用户名: 密码: 验证码:
稠密气固两相流动的颗粒相二阶矩模型及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固两相流动现象广泛存在于化工、电力、冶金、食品、制药等领域中,深入认识和掌握气固两相流动的内在机理和规律有着重要的实际意义。随着计算机技术和计算方法的不断发展,数值模拟已成为气固两相流动研究的主要方法之一。但是由于气固系统本身的复杂性,气固两相流动模拟的理论模型仍然有许多值得改进和提高之处。
     目前常用的颗粒动理学模型中,仅引入了颗粒温度来描述颗粒速度脉动的强弱,忽略了颗粒速度脉动的各向异性;然而现有的研究表明颗粒速度脉动呈现出较强的各向异性,因此,有必要发展颗粒相二阶矩模型并应用于气固两相流动模拟。
     基于颗粒动理学基本原理,本文推导了表征颗粒速度脉动各向异性的二阶矩输运方程,对其中颗粒相本构模型采用动理学方法封闭,对颗粒脉动速度三阶矩分别采用初等输运理论和线性理论进行封闭,建立了适用于稠密气固两相流动模拟的颗粒相二阶矩模型。采用颗粒-壁面碰撞的法向和切向弹性恢复系数,应用动理学方法,推导了颗粒相速度和颗粒脉动速度二阶矩的壁面边界条件。
     应用颗粒相二阶矩模型模拟了鼓泡床内的气固两相流动特性。对“布风板”鼓泡床的模拟得到了床内气泡的尾涡型和临近型聚并以及气泡的尾涡截断型和流场拉伸型分裂。模拟得到的颗粒相速度、颗粒温度和颗粒脉动速度关联矩Mxy与实验结果相吻合。通过降低颗粒间碰撞弹性恢复系数可以改变布风板鼓泡床内的气泡运动特征,从而使颗粒速度脉动的各向异性增强。对中心射流鼓泡床,通过采用颗粒动理学模型和颗粒相二阶矩模型模拟对比,发现两者模拟得到的宏观流动行为基本相似,但是射流气泡的大小、颗粒速度脉动的强弱以及速度脉动的各向异性特征具有明显差异,采用颗粒相二阶矩模型能够更好地反映中心射流鼓泡床内颗粒脉动的各向异性行为。
     应用颗粒相二阶矩模型模拟了提升管内气固两相流动特性。通过二维提升管内的全流场流动模拟,得到时均颗粒浓度和质量流率的径向分布与实验结果吻合较好,时均的轴向气体压降也与实验结果相一致。对一维提升管内“环-核”型流动的模拟显示,采用不同三阶矩封闭模型的颗粒相二阶矩模型都能够得到颗粒速度脉动的各向异性特征。通过对一维提升管的模拟比较,研究了三阶矩封闭模型中的模型参数以及气固相间曳力、壁面参数和颗粒物性参数对气固两相流动的影响。气固相间作用的耗散项以及颗粒物性参数对气固流动结构和颗粒速度脉动各向异性的影响较大,考虑相间作用的耗散项、减小颗粒直径或降低颗粒-颗粒碰撞弹性恢复系数都会加强颗粒速度脉动的各向异性;颗粒-壁面碰撞的法向弹性恢复系数对流动结构影响较小,而切向弹性恢复系数的影响则较大。
     考虑了颗粒速度脉动对气固相间曳力模型的影响,并基于颗粒相二阶矩模型模拟了提升管内气固两相流动。结果表明颗粒的速度脉动增加了气固相间曳力系数的非线性特征,颗粒温度越高,颗粒脉动速度对相间曳力系数的贡献也越大。通过模拟比较,发现考虑颗粒脉动速度对相间曳力系数的影响后,颗粒温度明显降低。提高气体操作速度,颗粒速度脉动对相间曳力系数的影响变得更明显。
Gas-solid two-phase flows are widespread in chemical industry, electric power, metallurgy, food, pharmarcy and other fields. In-depth understand and grasp of the mechanism of gas-solid flows has important significance. With the development of computational fluid dynamics (CFD), numerical simulation has become one of the most promising tools for researching gas-solid flows. However, due to the complexity of gas-solid system, theoretical models for numerical simulation of gas-solid flows are still needed in great improvement and enchancement.
