用户名: 密码: 验证码:
微生物浸出电解锰废渣中锰离子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电解锰产业的飞速发展,进入到环境中的电解锰废渣越来越多,由于电解锰废渣为酸浸渣,本身的pH值较低,同时废渣中还含有大量的金属离子,这些金属离子会随着雨水的淋溶以及本身的渗漏作用而进入到地表水以及地下水中,进入到地表水和地下水中的金属离子会随着食物链进入人体,从而对人体的健康造成了很大的威胁和危害,同时,电解锰废渣的露天堆积会对堆积场周围的土壤造成严重的生态破坏,改变土壤的结构,从而使土壤不利于农作物的生长。但是废渣中含有的一定量的有价金属可以通过一定的方式和方法加以回收和利用,这些回收利用的方法包括物理浸出、化学浸出以及两种作用相结合的浸出,然而这些方法的浸出效率较低,成本较高,而且容易造成二次污染。生物浸出技术是指通过微生物从矿石上提取有用金属的方法,是利用微生物在生命活动中自身的氧化和还原特性,使矿石资源中的有用成分氧化或还原,以水溶液中离子态或沉淀态的形式与原物质分离的方法。相对于物理方法以及化学方法,具有明显得安全性、经济性以及环境友好性,因而成为了重要的浸出重金属元素的方法之一。然而现有的生物浸出技术仅仅对几种金属元素的浸出有突破性研究,而且利用的微生物种类相对较少。
     近期,在利用微生物浸出锰矿中的锰离子的研究方面取得了明显的进展,然而研究的重心主要集中在用氧化亚铁硫杆菌等常用的微生物浸出贫矿中的锰以及海洋中锰结核的锰。电解锰废渣,是在电解金属锰的过程中产生含有大量金属锰的酸性渣,由于废渣中的锰含量相对较高,因而可视为贫锰矿,对于废渣中锰离子的浸出研究尚停留在化学浸出阶段,少量的研究采用化学浸出与物理浸出相结合的方式进行。尽管电解锰废渣堆积场的环境条件非常的恶劣,但是废渣中还是含有一定的微生物,而这些微生物对于锰离子肯定有一定的耐受性,基于这一理论,本研究首次从电解锰废渣中分离筛选出高耐锰的菌株,并利用分离驯化出来的菌株浸出废渣中的锰。
     首先,本论文首次使用从电解锰废渣中分离纯化出来的两株菌株来进行微生物浸锰研究,与传统的化学浸出以及化学浸出和物理浸出相结合的浸出方式相比具有很高的创新性,并通过微生物的生长形态观察、显微形态观察以及分子生物学的方法对两种高耐锰菌分别进行了鉴定,确定了两种浸锰微生物的名称分别为Fusarium sp.和Serratia sp.。
     随后,用从废渣中分离得到的两种微生物Fusarium sp.和Serratia. sp.进行电解锰废渣的生物浸出实验,考察了在浸出过程中pH值、固液比、温度、摇床转速、微生物的接种量、亚铁离子的含量、汞离子的含量等因素分别对于Fusarium sp.和Serratia. sp.两种微生物浸出废渣中锰离子浸出效率的影响,并对两种菌的浸出效率做了对比,确定了Fusarium sp.和Serratia. sp.的最佳浸出条件:Serratia. sp.的最佳浸出条件为:37℃,固液比为10%,pH值6,2 mL的接种量,150 rpm的摇床转速,加入10 g/L的亚铁离子的情况下浸出74 h,,最高的浸出效率达到76.9%;Fusarium sp.的最佳浸出条件为:28℃,固液比为10%,pH值4,2 mL的接种量,150 rpm的摇床转速,加入10 g/L的亚铁离子的情况下浸出74 h,浸出效率达到82.5%。
     微生物浸出的机理有两种直接作用和间接作用,本研究通过分析浸出液的成分,以及浸出液中产生的有机酸的浓度随浸出时间的变化,pH值随浸出时间的变化,浸出前后电解锰废渣的表面形态变化以及浸出前后电解锰废渣中重金属离子的形态对比分析并结合最佳条件下的浸出效率随时间的变化,分析了Fusarium sp.在基础电解锰废渣中锰离子的浸出机理,研究的结果表明:Fusarium sp.能直接作用于电解锰废渣的表面,使废渣表面由紧蹙变得疏松,Fusarium sp.在浸出过程中产生的有机酸(主要为草酸、柠檬酸、苹果酸以及琥珀酸)能与电解锰废渣发生氧化还原、螯合、络合等化学反应,从而促进了废渣中高价的锰离子转化为二价的锰离子而进入到浸出液中。
     在对浸出机制进行了研究了后,对生物浸出废渣中锰的实验进行了扩大研究,并从经济效益的角度以及工艺应用的角度对浸出过程中的一些因素进行了改进,如碳源的改进,曝气装置以及搅拌装置的设定等,并监控了在扩大研究过程中的pH值和溶解氧的变化,研究结果表明:葡萄糖能很好的代替蔗糖作为浸出时微生物所需的碳源,浸出过程中曝气+搅拌不仅能很好的促进微生物的生长,而且还能很好的促进微生物与废渣的充分接触,从而促进微生物与废渣的直接与间接的作用,进而提高微生物从废渣中浸出锰离子的浸出效率,随后的经济效益损益分析的结果表明,采用生物浸出的方法,1吨锰矿的浸出成本节约大约520元,表明两种微生物浸出电解锰废渣中的锰离子不仅具有经济效益,同时还具有环境效益。
     本研究首次采用从电解锰废渣中分离得到的微生物菌株,并反过来利用这两种微生物对废渣进行生物浸出实验,研究表明这两种菌株对于废渣中的锰离子有很强的生物浸出能力,通过各种浸出条件的改进使其具有更高的工艺应用价值。本研究为微生物浸锰研究提供了新的微生物种类,同时为电解锰废渣的资源化利用提供了新的更经济更环保的途径,为电解锰废渣的资源化利用从实验室走向工业实际应用提供了理论基础与技术支持。
There are more and more manganese-electrolyzed slag discharged into the environment along with the fast growth of the manganese-electrolyzed industry. Because of the low pH value of the slag and with the rainfall leaching or its own leakage the plentiful of heavy metal ions contained in the slag will enter into the surface water and underground water. Even more the heavy metal ions which were entered into the surface water and the ground water will accumulate in the human body along with the food chain, and then threatens and influences the healthy of the human body. Meanwhile open-air piled up of those manganese-electrolyzed