用户名: 密码: 验证码:
考虑流固耦合效应的风电塔结构动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展以及国家对环境保护的越来越重视,风力发电等可再生能源的利用设施正在不断的规划和建设中。相对发达国家,国内风力发电起步较晚,对复杂环境下风力发电结构安全性的研究也相对较少,尤其是在风电塔与空气之间流固耦合方面的研究更加薄弱。同时,国内目前还没有特定的针对风电塔结构的计算方法,而国内对高层抗风的规定已不再适合风力发电结构在暴风荷载作用下的设计要求,故分析风电塔结构在暴风作用下的动力特性具有重要的意义。
     本文主要的工作包括以下几个方面:
     (1)根据规范对风电塔结构在50年一遇的设计风荷载作用下的受力情况进行了计算,分析了塔筒不同高度的风速、风压、弯矩、剪力及其各部位的应力,并将设计风荷载作用下塔筒各部位的应力与其许用应力进行比较,分析了风电塔结构的安全性能。
     (2)利用有限元方法进行风电塔结构的风洞模拟计算,考虑风电塔结构与空气之间的流固耦合特性,研究了结构在匀速风作用下的受力特点,并与规范方法进行比较分析,结果表明,该方法计算结果与规范方法的计算结果比较吻合。
     (3)根据风电塔所在场地的基本风压,推导出10年和20年一遇的设计基准风速,在Davenport风速谱的理论基础上利用Matlab软件分析了10年、20年及50年一遇的脉动风风速时程数据,考虑结构与空气之间的流固耦合特性,分析了结构在三种脉动风作用下的动力特性,比较了不同风速对风电塔结构动力特性的影响及相同风速的脉动风和匀速风对结构影响的差别。
     (4)根据规范方法的计算结果得到了结构不同部位风荷载分布情况,分析了结构的屈曲特性,包括结构的特征值屈曲、几何非线性屈曲及同时考虑几何大变形和材料非线性的屈曲特性,并比较了不同角度情况下风电塔结构的屈曲特性,进而对风电塔结构风荷载作用下的抗倒塌性能进行了分析。
     (5)通过现场监测试验对风电塔工程实际结构的应变进行监测,并与相同风速作用下的模拟结果进行比较,证实了本文研究方法的可靠性。
With the rapid development of the economy and the growing importance ofthe environment, the renewable energy facilities such as wind power generationfacilities are constantly being planned and constructed. Compared with developedcountries, the wind power in China starts late, and there is little research about thewind power’s support structure which is in the complicated surroundingconditions, especially the study on the fluid-structure interaction of the windpower tower structure and the air. What’s more, as the code for the design ofhigh-rise civil buildings is not suitable for wind power tower structure, there areno specific calculation methods for it. So it is significantly important to analyzethe dynamic characteristics of wind power tower structure under the storm wind.
     In this paper, the main work includes the following aspects:
     (1) According to various building codes, this paper analyses the stress ofwind power tower structure under once-in-50-years wind loads, calculates thewind speed, wind pressure, bending moment, shearing force and the stress of allparts of the tower, then compares the stress to the allowable stress of the tower inorder to research the safety performance of the tower.
     (2) Considering liquid-solid coupling characteristics of wind power towerstructure, The Wind Tunnel Modeling of the Wind power tower structure issimulated by using the finite element method, the structure’s Mechanicalcharacteristics under the uniform wind are attained, and compares with the resultswhich based on present codes, it could be obtained that these two kinds of resultsare consistent.
     (3) In accordance with the basic wind pressure of the place where the windpower tower locates, the once-in-10-years and once-in-20-years design referencewind speed are inferred. On the basis of Davenport Wind Velocity Spectrum, thewind speed time series which happens once every10years,20years and50yearsare got by using MATLAB. The structural dynamic characteristics under the threeFluctuating Winds and the different influences of the three Fluctuating Winds onthe tower are discussed. The different results about the Fluctuating Wind and theUniform wind are also compared.
     (4) According to the results based on present codes, the wind loads whichdistribution on the tower are worked out. There is some research about the buckling characteristics of the wind tower, including the characteristic valuebuckling analysis, large deformation buckling analysis and nonlinear materialbuckling analysis. By using the results above, the ability of anti-collapse of thetower could be studied.
     (5) By monitoring the strain of the wind energy tower in the wind loads, andcompared it with the results obtained by using the simulated method, theconclusion that the computing methods used in this paper is reliable can be got.
引文
[1]刘宝.双馈风力发电机参数辨识[D].北京:北京交通大学,2010:1-3.
    [2] World Wind Energy Association[R].World Wind Energy Report2009,2010:1-13.