     Currently, the commonly used model is based on the kinetic theory of granular flow, in which only the granular temperature is introduced to describe the strength of particle velocity fluctuating. In fact, the fluctuation of particle velocity shows a strong anisotropy from experiments. Therefore, it’s necessary to develop a second-order moment model of particles which could take the anisotropic characteristic of particle velocity fluctuating into account.
     With the basic principles of the kinetic theory, the transport equation for the second-order moment of particle fluctuating velocity is present. The solid phase constitutive model is closed with the kinetic approach, and the third-order moment of particle fluctuating velocity is approximated with the elementary transport theory and linear theory respectively. Then the second-order moment model is established for the simulation of dense gas-solid flows. By using the normal and tangiential restitution coefficients of particle-wall collision, the wall boundary condtions for solid phase velocity and second-order moment are also derived with the kinetic approach.
     The second-order moment model is applied to simulate the hydrodynamics of gas-solid two-phase flows in bubbling fluidized beds. For the case of freely bubbling fluidized bed with an air distributor, the model predicts the trailing votex type and neighboring type bubble coalescence and trailing votex cut type and flow field stretched type bubble break-up. The time-averaged solid phase velocity and second-order moments of particle velocity are obtained and agree with experimental results. By reducing the restitution coefficient of particle- particle collision, the bubble dynamics in the freely fluidized bed varies a lot, so that the anisotropy of particle velocity fluctuating is strengthed. For the case of the bubbling fluidized bed with a central jet, comparison between anisotripic model and isotropic model shows that both models give similar macroscopic flow structure, but different size of bubble jets, different strength and anisotropic characteristic of particle velocity fluctuating. The anisotropic behaviors of the particle velocity fluctuating is better reflected by using the second-order moment model.
     The second-order moment model is used to simulate the hydrodynamics of gas-solid two-phase flows in risers. The time-averaged radial distribution of particle concentration and solid mass flux, axial gas pressure drop in a two-dimensional riser are obtained and agree with experimental results. The simulation of one-dimensional“core-annulus”flow in the riser shows that anisotropic models with different third-order moment closures are able to predict the anisotropic fluctuation of particle velocity. Then the parameters in the third-order moment closures, the interphase interactions, the wall parameters as well as the physical parameters of particles are studied using the anisotropic model. It is found that the drag items in the third-order moment closures effect the gas-solid flow structures, but hardly effect the anistropic characterisc of particle velocity fluctuating. The dissipation item of interphase interaction, the physical parmeters of particles effect both the flow strctures and the anisotropic behaviors of particle velocity fluctuating. Considering the dissipation term of interphase interaction, or reducing the particle diameter or decreasing the restitution coefficient of particle-particle collision would increase the anisotropic of particle velocity fluctuating. Simulation results also show that the flow structure is less affeced by the normal restitution coefficient of particle-wall collision, but is greatly affected by the tangential one.
     The effect of particle fluctuating velocity on interphase drag model is then studied by incorporating it into the second-order moment model. Simulation of the gas-solid flow in a riser shows that the particle fluctuating velocity increases the non-linear characteristics of interphase interaction, and the higher of the granular temperature, the greater impact of the particle fluctuating velocity. It’s found that with the contribution of the particle fluctuating velocity, the granular temperature decreases significantly. By increasing the operating gas velocity, the impact of particle fluctuating velocity on interphase interaction becomes more obvious.