slag will destroy the ecotope environmental of the soil around the site, converted the structure of the soil, and there by influence the crops’growth. However there are also some worthy metal ions contained in the manganese- electrolyzed slag that can be recycled and reused by some certained methods. Those methods including chemical methods, physical methods and the combined chemical-physical methods, however those methods had a lot of weakness, for example: low leaching efficiency, high cost, could lead to secondary pollution and so on. Bioleaching technology is a method which can leach out the worthy metal elements from mineral ores by microorganisms’own oxidation and reduction during its vitalmovement, and let the worthy metal elements oxidized or reduced, then entered into the solution as ion form or precipitate form. Compared with chemical methods and physical methods, bioleaching method had some advantages, such as safety, economical efficiency and environmental friendly, and has become one of the most important leaching methods for leaching metal element from mineral ores. However the existing bioleaching methods just had breakthrough research development on several common metals, and used only some type of the microbiology.
     Recently there had some obvious developments on bioleaching of manganese ion from manganese minerals. But the main part was concentrated on bioleaching manganese from low grade manganese ores and manganese nodules in the oceans. Manganese-electrolyzed slag was an acidity slag which was abundance produced during the manganese-electrolyze industry. It can be treated as low grade manganese ores as it contained relatively high concentration of manganese element. The recently research of leach methods were remained on the chemical leaching, a few study used the combined chemical-physical methods. There still exist some microbe though the environment of the landfill were hostile, obviously those exist microbe had resistance on high concentration of manganese. Based on this suppose, we isolated some microbes from manganese-electrolyzed slag. Then we screened out two microbes which had high resistance on manganese from manganese-electrolyzed slag landfill, and then using those two microbes to conduct a study on bioleaching manganese from manganese- electrolyzed slag.
     Firstly, we firstly isolated and screened out two bacterial strains from manganese-electrolyzed slag to conduct a study on bioleaching of manganese from manganese-electrolyzed slag, and it had high innovation compared with the traditional chemical and combined chemical-physical leaching methods. Then we identified the two bacterial strains by the methods of growth morphology observing, micro morphology observing and molecular biology identification. After Phylogenetic Tree analysis we confirmed the name of those two bacterial strains were Fusarium sp. and Serratia sp. respectively.