    [3]孙浩然.风力发电技术综述[J].江苏电机工程,2010,29(4):80-84.
    [4] Luong Van Binha, Takeshi Ishiharab, Pham Van Phuca, Yozo Fujinoa.A peakfactor for non-Gaussian response analysis of wind turbine tower[J].Journalof Wind Engineering,2008(16):25-40.
    [5] N.Bazeos, G.D.Hatzigeorgiou.Static, seismic and stability analyses of aprototype wind turbine steel tower[J].Engineering Structures,2002(24):1015-1025.
    [6]陈亚峰.50米升降塔的静力分析[J].电子机械工程,2008,24(3):31-33.
    [7] Baumgart A. A mathematical model for wind turbine blades[J]. SoundVibration2002,25(11):1-12.
    [8] zhang Linlin, Li Jie, Peng Yongbo. Dynamic response and reliability analysisof tall buildings subject to wind loading[J]. Journal of Wind Engineeringand Industrial Aerdynamics,2008(96):25-40.
    [9]李春祥,谈雅雅.基于ARMA模型模拟高架桥的脉动风速时程[J].振动与冲击,2009,28(6):46-52.
    [10] Andrew R.Henderson, Po Wen Cheng. Wave Loads on Sleder OffshoreStructures Comparison of Theory&Measuremen[J].Germany,2002(10):31-36.
    [11] Jan Wienke, Uwe Sparboom, Hocine Oumeraci. Theoretical Formulae forWave Slamming Loads on Slender Circular Cylinders and Appliocation forSupport Structures of Wind Turbines[J]. Germany,2005(6):63-68.
    [12]王湘明,陈亮,邓英,王婀娜.海上风力发电机组塔架海波载荷的分析[J].沈阳工业大学学报,2008(1):42-45.
    [13]武岳.考虑流固耦合作用的索膜结构风致动力响应研究[D].哈尔滨:哈尔滨工业大学,2003.
    [14]辛庆胜,周岱.大跨斜拉网格结构耦合风振响应分析计算的研究现状与发展前景[J].振动与冲击,2005(1):24-27.
    [15]宋晶晶.平行四边形截面高层建筑弯扭风致响应研究[D].上海:同济大学航空航天与动力学院,2009.
    [16]项海帆.结构风工程研究的现状和展望[J].振动工程,1997,10(3):258-263.
    [17] Robert Harrison, Erich Hau, Herman Snel. Large wind turbines: design andeconomics[M]. Chichester, West Sussex: Wiley,2000.
    [18]陆萍,秦惠芳,栾芝云.基于有限元法的风力机塔架结构动态分析[J].机械工程学报,2002,38(9):127-130.
    [19]周勃,费朝阳,陈长征.风力机塔架的振动特性研究[J].振动工程学报,2004(17):903-905.
    [20]郭威,徐玉秀.离网型风力发电机塔架振动问题的模态分析[J].可再生能源,2006(5):65-67.
    [21] Lymon C.Reese1, Shin-Tower Wang, Design of Foundations for a WindTurbine Employing Modern Principles[C]. Research to Practice inGeotechnical Engineering Congress2008,2008,351-365.
    [22] Pekka Maunu. Design of Wind Turbine Foundation Slabs [D]. AlulaeUniversity of technology,2008.
    [23]贺广零,周勇,李杰.风力发电高塔系统地震动力响应分析[J].工程力学,2009,26(7):72-77.
    [24] Verruijt A. Elastic storage of aquifers[A]. In Flow through Porous Media[C].New York: Tiho Wiley,1969:331-376.
    [25] Stathopoulos T. Computational wind engineering: past achievements andfuture challenges[J]. Journal of wind Engineering and IndustrialAerodynamics,1997,67(68):509-532.
    [26] Murakami S. Overview of turbulence models applied in CWE-1997[J].Journal of Wind Engineering and ndustrial Aerodynamics,1998(1):1-24.
    [27] Bogusz Bienkiewicz. New tools in wind engineering[J]. Journal of WindEngineering and Industrial Aerodynamics,1996(65):279-300.
    [28]沈世钊,武岳.大跨度张拉结构风致动力响应进展明[J].同济大学学报,2002,30(5):533-538.
    [29]吴筑海,周岱.大跨结构风模拟及其小波分析[J].振动与冲击,2004,23(4):34-39.
    [30]邓洪洲,朱松晔.大跨越输电塔线体系风振控制研究[J].建筑结构学报,2003,24(4):60-65.
    [31]周云,汪大洋.超高层结构三种风振控制方法的对比研究[J].振动与冲击,2009,28(2):16-23.