引文
1金涌,祝京旭,汪展文,俞芷青.流态化工程原理.清华大学出版社. 2001: 17-263
    2张政,谢灼利.流体-固体两相流的数值模拟.化工学报. 2001, 51(1): 1-12
    3 S. L. Soo. Fluid Dynamics of Multiphase system. Lexingtin, Massachusetics. 1967: 1-15
    4 C. T. Crowe. Review - Numerical Models for Dilute Gas-Particle Flows. Journal of Fluid Engineering. 1982, 104: 297-303
    5 E. Loth. Numerical Approaches for Motion of Dispersed Particles, Droplets and Bubbles. Progress in Energy and Combustion Science. 2000, 26: 161-223
    6岑可法,樊建人.工程气固多相流的理论及计算.浙江大学出版社. 1990: 422-425
    7 J. M. Matsen. Mechanisms of Choking and Entrainment. Powder Technology. 1982, 32: 21-33
    8 S. Elghobashi. Particle-laden Turbulent Flow: Direct Simulation and Closure Models. Applied Scientific Research. 1991, 48: 301-314
    9 S. Elghobashi. On Predicting Particle-Laden Turbulent Flows. Applied Scientific Research. 1994, 52: 309-329
    10 H. T. Bi, J. R. Grace. Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport. International Journal of Multiphase Flow. 1995, 21(6): 1229-1236
    11 J. H. Li. Compromise and resolution– Exploring the Multi-Scale Nature of Gas-Solid Fluidization. Powder Technology. 2000, 111: 50-59
    12 S. Sundaresan. Modeling the Hydrodynamics of Multiphase Flow Reactors: Current Status and Challenges. AIChE Journal. 2000, 46(6): 1102-1105
    13仇轶,由长福,祁海鹰,徐旭常.多相流动的直接数值模拟进展.力学进展. 2003, 33(4): 507-517
    14 C. F. You, X. Wang, H. Y. Qi, R. C. Yang, D. L. Xu. Direct Numerical Simulation of Particle Collisions in Two-phase Flows with A Meshless Method. Chemical Engineering Science. 2008, 63: 3474-3484
    15 W. Ge, J. H. Li. Macro-scale Phenomena Reproduced in MicroscopicSystems– Pseudo-particle Modeling of Fluidization. Chemical Engineering Science. 2003, 58: 1565-1585
    16 R. Beetstra, M. A. van der Hoef, J. A. M. Kuipers. A Lattice-Boltzmann Simulation Study the Drag Coefficient of Clusters of Spheres. Computers & Fluids, 2006, 35: 966-970
    17万韶六,欧阳洁.颗粒团绕流曳力系数的LBM计算.化工学报. 2008, 59(1): 58-63
    18 B. Yu, B. H. Xu. Particle-Scale Modelling of Gas-Solid Flow in Fluidisation. Journal of Chemical Technology and Biotechnology. 2003, 78: 111-121
    19 H. H. Hu. Direct Simulation of Flows of Solid-liquid Mixtures. International Jounal of Multiphase Flow. 1996, 22: 335-352
    20 D. W. Qi. Lattice-Boltzmann Simulations of Fluidization of Rectangular Particles. International Journal of Multiphase Flow. 2000, 26(3): 421-433
    21 M. A. van der Hoef, M. van Sint Annaland, J. A. M. Kuipers. Computational Fluid Dynamics for Dense Gas-Solid Fluidized Beds: A Multi-Scale Modeling Stratege. Chemcial Engineering Science. 2004, 59: 5157-5165
    22 T. B. Anderson, R. Jackson. Fluid Mechanical Description of Fluidized Beds: Equation of Motion. Industrial & Engineering Chemistry Fundamentals, 1967, 6: 527-539
    23周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学出版社. 1994: 177-207
    24 F. Mashayek, R. V. R. Pandya. Analytical Description of Particle/Droplet-laden Turbulent Flows. Progress in Energy and Combustion Science. 2003, 29: 329-378
    25 M. Sommerfeld. Validation of A Stochastic Lagrangian Modelling Approach for Inter-particle Collisions in Homogeneous Isotropic Turbulence. International Journal of Multiphase Flow. 2001, 27(10): 1829-1858