     Following, we used those two strains Fusarium sp. and Serratia sp. conducted the bioleaching experiment, investigated some influence factors, such as pH value, solid-to-liquid ratio, temperature, rotation speed, inoculum concentrations, ferrous ion’s concentrations and mercury ion concentrations, on affecting the bioleaching efficiency and compared the bioleaching efficiency of those two strains. The result showed that the optimum bioleaching conditions for bioleaching of manganese from manganese-electrolyzed slag by Fusarium sp. and Serratia sp. were as follows: for Serratia sp.: the optimum condition was the bioleaching was conduct with 2 mL inoculum of strain, pH value 6, rotation speed 150 rpm, add 10 g/L ferrousion, 10% solid-to-liquid ratio at 37 oC for 74 h, the bioleaching efficiency can reach to 76.9%. for Fusarium sp.: the optimum condition was the bioleaching was conduct with 2 mL inoculum of strain, pH value 4, rotation speed 150 rpm, add 10 g/L ferrousion, 10% solid-to-liquid ratio at 28 oC for 74 h, the bioleaching efficiency can reach to 82.5%. Mercury ion had negative effects on bioleaching process.
     It seems there are two mechanisms for bioleaching, i.e. direct and indirect action. In this research, we also studied the bioleaching mechanism by following methods: component analysis of lixivium, the variation of concentrations of organic acids during bioleaching process, variation of pH value during bioleaching, surface morphology alteration of manganese-electrolyzed slag before and after bioleaching, and comparation of heavy metal ions’morphology before and after bioleaching. Then we discussed and analysis the mechanism of the bioleaching with Fusarium sp. by combined the results with the variation of bioleaching efficiency during the bioleaching process. The results showed that: Fusarium sp. can directly act on the surface of the slag, and it can produce some organic acids (mainly were oxalic acid, citric acid, malic acid, succinic acid) during the bioleaching process by its own metabolize, those organic acids can cause redox, chelation and complexation chemical reaction with manganese slag, which promoted the leaching out of manganese from the slag.
     After studied the mechanism of the bioleaching process, we expanded the experiment to Industrial applications, and improve some factors such as organic carbon source melioration, aerating device and stiring device setting and so on, during the bioleaching process we monitoring the variation of pH value. The result showed that: glucose can take the place of sucrose as the best organic carbon source; aerating and stiring can facilitate the bioleaching efficiency during the process because it can not only supply oxygen, but also can promote the contact of manganese slag and the fungi to improve the direct and indirect reaction. The economic loss-benefit analysis result showed that compared with the chemical leaching process, the bioleaching process can save about 520 RMB/t of manganese ores. This obviously showed that the bioleaching process had not only economic benefits, but also had environmental benefits.
     In this research, we firstly isolated and screened out two strains of microbe which had high resistance on manganese from manganese slag, then used those two strains conduct bioleaching experiment with the slag in turn. It’s the first time that using biological method to treat manganese-electrolyzed slag. The research indicates that those two strains had strong bioleaching ability on manganese leaching out from the slag. We improved the bioleaching conditions according the bioleaching mechanism to let those microbes had high industrial applying worthy. In this research, we not only provided a new microbe for bioleaching study, but also supported a more economic and more environmental protecting method for manganese-electrolyzed slag recycling. This study offers the ability to fully achieve of the application of manganese-electrolyzed slag reusing.