    [32]苏波,钱若军.流固耦合方程的建立及耦合数据传递[J].工业建筑,2008(增刊):624-630.
    [33] Ahsan Kareem. Numerical simulation of wind effects: a probabilisticpcrspective[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008(96):1472-1497.
    [34]丁红岩,张超.固耦合渗流模型在简型基础沉贯中应用[J].天津大学学报,2007,40(4):387-391.
    [35]李爱群,瞿伟廉.南京电视塔风振的混合振动控制研究[J].建筑结构学报,1996,17(3):9-16.
    [36]王珏.砂土中大型单柱式风能结构物在循环力作用下的研究[J].太原理工大学报,2006,37(6):637-641.
    [37] J.Gordon Leishman. Challenges in modeling the unsteady aerodynamics ofwind turbines[J]. Wind Energy,2002(5):85-132.
    [38] Lida,M, Arakwawa,C., Matsumiya,H. Three Dimensional Navier-StokesFlow Field Computations Through a Horizontal Axis Wind Turbine Blade.20th ASME Wind Energy Symposiumand the39th AIAA AerospaceSciences Meeting, Reno, NV, Jan.18-11,2001.
    [39] Nilay Sezer-Uzol, Lyle N. Long.3-D Time-Accurate CFD Simulations ofWind Turbine Rotor Flow Fields[J]. In44th AIAA Aerospace SciencesMeeting and Exhibit Proceedings, Reno, NV, USA:9-12Jan.2006:1-23.
    [40] Stefan Ivanell, Jens N.Sorensen and Dan Henningson. NumericalComputations Of Wind Turbine Wakes[M]. Wind Energy: Springer BerlinHeidelberg,2007.
    [41] Sorensen N.N, Michelsen J. A Drag Prediction for Blades at High Angle ofAttack Using CFD[J]. Sol. Energ,2004(126):1011-1016.
    [42]李黎,曹化锦.防屈曲耗能支撑对大跨越输电塔风振控制研究[J].水电能源科学,2010,28(6):121-149.
    [43] Robertson A. The strength of tubular struts [R]. ARC Report andMemorandum, No.1185-1929.
    [44] Tsien H S. The buckling of thin cylindrical shells under axial compression[J]. Journal of the Aeronautical Sciences,1941,8(8):303-312.
    [45] Koiter W T. On the Stability of Elastic Equilibrium [D]. Delft University,1945(AFFDL-TR-70-25, Wright Patterson Base,1970).
    [46] Donnel L H, Wan C C. Effect of imperfections on buckling of thin cylindersand columns under axial compression [J]. Journal of Applied Mechanics,ASME,1950,17(1):73-83.
    [47] Budiansky B, Hutchinson J W. A survey of some buckling problems [J].AIAA Journal,1966,4(9):1505-1010.
    [48]陈骥.冷弯薄壁型钢构件的直接强度设计法[J].建筑钢结构进展,2003,5(4):5-13.
    [49]李君,张耀春.轴向受力钢构件的弹塑性稳定及滞回性能分析的有限元方法[J].哈尔滨建筑大学学报,1999,32(3):34-38.
    [50] Edberg W, Mertz D, Gillespis Jr J. Rehabilitation of Steel Beams UsingComposite Materials. Proceedings of the Materials Engineering Conference,Materials for the New Millenium. New York, ASCE,1996:502-508.
    [51]彭福明,郝际平,岳清瑞等.FRP加固钢结构轴心受压构件的弹性稳定分析[J].钢结构,2005,3(20):18-21.
    [52]吕烈武,沈世钊,沈祖炎.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [53]汪震.钢结构压弯构件稳定承载力分析的实用方法[D].武汉:武汉理工大学,2008.
    [54] Rabinovitch, O., Frostig, Y. Closed-form High-order AnalysiS of RC Beamsstrengthened with FRP Strips[J]. Journal of Composites for ConstructionASCE,2000,4(2):65-74.
    [55] Shen, H.S., Teng J.G. and Yang. J. Interfacial stresses in beams and slabsbonded with a thin Plate[J]. Journal of Engineering Mechanics ASCE,2001,127(4):399-406.
    [56] D.Dubina, Vungureallu. Imperfections on numerical simulation of instabilityBehavior of cold-fomed steel members[J]. thin-walled structure,2002(40):239-262.
    [57] W. Schafer, M, Asce LocaI. distonional and Euler bucking of thin-walledcolumns[J]. Journal of structure Engineering,2002(3):289-299.
    [58] Schardt R. Verallge meinerte technische biege theories[M]. Berlin:springerveriag,1989[in GeHnan](5):8-1l.