    26樊建人,姚军,张新育,岑可法.气固两相流中颗粒-颗粒随机碰撞新模型.工程热物理学报. 2001, 22(5): 629-632
    27 H. Lai, J. D. Lu, X. Fan, W. J. Li, H. B. Ren. 3-D Mathematical Modeling of An In-line Swirl-spray Precalciner. Chemical Engineering and Processing. 2006, 45: 204-213
    28 J. J. Derksen, S. Sundaresan, H. E. A. van der Akker. Simulation of Mass-loading Effects in Gas-solid Cyclone Separators. Powder Technology. 2006, 163: 59-68
    29 P. A. Cundall, O. D. L. Strack. A Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979, 29(1): 47-65
    30 C. S. Campbell, C. E. Brennen. Computer Simulations of Granular Shear Flows. Journal of Fluid Mechanics. 1985, 151, 167-188
    31 Y. Tsuji, T. Kawaguchi, T. Tanaka. Discrete Particle Simulation of Two-dimensional Fluidized Bed. Powder Technology. 1993, 77(1): 79-87
    32 B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels, W. P. M. van Swaaij. Discrete Particle Simulation of Bubble and Slug Formation in A Two-dimensional Gas-fluidized Bed: A Hard-sphere Approach. Chemical Engineering Science. 1996, 51(1): 99-118
    33 N. G. Deen, M. Van Sint Annaland, M. A. van der Hoef, J. A. M. Kuipers. Review of Discrete Particle Modeling of Fluidized Beds. Chemical Engineering Science. 2007, 62: 28-44
    34 H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu. Discrete Particle Simulation of Particulate Systems: Theoretical Developments. Chemical Engineering Science. 2007, 62: 3378-3396
    35欧阳洁,李静海.模拟气固流化系统的数值方法.应用基础与工程科学学报.1999, 7(4): 335-345
    36周浩生,陆继东,钱诗智.宽筛分流化床气-固两相流动结构离散颗粒模型.燃烧科学与技术. 1999, 5(3): 270-275.
    37袁竹林.稠密气固两相流的直接数值模拟.热能动力工程. 1999, 14(81): 465-467
    38刘安源,刘石,姜凡.鼓泡流化床流动特性的欧拉-离散单元方法模拟.燃烧科学与技术. 2003, 9(2): 148-152
    39 Y. Tsuji, T. Tanaka, S. Yonemura. Cluster Patterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model Versus Two-Fluid Model). Powder Technology. 1998, 95: 254-264.
    40 S. Y. Wang, H. P. Liu, H. L. Lu, W. T. Liu, J. M. Ding, W. Li. Flow Behavior of Clusters in A Riser Simulated by Direct Simulation Monte Carlo Method. Chemical Engineering Journal. 2005, 106(3): 197-211
    41彭正标,袁竹林.基于蒙特卡洛法的脱硫塔内气固流动数值模拟.中国电机工程学报. 2008, 28(14): 6-14
    42张槛,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟.工程热物理学报. 1998, 19(2): 256-260
    43 H. Enwald. E. Peirano, A. E. Almstedt. Eulerian Two-Phase Flow Theory Applied to Fluidization. International Journal of Multiphase Flow. 1996, 22(Suppl.): 21-66
    44 D. Gidaspow. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Dscriptions. Academic Press, San Diego, 1994: 239-296
    45 T. Andrews IV, P. N. Loezos, S. Sundaresan. Coarse-Grid Simulation of Gas-Particle Flows in Vertical Risers. Industial & Engineering Chemistry Research. 2005, 44: 6022-6037
    46 M. Xu, W. Ge, J. H. Li. A Discrete Particle Model for Particle-fluid Flow with Considerations of Sub-grid Structures. Chemcial Engineering Science. 2007, 62: 2302-2308
    47 L. M. Zou, Y. C. Guo, C. K. Chan. Cluster-based Drag Coefficient Model for Simulating Gas-solid Flow in A Fast-fluidized Bed. Chemcial Engineering Science. 2008, 63: 1052-1061