引文
[1]熊素玉,张在峰.我国电解金属锰工业存在的问题与对策.中国锰业, 2005, 23(1): 10-22
    [2]姜焕伟,谢辉,朱苓等.电解金属锰生产中的废水排放与区域水质污染.中国锰业, 2004, 22(1): 5-9
    [3]谭柱中. 2006年中国电解金属锰工业的发展和2007年运行态势及市场形势展望.中国锰业, 2007, 25(3): 3-6
    [4]中国铁合金在线. http://www.cnfeol.com/news/corporationnews/20090609/ 16370540183.aspx, 2009-06-09
    [5]姚俊,田宗平,吴文学等.电解锰废水及水底沉积物中重金属元素对流域污染的研究.吉首大学学报, 1999, 20(3): 30-3
    [6]王槐安.释论电解锰“废渣”资源构效之惠企.湘西科技, 2001, (1): 6-9
    [7]刘胜利.电解金属锰废渣的综合利用.中国锰业, 1998, 16(4): 34-36
    [8]李坦平,周学忠,曾利群等.电解锰渣的理化特征及其开发应用的研究.中国锰业, 2006, 24(2): 13-16
    [9]胡南,周军媚,刘运莲等.硫酸锰废渣的浸出毒性及无害化处理的研究.中国环境监测, 2007, 23(2): 49-52
    [10]喻旗,罗洁,涂文忠.电解金属锰生产的污染及其治理.中国锰业, 2006, 24(3): 42-45
    [11]沈华.湘西地区锰渣污染及防治措施.中国锰业, 2007, 25(2): 46-49
    [12]黄玉建.广西大新布康电解金属锰渣库建设技术经济分析雏议.中国锰业, 2007, 25(4): 28-30
    [13]臧小平.土壤锰毒与植物锰的毒害.土壤通报, 1999, 30(3): 139-141
    [14]葛晓霞,蔡固平,曾光明等.硫酸锰废渣无害化及资源化研究.中国锰业, 2004, 2(1): 48-52
    [15]徐风广.含锰废渣用于公路路基回填土的试验研究.中国锰业, 2001, 19(4): 1-3
    [16]高松林,冯云,宋利峰等.电解锰渣替代石膏作为水泥调凝剂的试验.水泥技术, 2001, (6): 75-76
    [17]冯云,陈延信,刘飞等.电解锰渣用于水泥缓凝剂的生产研究.现代化工, 2006, 26(2): 57-60
    [18]钱暑强,金卫华,刘铮.从土壤中去除Cu~(2+)的电修复过程.化工学报, 2002,53(3): 236-240
    [19]匡少平.铬渣的无害化处理与资源化利用.北京:化学工业出版社, 2006, 88-95
    [20]王槐安.电解金属锰废渣作为肥料的应用.中国, CN951 12500.1, 1996-07-31
    [21]兰家泉.电解金属锰生产“废渣”-富硒全价肥的开发利用研究.中国锰业, 2005, 23(4): 27-30
    [22]兰家泉,王槐安.电解金属锰生产废渣为农作物利用的可行性.中国锰业, 2006, 24(4): 23-25
    [23]兰家泉.玉米生产施用锰渣混配肥的肥效试验.中国锰业, 2006, 24(2): 43-44
    [24]田定科,罗来和.烤烟生产施用锰渣混配肥的肥效试验.中国锰业, 2007, 25(2): 25-26
    [25]谢显明.电解渣及其研制品的肥效特性分析.中国锰业, 1999, 17(4): 46-48
    [26]刘惠章,江集龙.电解锰渣替代石膏生产水泥的试验研究.水泥工程, 2007, (2): 78-81
    [27]冯云,刘飞,包先诚.电解锰渣部分代石膏作缓凝剂的可行性研究.水泥, 2006, (2): 22-24
    [28]关振英.电解锰生产废渣用作水泥生产缓凝剂的研究.中国锰业, 2000, 18(2): 36-37
    [29]刘胜利.电解金属锰废渣的综合利用.中国锰业, 1998, 16(4): 34-36
    [30]徐风广.含锰废渣用于公路路基回填土的试验研究.中国锰业, 2001, 19(4): 1-3
    [31]左宗利.电解锰废渣回收利用的试验研究.湖南冶金, 1996, (6): 9-11
    [32]欧阳玉祝,彭小伟,曹建兵等.助剂作用下超声浸取电解锰渣.化工环保, 2007, 27(3): 257-259
    [33] Li H, Zhang Z S. et a1. UhrMonically misted acidattraetion of manganese from Blag. Ultrasonics Sonochemistry, 2008, 15(4): 339-343
    [34]李志平,彭小伟,欧阳玉祝等.浸取环境对电解锰废渣中锰浸取的影响.吉首大学学报:自然科学版, 2006, 27(2): 101-l08
    [35]宁平,陈亚雄,孙佩石等.含锰废渣吸收低浓度S02生产MnS04·H20研究.环境科学, 1997, 18(6): 58-60
    [36] Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Review, 1997, 20: 591-604
    [37]高曙光,张卫民,严思静.低品位原生硫化铜矿微生物浸出工艺研究进展.湿法冶金, 2007, 27(2): 67-71
    [38] Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. Journal of Bacteriology, 1956, 72(5): 700 -704
    [39] Zimmerley S R, Wilson D G, Prater J D. Cyclic leaching process employing iron oxidizing bacteria. US Patent: 2829964, 1958-04-08
    [40] Olson G J, Brierley J A, Brierley C L. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257
    [41] Seidel H., Ondruschka J., Morgenstern P., et al. Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: a feasiblity study. Water Science and Technology, 1998, 37: 387-394
    [42] Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances, 2001, 19(2): 119-132
    [43] Benguella B., Benaissa H. Cadmium removal from aqueous solution by chitin: kinetic and equilibrium studies. Water Research, 2002, 36: 2463-2474
    [44] Chen S Y, Lin J G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Research, 2004, 38: 3205-3214
    [45] Liu Y G, Zhou M, Zeng G M, et al. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. Journal of Hazard Material, 2007, 141: 202-208
    [46] Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances, 2001, 19(2): 119-132
