyuki Watanabe, Kohkichi Noguchi, Toshio Kase, Shuichi Akita. Process for making diene copolymer rubbers. US Patent 4,614,771 (1986)
    [101] Hiroyuki Watanabe, Kohkichi Noguchi, Toshio Kase, Shuichi Akita. Process for making diene polymer rubbers. US Patent 4,616,069(1986)
    [102] Lawson D.F. Aromatic nitrile-terminated diende polymer rubbers for tire resistance treads with reduced rolling resistance. US Patent 5,153,271(1992)
    [103] Toshihiro Tradaki.王名东 译.改性溶聚丁苯橡胶在轮胎中的应用.轮胎工业,1997,17(4):230~232
    [104] Hamada T. Silane-modified rubbers for tires PCT Int Appl. WO88/05448.(1988)
    [105] Hamada T., Fukuoka H., Komatsu H., Fujimaki T. Tires made of silica filled, silane modified rubber. US Patent 5,066,721 (1991)
    [106] Quirk R.P., Jang S.H. Recent advances in anionic synthesis of functionalized elastomers using functionalized alkylithium initiators. Rubber Chem Tech., 1996,69(3):444~461
    [107] 杜正银,李锦山.官能化有机锂引发剂技术进展.合成橡胶工业,1999,22(4):194~198
    [108] 张兴英,金关泰,赵素合.多官能有机碱金属引发剂及其合成方法.CN1148053A(1997)
    [109] Arest-Yakubovich A.A., Litvinenko G.I., Basova R.V. Synthesis of high vinyl styrenebutadiene random copolymers with a new soluble organosodium initiator. Polymer Prep. 1995,35(1):544~545
    [110] Tadaki T., Hattori I., Tsutsumi F. Polymerization of butadiene/styrene with novel tert-amino group initiator. Polymer prep., 1996,36(2):686~687
    [111] Lawson D.F., Brumbaugh D.R., Stayer M.L., Schreffler J.R., Antkowiak T.A., Saffles D., Morita K., Ozawa Y., Nakayama S. Anionic polymerization of dienes using homogeneous lithium amide(N-Li) initiators. Polymer prep. ,1996,36(2):728~729
    [112] Morita K., Ozawa Y., Nakayama S. Anionic polymerization of dienes using lithiunamide initator prepared by in-situ preparation. Polymer prep., 1996,36(2):700~701
    [113] Halasa A.F., Hsu W.L. New ether modidiers for anionic polymerization of isoprene. Polymer prep., 1996,36(2):676~677
    [114] Hsu W.L., Halasa A.F., Wetli T.T. Novel ethers for anionic polymerization of isoprene. Rubber Chem Tech, 1998,71 (1):62~69
    [115] 维奥拉G.T.,特罗姆比尼C.,玛西亚尼L.四氢吡喃甲醇烷基醚存在下的阴离子聚合.CN 1189508A(1999)
    