    48 R. J. Hill, D. L. Koch, J. C. Ladd. The First Effects of Fluid Inertia on Flows in Ordered and Random Arrays of Spheres. Journal of Fluid Mechanics. 2001, 448: 213-241
    49 R. Beetstra, M. A. van der Hoef, J. A. M. Kuipers. Numerical Study of Segregation Using A New Drag Force Correlation for Polydisperse Systems Derived from Lattice-Boltzmann Simulations. Chemical Engineering Science. 2007, 62: 246-255
    50 J. Li, J. A. M. Kuipers. Gas-particle Interactions in Dense Gas-fluidized Beds. Chemical Engineering Science. 2003, 58(3-6): 711-718
    51 E. Peirano, B. Leckner. Fundamentals of Turbulent Gas-solid Flows Applied to Circulating Fluidized Bed Combustion. Progress in Energy and Combustion Science. 1998, 24: 259-296
    52 J. P. Minier, E. Peirano. The PDF Approach to Turbulent Polydispersed Two-phase Flows. Physics Reports. 2001, 352: 1-214
    53 B. G. M. van Wachem, J. C. Schouten, C. M. Van Bleek, R. Krishna, J. L. Sinclair. Comparative Analysis of CFD Models of Dense Gas-Solid Systems.AIChE Journal. 2001, 47(5): 1035-1051
    54 W. Du, X. J. Bao, J. Xu, W. S. Wei. Computational Fluid Dynamics (CFD) Modeling of Spouted Bed: Assessment of Drag Coefficient Correlations. Chemical Engineering Science. 2006, 61: 1401-1420
    55 L. C. G?mez, F. E. Milioli. Numerical Study on the Influence of Various Physical Parameters over the Gas-Solid Two-Phase Flow in the 2D Riser of a Circulating Fluidized Bed. Powder Technology. 2003, 132: 216-225
    56 A. Almuttahar, F. Taghipour. Computational Fluid Dynamics of High Density Circulating Fluidized Bed Riser: Study of Modeling Parameters. Powder Technology. 2008, 185(1): 11-23
    57李静海,郭慕孙.颗粒流体两相流能量最小多尺度作用(EMMS)模型简介.化学工程, 1992, 20(2): 26-29
    58 W. Wang, J. H. Li. Simulation of Gas-Solid Two Phase Flow by a Multi-Scale CFD Approach– Extension of the EMMS Model to the Sub-Grid Level. Chemical Engineering Science. 2007, 62:208-231
    59 H. Y. Qi, F. Li, B. Xi, C. F. You. Modeling of Drag with the Eulerian Approach and EMMS Theory for Heterogeneous Dense Gas-Solid Two-Phase Flow. Chemical Engineering Science. 2007, 62: 1670-1681
    60 T. J. O’Brien, M. Syamlal. Particle Cluster Effects in the Numerical Simulation of a Circulating Fluidized Bed. In: Preprint Volume of 4th International Conference on CFB, Somerset, USA. 1993: 430-435
    61 T. Mckeen, T. Pugsley. Simulation and Experimental Validation of a Freely Bubbling Bed of FCC Catalyst. Powder Technology. 2003, 129: 139-152
    62刘春嵘,郭印诚.基于拟颗粒的气固两相曳力模型研究.工程热物理学报. 2005, 26(2): 253-256
    63 H. L. Lu, Q. Q. Sun, Y. R. He, Y. L. Sun, J. M. Ding, X. Li. Numerical Study of Particle Cluster Flow in Risers with Cluster-Based Approach. Chemical Engineering Science. 2005, 60: 6757-6767
    64 D. Gidaspow. Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling. Appl. Mech. Rev. 1986. 39: 1-23
    65 Y. P. Tsuo, D. Gidaspow. Computation of Flow Patterns in Circulating Fluidized Beds. AIChE Journal. 1990, 36(6): 885-896
    66 B. Sun, D. Gidaspow. Computation of Circulating Fluidized-Bed Riser Flowfor the Fluidization VIII Benchmark Test. Industial & Engineering Chemistry Research. 1999, 38: 787-792
    67 M. Syamlal, W. Rogers, T. J. O’Brien. MFIX Documentation-Theory Guide. Technical Note DOE/METC-94-1004(DE94000087). 1993:7-30