    [47] Visca P, Bianchi E, Polidoro M, et a1. A new solid medium for isolating and enumerating Thiobacillus ferrooxidans. Journal of General and Applied Microbiology, 1989, 35(2): 71-81
    [48] Dejong G A H, Hazeu W, Bos P, et a1. Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology, 1997, 143(2): 499-504
    [49] Sanhueza A, Eerier I J, Vargas T, et al. Attachment of Thiobacillus ferrooxidans on syn- thetic pyrite of varying structural and electronic properties. Hydrometallurgy, 1999, 51(1): 115-129
    [50] Rohwerder T, Gehrke T, Kinzler K, et a1. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248
    [51] Gericke M., Pinches A., Bioleaching of copper sulfide concentrate using extreme thermophilic bacteria. Minerals Engineering, 1999, 12 (8): 893-904
    [52] Gericke M., Pinches A., Van Rooyen J.V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. International Journal of Mineral Processing, 2001, 62: 243-255
    [53] Rawlings D.E. Heavy metal mining using microbes. Annual Reviews of Microbiology, 2002, 56, 65-91
    [54] Watling H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides-a review. Hydrometallurgy, 2006, 84: 81-108
    [55] jayaram K.M.V., Dwivedy K.K., Deshpande A.S. and Ramachar, T.M., Studies on the recovery of uranium from low-grade ores in India. In: Uranium Ore Processing, IAEA, Vienna (1976), pp. 155-170
    [56] Dwivedy K.K., Bhurat, M.C. Jayaram, K.M.V., Heap and bacterial leaching tests on sample of low grade uranium ore from Keruadungri, Singhbhum, Bihar, NML Technology Journal, 1972, 14: 72-75
    [57] Dave S.R., Natarajan K.A. Bioleaching of copper and zinc from oxidised ores by fungi. Hydrometallurgy, 1981, 7: 235-242
    [58] Chen S Y, Lin J G. Effect of substrate concentration on bioleaching of metal-contaminated sediment. Journal of Hazard Material, 2001, B82: 77-89
    [59] Chen S Y, Lin J G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Research 2004, 38: 3205-3214
    [60] Fang D., Zhou L.X. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor. Chemosphere, 2007, 69: 303-310
    [61] Franzmann P.D., Haddad C.M., Hawkes R.B. et al. Effects of temperature on the rates of iron and sulphur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Minerals Engineering, 2005, 18: 1304- 1314
    [62] Tan Y., Wang Z. X., Marshall K.C. Modeling pH effects on microbial growth: a statistical thermodynamic approach. Biotechnology and Bioengineering, 1998, 59: 724-731
    [63] Brierley J A, Brierley C L. Present and future commercial applications of biohydr- ometallurgy. Hydrometallurgy, 2001, 59(2-3): 233-239
    [64] Ehrlich, H.L. Past, present and future of biohydrometallurgy. Hydrometallurgy,2001, 59: 127-134
    [65]马荣骏.细菌浸矿及其对锰矿浸出的研究进展.中国锰业, 2008, 26(1): 2-6
    [66] H1T ribut ech1Direct versus indirect bioleaching. Hydrometallurgy, 2001, 59: 1771
    [67] Jack Barret, G. Lkaravaiko, Hughes M. N et a. Metal extract ion by bacterial oxidat ion of minerals. Mineral engineering, 1993, 26: 118-124
    [68] Hansford G S., Vagas T. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy, 2001, 59: 1351
    [69] Sand W, Gehrke T, Jozsa P G, et al. Biochemistry of bacterial leaching direct vs indirect bioleaching. Hydrometallurgy, 2001, 59: 1591
    [70] Rusin P., Sharu J. Arnolol R. Enhanced recovery of silver and other metals from refractory oxide ores through bioreduction. Mining Engineering, 1992, 45: 46-71