    [116] Hellermann W., Herrmann C., Nordsiek K., Wolpers J., Fuchs H. Unsaturated, elastomeric asymmetrically, coupled block copolymers, A dual batch Process for its manufacture and their use for production of tyre components. US Patent 5,061,758
    [117] Halasa A.E, Hsu W.L. Preparation and chacracterization of a perfectly random solution SBR using modified organolithium catalyst. Polymer prep., 1996,36(2):708~709
    [118] Satio A., Kitagawa Y., Nakafutami Y., Yamada H., Aoyagi T. New elastomer by selective hydrogenation of solution SBR. 1996,36(2):730~731
    [119] Kitagawa Y.王名东 译.轮胎用新型聚合物.1997,17(6):353~356
    [120] Halasa A.E, Hsu W.L. Elastomer with outstanding characteristics for use in making tire tread compounds. US Patent 5,202,387(1992)
    [121] Satio Y., Yabuta T., Takao H., Imai A., Tsuji M. Rubber composition of tire tread containing block coplymer coupled with dicarboxylic acid ester. US Patent 4,918,142(1990)
    [122] Halasa A.F, Bergh J., Fourgon F. Pneumatic tire with tread of styrene, isoprene, butadiene rubber. US Patent 5,047,483(1991)
    [123] Rodgers M., Mezynski S., Halasa A.F., Hsu W.L., Matrena B.A., Cox J. Process for preparing styrene-isoprene-butadiene rubber. US Patent 5,272,220(1993)
    [124] Morton M著,余鼎声 范治群 译.阴离子聚合的原理和实践.北京:烃加工出版社,1988:269
    [125] Hsiech H.L, Quirk R.P. Anionic Polymerization: Principles and Practical Applications. New York: Marcel Dekker Inc.,1996:333
    [126] Rempp P., Franta E., Herz J.E. Macromolecular Engineering by Anionic Methods, Advances in polymer Science 86, Heidelberg:Springer-Verlag,1988:145
    [127] Kennedy J.P., Jacob S. Cationic polymerization Astronomy. Synthesis of polymer stars by cationic means,Acc.Chem.Res.,1998,31:835
    [128] 张洪敏,侯元雪.活性聚合.北京:中国石化出版社,1998
    [129] 刘国军,王国昌.嵌段共聚物纳米结构材料.海外高分子科学的新进展,何天白,胡汉杰,北京:化学工业出版社,1997:39
    [130] 张兴英,赵素合,金关泰.星形聚合物的发展近况,合成橡胶工业,1999,22(2):116~119
    [131] Hadjichristidis N. Synthesis of milktoarm star(μ-star) polymers. J.Polym.Sci. Part A: Polymer Chem. 1999,37(3):857
    [132] Zelinski R.R, Hsiech H.L. Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites U.S.P.3281383
    [133] Chiders C .W. polystyrene compositions U.S.P.3637554
    [134] Zelinski R.E Hsiech H.L. Reduced cold flow in conjugated diene polymers with a polyvinyl aromatic compound. U.S.P.3280084
    [135] 王惠琼 洪良构 应圣康.二乙烯基苯为偶联剂SB嵌段星型共聚物的合成及偶联活性的研究.华东化工学院学报.1984,(3):315—323
    [136] Fetters L.J., Bi Lek. Star polymers and process for the preparation thereof.U.S.P.3985830
    [137] Milkovich R., Chiang M.T. Chemically jioned phase seperated thermoplasic graft copolymers, U.S.P.3786116(1974)
    [138] Milkovich R., Chiang M.T. Acrylate and methacrylate terminated polystyrene macromolecular monomers having a substantially uniform molecular weight distribution U.S.P.3842059(1975)
    [139] Milkovich R., Chiang M.T. polymerizable diblock macromolecular monomers having a substantially uniform molecular weight distribution and their preparation. U.S.P.3842146(1975)
    
    [140]Rempp P.F.,Franta E., Macromonomers: synthesis, characterazation and applications.,Advances in polymer Science 58, Heidelberg:Springer-Verlag,58:3
    [141]金关泰,高分子化学的理论和应用进展,中国石化出版社,1995:210
    [142]Asami R.,Takaki M.,Hanahata H.,Prepartion of (p-Vinylbenzyl)polystyrene Macromer. Macromolecules, 1983,16:628
    [143]Trepka W.J., Coupling lithium -Initiated polymer with a vinylhalometnylarene. U.S.P.4086406
    [144] Hall J.E.,Hergewrother W.L.,Oziomek J., (Halomethyl vinyl arene)-modified elastomers and compositions containing them having reduced hysteresis properties. U.S.P.5317057
    [145]Bronn W.R.,Silver S.F., Joseph E.G. Methods of making condensed phase polymers ,U.S.P.4857615
    [146] Bronn W.R., Silver S.F., Joseph E.G., Condensed phase polymers, U.S.P.4857618
    [147] Bronn W.R., Silver S.F., Joseph E.G., Methods of making condensed phase polymers U.S.P.4996266
    [148] Ma J.J.,Bronn W.R.,SilverS.F. Branched block copolymer prepared using branching agents with dual functionality. Polymer Prepr.,1994,35(2):572
    [149] Mancilli P.A.,Novel coupling agent for star-block coplymers U.S.P.4640958 (1987)
    [150] Al-Muallem H.A., Knauss D.M., Development of a living polymerization approach toword dendritic polymers. Polymer Prepr.,1997,38(l):68
    [151] Al-Muallem H.A., Knauss D.M., Convergent living anionic polymerization: new result on a novel method of dendritic macromolecule synthesis. Polymer Prepr., 1998,39(2):623

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700