    68 C. K. K. Lun, S. B. Savage, D. J. Jeffrey, N. Chepurniy. Kinetic Theory for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield. Journal of Fluid Mechanics. 1984, 140: 233-256
    69 C. M. Hrenya, J. L. Sinclair. Effects of Particulate-Phase Turbulence in Gas-Solid Flows. AIChE Journal. 1997, 43(4): 853-869
    70 D. J. Patil, M. V. Annaland, J. A. M. Kuipers. Critical Comparison of Hydrodynamic Models for Gas-Solid Fluidized Beds - Part I: Bubbling Gas-Solid Fluidized Beds Operated with a Jet. Chemical Engineering Science. 2005, 60: 57-72
    71李静海,欧阳洁,高士秋,葛蔚,杨宁,宋文立.颗粒流体复杂系统的多尺度模拟.科学出版社. 2005: 142-194
    72 R. A. Bagnold. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proc. Roy. Sci. 1954, 225: 49-63
    73 S. Ogawa, A. Umemura, U. Sshima. On the Equations of Fully Fluidized Granular Materials. Journal of Applied Mathematics and Physics. 1980, 31: 483-493
    74 S. B. Sabage, D. J. Jeffrey. The Stress Tensor in a Granular Flow at High Shear Rates. Journal of Fluid Mechanics. 1981, 110: 255-272
    75 J. T. Jenkins, S. B. Savage. A Theory for the Rapid Flow of Identical Smooth, Nearly Elastic, Spherical Particles. Journal of Fluid Mechanics. 1983, 130: 187-202
    76 C. K. K. Lun, S. B. Savage. A Simple Kinetic Theory for Granular Flow of Rough, Inelastic, Spherical Particles. Journal of Applied Mechanics. 1987, 54(1): 47-53
    77 J. T. Jenkins, F. Mancini. Balance Laws and Constitutive Relations for Plane Flows of a Dense, Binary Mixture of Smooth, Nearly Elastic, Circular Disks. Journal of Applied Mechanics. 1987, 54(1): 27-34
    78 S. Chapman, T. G. Cowling, (刘大有,王伯懿,译).非均匀气体的数学理论.科学出版社. 1985: 34-431
    79 J. T. Jenkins, M. W. Richman. Grad’s 13-Moment System for a Dense Gas of Inelastic Spheres. Archive for Rational Mechanics. 1985, 87: 355-377
    80 H. Grad. On the Kinetic Theory of Rarified Gases. Communications on Pure and Applied Mathematics. 1949, 2(4): 331-407
    81 J. T. Jenkins, M. W. Richman. Kinetic Theory for Plane Flows of a Dense Gas of Identical, Rough, Inelastic, Circular Disks. Physics of Fluids. 1985, 28(12): 3485-3494
    82 M. W. Richman. The Source of Second Moment in Dilute Granular Flows of Highly Inelastic Spheres. Journal of Rheology. 1989, 33(8): 1293-1306
    83 C. S. Chou, M. W. Richman. Constitutive Theory for Homogeneous Granular Shear Flow of Highly Inelastic Spheres. Physica A. 1998, 259: 430-438
    84 J. L. Sinclair, R. Jackson. Gas-Particle Flow in a Vertical Pipe with Particle-Particle Interactions. AIChE Journal. 1989, 35: 1473-1486
    85 J. J. Nieuwland, M. van Sint Annaland, J. A. M. Kuipers, W. P. M. van Swaaij. Hydrodynamic Modeling of Gas/Particle Flows in Riser Reactors. AIChE Journal. 1996, 42(6): 1569-1582
    86 D. Gidaspow, H. L. Lu, E. Mangar. Kinetic Theory of Multiphase Flow and Fluidization: Validation and Extension to Binaries. Proceedings of the XIXth International Congress of Theoretical and Applied Mechanics, Japan. 1996
    87 D. Ma, G. Ahmadi. A Kinetic Model for Rapid Granular Flows of Nearly Elastic Particles Including Interstitial Fluid Effects. Powder Technology. 1988, 56(3): 191-207