    [71] Hallberg K B, Linstrom E B. Characterization of thiobacillus caldus sp1nov: a moderately thermophilic ocidphile. Microbiology, 1994, 140: 34-51
    [72]孟运生,徐晓军,王吉坤.贫锰矿细菌浸出试验研究.湿法冶金, 2002, 4(21): 184-190
    [73]钟慧芳,蔡文六,李雅芹.细菌浸锰及其半工业试验.微生物学报, 1990, 30(3) : 228-234
    [74]李浩然,冯雅丽.微生物催化还原浸出氧化锰矿锰的研究.有色金属, 2001, 53(3): 5-10
    [75] Hiroshi N, Hayato S. Bacterical leaching of cobalt rich ferromanganese crusts. International Journal of Mineral Processing, 1995, 43: 255-265
    [76] Abha K., Natarajan K. A.. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Minerals Engineering, 2002, 15: 103-106
    [77] Kumari A., Natarajan K. A.. Electroleaching of poly-metallic ocean nodules to recover copper , nickel and cobalt. Minerals Engineering, 2001, 14: 877-886
    [78]李浩然,冯雅丽,欧阳藩等.微生物催化还原浸出深海锰结核中有价金属.北京科技大学学报, 2002, 24: 153-156
    [79] Elsherief A. E. A study of the electroleaching of manganese ore. Hydrometallurgy, 2000, 55: 311-326
    [80]郭学益,康思琦,张多默等.氯化铵溶液中还原浸出海洋锰结核.有色金属, 1996, 48: 50-53
    [81]张云,管永诗,田玉珍.大洋锰结核资源的研究现状.矿产保护与利用, 2000,(6): 39-42
    [82] Janaet R. K. Leaching of roast reduced polymetallic seanodules to optimize the recoveries of copper, nickel and cobalt. International Journal of Mineral Processing, 1990, 30: 127-141
    [83] Jana R. K, Pandeyet B. D. Ammonical leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy, 1999, 53: 45-56
    [84] Ehrlich H L, Ghiorse W C, Johnson G L. Distribution of microbes in manganese nodules from the Atlantic and Pacific Oceans. Develepment and Microbiology, 1972, (13): 57-65
    [85] Mehta K.D., Chitrangada D., Pandey B.D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy, 2010, 105(2): 89-95
    [86]李玉梅,王根林,于洪久等.呋喃丹降解菌的分离与特性研究.大豆科学, 2009, 28(4): 281-284
    [87]孙继华,申佩弘,武波.一株新的耐辐射菌WGR702的分离鉴定及耐辐射特性,微生物学通报, 2008, 35(8): 1214-1218
    [88] Kobayashi M. Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. Biochemical and Biophysical Research Communications, 1998, 253: 662-666
    [89] Alain D, Therese C,. PrortalJ M. et a1. Cyanide Degradation under Alkaline Conditions by a Strain ofFusarium solani Isolated from Contaminated Soils. Applied and Environmental Microbiology, 1997, 7: 2729-2734
    [90]李济吾,张珍.镰刀萄HJ01对苯酚的降解性能.化工环保, 2006, 26(5): 353-356
    [91]李济吾,李峰.降解酸性蓝B的镰刀茵(Fusarium sp.)HJ01的分离和降解特性研究,环境科学学报, 2005, 25(12): 1641-1646
    [92]朱凌,李济吾.镰刀茵HJOI对对氯苯酚的降解特性.化工环保, 2009, 29(5): 402-407
    [93] Santos V L,ValterRL.Biodcgndation of phenol by a filament our fungi isolated from industrial effluents dentification and degradationpotential. Process Biochemistry, 2004, 39: 1001-1006
    [94] Anthony V L. ILoger H D.Degradation of benzopyrene by mitosporie fungi and extracellular oxidative enzymes. International Biodeterioration and Biodegra- dation, 2004, 53: 65-70
    [95]宋昊,邱森,章俭等.高活性奈降解细菌Hydrogenophaga Palleronii LHJ38的研究.化工环保, 2006, 26(2): 87-90
    [96]蔡伟建,李峰,李济吾.镰刀菌(Fusarium sp.)HJ01对中性艳蓝GL的脱色降解特性研究.环境科学学报, 2007, 27(2): 213-219
    [97] Cai W J. Li J W. Zhang Z. The characteristics and mechanisms of phenol biodegradation by Fusarium sp. Journal of Hazard Material, 2007, 148(9): 38-42
    [98]陈辉,张剑波,刘小鹏.漆酶催化降解氯酚类有机污染物质.北京大学学报(自然科学版), 2005, 41(4): 605-611
    [99] Ghiorse W C , Hirsch P. Iron and manganese deposition by budding bacteria. Environ-mental Biogeochemistry and Geomicrobioloqy, 1978, (3): 897-909
    [100] Das N, Jana R.K. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. Journal Colloid and Interface Science, 2006, 293(2): 253-262