    [59] F. Papp. An Automatic Procedure for computer Aided Design of Steelbeam-column structure [J]. Construct steel Res,1998,46(1-3):380-381.
    [60] M. A. Bradfbrd. Distortional bucking of elastically restrained cantilevers[J].Journal of Construction Steel Research,1998(47):3-18.
    [61]方达宪.流体力学[M].南京:东南大学出版社,2011.
    [62]杨春,高红斌.流体力学泵与风机[M].北京:中国水利水电出版社,2011.
    [63]岳戈,陈权.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008.
    [64]岳戈,梁宇白.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010.
    [65] Gui-Qiang Chen, Ta-Tsien Li, Chun Liu. Nonlinear conservation laws, fluidsystems and related topics [M]. Beijing: Higher Education Press, NewJersey, London: World Scientific. C,2009.
    [66]栾秀春.流体控制工程[M].北京:国防工业出版社,2010.
    [67] Joris Degroote, Klaus-Jurgen Bathe. Performance of a new partitionedprocedure versus a monolithic procedure in fluid-structure interaction.Computers and Structures,2009(87):793-801.
    [68]张师帅.计算流体动力学及其应用:CFD软件的原理与应用[M].武汉:华中科技大学出版社,2011.
    [69]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [70]张嘉钟,郑俊.碰撞-反射模型在SPH固壁条件中的应用[J].应用基础与工程科学报,2010,18(3):517-522.
    [71] Wang Limin, Ge Wei. A new wall boundary condition in particle methods[J].Computer Phusics Communicaion,2006,174:386-390.
    [72]李伟.旋转叶片的模态及其响应分析[D].哈尔滨:哈尔滨工业大学,2008.
    [73]王建军,卿立伟.旋转叶片频率转向与振型转换特性[J].航空动力学,2007,22(1):8-12.
    [74]张文明,孟光.高速定转子均质机转子叶片振动模态分析[J].振动与冲击,2005,24(4):19-22.
    [75]秦月霞,王猛.切削颤振检测技术综述[J].机床与液压,2011,2(39):137-139.
    [76]王秀喜,吴恒安.计算力学基础[M].合肥:中国科学技术大学出版社,2009.
    [77]李曙光,谢桂兰.CAE仿真分析中计算精度与网格划分关系的探讨[J].设计与研究,2003(6):35-38.
    [78]何显富.风力机设计、制造与运行[M].北京:化学工业出版社,2009(10).
    [79]陈昭怡,吴桂英.材料力学[M].北京:中国建材工业出版社,2005(2).
    [80]杨庆山.膜结构的风致动力效应初探[J].空间结构,2002,8(4):3-10.
    [81]杜平安.有限元法—原理、建模及应用[M].北京:国防工出版社,2004.8.
    [82]胡卫兵,何建.高层建筑与高耸结构抗风计算及风振控制[M].北京:中国建材工业出版社,2003.
    [83]杨鑫炎.高耸结构抖振时域分析[D].成都:西南交通大学,2005.
    [84]贾照远.多棱插接式钢管塔风振反应分析及振动控制[D].南京:南京工业大学,2005.
    [85] Liang J, Chaudhuri S R, Shinozuka M. Simulation of non-stationarystochastic processes by spectral representation [J]. Journal of EngineeringMechanics, ASCE,2007,133(6):616-627.
    [86] Xu Y L, Chen J. Characterizing nonstationary wind speed usingempiricalmode decomposition [J]. J. Struct. Engrg. ASCE,2004,130(6):912-920.
    [87]王世村.高耸结构风振响应和风振疲劳研究[D].杭州:浙江大学,2005.
    [88]刘延炜.高耸钢塔结构的体系与抗风及抗震分析[D].南京:东南大学,2004.
    [89]刘学利,王肇民.高耸结构空间相关风场的模拟研究[J].四川建筑,2000,20(4):45-47.
    [90]骆宁安,杨文武,韩大建.大跨度桥梁脉动风场的随机模拟[J].华南理工大学学报(自然科学版),2002,30(3):57-60.
    [91]薛风先,胡仁喜.ANSYS12.0机械与结构有限元分析从入门到精通
    [M].北京:机械工业出版社,2010.
    [92]袁昕,姜彤著.实用ANSYS在桥梁建设装备结构分析中的应用[M].郑州:黄河水利出版社,2009(9).
    [93]胡国良,任继文.ANSYS11.0有限元分析入门与提高[M].北京:国防工业出版社,2009(1).
    [94]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [95]朱云萍.缀板式格构柱轴压整体稳定性能研究[D].成都:西南交通大学,2006-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700