    88 G. Baler, A. Boelle, O. Simonin. Eulerian Gas-Solid Flow Modelling of Dense Fluidized Bed. Fluidization VIII, International Symposium of the Engineering Foundation. Tours, 1995: 1125-1135
    89张兆顺,崔桂香,许春晓.湍流理论与模拟.清华大学出版社. 2005: 163-252
    90樊建人,罗坤,金晗辉,岑可法.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合.中国电机工程学报. 2003,23(4):153~157
    91贺铸,柳朝晖,郑楚光.三维均匀各向同性两相湍流的直接模拟.工程热物理学报. 2003,24(3):622~624
    92 Q. Z. Wang, K. D. Squires. Large Eddy Simulation of Particle-ladenTurbulent Channel Flows. Physics of Fluids. 1996, 8: 1207-1223
    93金晗辉,金涛,罗坤,樊建人,岑可法.大涡模拟二维气固两相平面射流.动力工程. 2003,23(5):2666~2669
    94 B. A. Kashiwa, R. A. Gore. A Four Equation Model for Multiphase Turbulent Flow. Proceddings of the ASME-JSME Thermal Engineering Joint Conference. 1987, 5:261-267
    95 O. Simonin. Prediction of the Dispersed Phase Turbulence in Particle-Laden Jets. Proceddings of the Fourth International Symposium on Gas-Solid Flows, ASME. 1991, 121:197-206
    96 D. Gidaspow, Jonghwun Jung, R. K. Singh. Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm 2002 Flour-Daniel Lecture. Powder Technology. 2004, 149: 123-141
    97 Y. Cheng, Y. C. Guo, F. Wei, Y. Jin, W, Y Lin. Modeling the Hydrodynamics of Downer Reactors Based on Kinetic Theory. Chemical Engineering Science. 1999, 54(13-14): 2019-2027
    98 Y. Zheng, X. T. Wan, Z. Qian, F. Wei, Y. Jin. Numerical Simulation of the Gas-Particle Turbulent Flow in Riser Reactor Based on the k-ε-kp-εp-ΘTwo Fluid Model. Chemical Engineering Science. 2001, 56(24): 6813-6822
    99于勇,蔡飞鹏,周力行,时铭显.考虑颗粒间碰撞的稠密气/固流动二阶矩两相湍流模型.化工学报. 2005, 56(4): 620-626
    100向屏,郭印诚.提升管内稠密气粒两相流动大涡模拟.工程热物理学报. 2004, 25(Suppl.): 75-78
    101 J. S. Curtis, B. van Wachem. Modeling Particle-Laden Flows: A Research Outlook. AIChE Journal. 2004, 50(11): 2638-2645
    102周力行.离散型湍流多相流动的研究进展和需求.力学进展. 2008, 38(5): 610-622
    103 M. Fairweather, J. P. Hurn. Validation of an Anisotropic Model of Turbulent Flows Containing Dispersed Solid Particles Applied to Gas-Solid Jets. Computers and Chemical Engineering. 2008, 32: 590-599
    104 H. L. Lu, S. Y. Wang, Y. H. Zhao, Y. Liu, D. Gidaspow, J. M. Ding. Prediction of Particle Motion in a Two-Dimensional Bubbling Fluidized Bed Using Discrete Hard-Sphere Model. Chemical Engineering Science. 2005, 60: 3217-3231
    105 M. J. V. Goldschmidt, R. Beetstra, J. A. M. Kuipers. Hydrodynamics Modelling of Dense Gas-Fluidised Beds: Comparison of Kinetic Theory of Granular Flow with 3D Hard-Sphere Discrete Particle Simulations. Chemical Engineering Science. 2002, 57: 2059-2075
    106 H. S. Zhou, G. Flamant, D. Gauthier. DEM-LES of Coal Combustion in a Bubbling Fluidized Bed. Part I: Gas-Particle Turbulent Flow Structure. Chemical Engineering Science. 2004, 59: 4193-4203
    107 O. Simonin, E. Deutsch, M. Boivin. Large Eddy Simulation and Second-Moment Closure Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows. In: F. Durst Ed. Selected Papers from the Ninth Symmposium on Turbulent Shear Flows, Berlin. 1995: 85-115
    108 V. Jiradilok, D. Gidaspow, S. Damronglerd, W. J. Koves, R. Mostofi. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in a Riser. Chemical Engineering Science, 2006, 61: 5544-5559.