    [101] Salgado A L, Veloso A M O, Pereira D D, et al. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272. Journal of Power Sources, 2003, 115(2): 367-373
    [102] Abbruzzese C, Duarte M Y, Paponetti B, et al. Biological and chemical processing of low-grade manganese ores. Mineral Engineering, 1990, 3(3-4): 307-318
    [103] Abha K, Natarajan K. A. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Minerals Engineering, 2002, 15(2): 103-106
    [104] Buys H.M., Chan S.M., Chun U.H., et al. Acid removal of manganese ion adsorbedon ore surface during microbial manganese dioxide leaching. Proc. Aus. I.M.M, 1986, 291: 71-73
    [105] Han K.N., Fuerstenau D.W. Acid leaching of ocean manganese nodules at elevated temperature. International Journal of Mineral. Process, 1975, 2: 163- 171
    [106] Morin D, Lips A, Pinches T, et al. BioMin-Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy, 2006, 83(1-4): 69-76
    [107] Yang S, Xie J, Qiu G H. Research and application of bioleaching and biooxidation technologies in China. Minerals Engineering, 2002, 15(5): 361- 363
    [108] Ruan R M, Wen J K, Chen J H. Bacterial heap-leaching: practice In Zijinshan copper mine. Hydrometallurgy, 2006, 83(1-4): 77-82
    [109] Rawlings D E, Dew D, Du P C. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 2003, 21(1): 38-44
    [110] Clark M E, Batty J D, van Buuren C B, et a1. Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy, 2006, 83(1-4): 3-9
    [111] Zhao, L., Zhu, N.W., Wang, X.H. Comparison of bio-dissolution of spent Ni–Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere, 2008, 70: 974-981
    [112] Mulligan, C.N., Kamali, M. Bioleaching of copper and other metals from low grade oxidised ores by Aspergillus niger. Journal of Chemical Technology and Biotechnology, 1998, 78: 447-450
    [113] Mulligan, C.N., Kamali, M., Gibbs, B.F. Bioleaching of heavy metals from a lowgrade mining ore using Aspergillus niger. Journal of Hazard Material, 2004, 110: 77-84
    [114] Bosecker, K. Bioleaching: metal solubilization by microorganisms. FEMS Microbialogy Review, 1997, 20: 591-604
    [115] Rawlings D. E. Industrial practice and the biology of leachine of metals from ores. Journal of Industrial Microbialogy and Biotechnology, 1998, 20: 268-274
    [116] VegliòF. The optimization of manganese dioxide bioleaching media by fractional factorial experiments. Process Biochemistry. 1996, 31(8): 773-785
    [117] Anand S., Das S.C., Das R.P. Leaching of manganese nodules at elevated temperature and pressure in presence of oxygen. Hydrometallurgy, 1988, 21: 41- 55
    [118] Mukherjee A., Raichur A.M., Modak J.M. et al. Exploring process options to enhance metal dissolution in bioleaching of Indian Ocean nodules. Journal of Chemical Technology and Biotechnology, 2004, 79 (5): 512-517
    [119] Okibe N, Johnson D B. Biooxidation of pyrite by defined mixed culture of moderately thermophilic acidophiles in pH-controlled bioreactor:significance of microbial interaction. Biotechnology and Bioengineering, 2004, 87(5): 574- 583
    [120] Pracejus B, Vargab R A, Madgwick J C, et al. Effects of mineral composition on microbiological reductive leaching of manganese oxides. Chemical Geology, 1990, 88(1): 143-149
    [121] Myers, C R, Nealson. Microbial reduction of manganese oxides-Interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 1988, 52(11): 2727-2732
    [122] Li, H., Zhang, Z.H., Tang, S.P. et al. Ultrasonically assisted acid extraction of manganese from slag. Ultrasonic Sonochemistry, 2008, 15: 339-343
    [123] Ouyang, Y.Z., Peng, X.W., Cao, J.B., et al. Ultrasonic leaching of electrolytic manganese residue with additive. Environmental Protect Chemical Industry. 2007, 27: 257-259
    [124] Veglio, F. The optimization of manganese dioxide bioleachine media bv fractional factorial exneriments. Process Biochsmistry, 1996, 31: 773-785
    [125] Sampson M I, Phillips C V, Ball A S. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis. Minerals Engineering, 2000, 13(6): 643-656
    [126] Stone A T. Microbial metabolites and the reductive dissolution of manganese oxides: Oxalate and pyruvate. Geochim Cosmochim Acta, 1987, 51(4): 919-925
    [127] Acharya C, Kar R N, Sukla L B. Studies on reaction mechanism of bioleaching of manganese ore. Mineral Engineering, 2003, 16(10): 1027-1030
    [128] Gupta A., Ehrlich H L. Selective and non-selective bioleaching of manganese from a Manganese-containing silver ore. Bioresources Technology, 1989, 9(4): 287-304
    [129] Baoping X., Bing C., Ning D.n,et al. Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresource Technology, 2011, 102 (2): 1683-1687
    [130] VegliòF., Beolchini F., Gasbarro A.. Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. International Journal of Mineral Processing, 1997, 50(4): 255-273
    [131] Takami K., Yo-ich S., Atsuko M.. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria. Chemical Engineering Science, 2000, 55(17): 3429-3436
    [132] Xin B.P., Zhang D., Zhang X., et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfuroxidizing and iron-oxidizing bacteria. Bioresource Technology, 2009, 100: 6163-6169
    [133] Guebel D.V., Darias, N.V.T. Optimisation of citric acid production by A. niger through a metabolite flux balance model. Process Biotechnology, 2001, 4(1): 1- 11
    [134] Han K.N., Fuerstenau, D.W., Acid leaching of ocean floor manganese at elevated temperature. International Journal of Mineral. Process, 1975, 2: 163-171
    [135] Jana R.K., Pandey, B.D., Premchand. Ammoniacal leaching of roast reduced deep sea manganese nodules. Hydrometallurgy, 1999, 53: 45-56
    [136] Mehta K.D., Pandey B.D., Mankhand T.R.. Biochemical recovery of valuable metals from Indian Ocean Nodules in presence of pyrite and sulphur. Translate Indian Instustry Metal, 2002, 55(3): 71-80
    [137] Mehta K.D., Pandey B.D., Mankhand T.R.. Studies on kinetics of bio-dissolution of metals from Indian Ocean nodules. Mineral Engineering, 2003, 16: 523-527
    [138] Mukherjee A., Raichur A.M., Modak J.M. et al. Bioprocessing of Indian Ocean nodules using marine isolate-effect of organics. Mineral Engineering, 2003, 16: 651-657
    [139] Stone A.T.. Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochimica Cosmochimica Acta, 1987, 51: 919- 925
    [140] Tzeferis P. G. Leaching of a low-grade hematite laterite ore using fungi and biologically produced acid metabolites. Letter Application Microbialogy, 1994, 42: 267-283
    [141] Murray J. W., Balistieri L. S., Paul B. The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochimica Cosmochimica Acta, 1984, 48: 1237-1247
    [142] NareshKumar R., Nagendran R.. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans. Journal of Hazard Material, 2008, 156: 102-107
    [143] Das R.P., Anand S., Jena P.K.. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16: 335-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700