    109 M. Tartan, D. Gidaspow. Measurement of Granular Temperature and Stresses in risers. AIChE Journal. 2004, 50(8):1760-1775
    110 J. H. Jung, D. Gidaspow. Measurement of Two Kinds of Granular Temperatures, Stresses, and Dispersion in Bubbling Beds. Industrial & Engineering Chemistry Research. 2005, 44: 1329-1341
    111 D. J. Holland, C. R. Muller, J. S. Dennis, L. F. Gladden, A. J. Sederman. Spatially Resolved Measurement of Anisotopic Granular Temperature in Gas-Fluidized Beds. Powder Technology. 2008, 182: 171-181
    112 S. Bhusarapu, M. H. Al-Dahhan, M. P. Dudukovic, S. Trujillo, T. J. O’Hern. Experimental Study of the Solids Velocity Field in Gas-Solid Risers. Industrial & Engineering Chemistry Research.2005, 44: 9739-974
    113 C. S. Campbell. Granular material flows - An overview. Powder Technology. 2006, 162: 208-229
    114 I. Goldhirsch. Rapid Granular Flow. Annual Review of Fluid Mechanics. 2003, 35:267-293
    115吴其芬,陈伟芳.稀薄气体动力学.国防科技大学出版社. 2004: 203-216
    116 M. Strumendo, P. Canu. Method of Moments for the Dilute Granular Flow of Inelastic Spheres. Physical Review E. 2003, 66(4): 041304
    117 D. L. Koch, A. S. Sangani. Particle Pressure and Marginal Stability Limitsfor a Homogeneous Monodisperse Gas-Fluidized Bed: Kinetic Theory and Numerical Simulation. Journal of Fluid Mechanics. 1999, 400: 229-263.
    118 P. C. Johnson, R. Jackson. Frictional-Collisional Constitutive Relations for Granular Materials, with Application to Plane Shearing. Journal of Fluid Mechanics. 1987, 176: 67-93.
    119 J. T. Jenkins. Boundary Conditions for Rapid Granular Flow: Flat, Frictional Walls. Transactions of the ASME. 1992, 59:120-127
    120 J. H. Jung, D. Gidaspow. Bubble Computation, Granular Temperatures, and Reynolds Stresses. Chemical Engineering Communications. 2006, 193: 946-975
    121 E. Peirano, V. Delloume, F. Johnsson, B. Leckner, O. Simonin. Numerical Simulation of the Fluid Dynamics of a Freely Bubbling Fluidized Bed: Influence of the Air Supply System. Powder Technology. 2002, 122: 69-82
    122 A. Srivastava, S. Sundaresan. Analysis of a Frictional-Kinetic Model for Gas-Particle Flow. Powder Technology. 2003, 129: 72-85
    123 T. Knowlton, D. Geldart, J. Matsen, D. King. Comparison of CFB hydrodynamic models. PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tour, France, May, 1995
    124 S. Benyahia, H. Arastoopour, T. M. Knowlton, H. Massah. Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using Kinetic Theory Approach for the Particulate Phase. Powder Technology. 2000, 112: 24-33
    125 K. Agrawal, P. N. Loezos, M. Syamlal, S. Sundaresan. The Role of Meso-Scale Structures in Rapid Gas-Solid Flows. Journal of Fluid Mechanics. 2001, 445: 151-185
    126 S. Benyahia, M. Syamlal, T. J. O’Brien. Study of the Ability of Multiphase Continuum Models to Predict Core-Annulus Flow. AIChE Journal. 2007, 53(10): 2549-2568.
    127 S. Zimmerman, F. Taghipour. CFD Modeling of the Hydrodynamics and Reaction Kinetics of FCC Fluidized-Bed Reactors. Industrial and Engineering Chemistry Research. 2005, 44: 9819-9827
    128 N. Reuge, L. Cadoret, C. Coufort-Saudejaud, S. Pannala, M. Syamlal, B. Caussat. Multifluid Eulerian Modeling of Dense Gas-Solids Fluidized BedHydrodynamics: Influence of the Dissipation Parameters. Chemical Engineering Science. 2008, 63: 5540-5551
    129 A. Neri, D. Gidaspow. Riser Hydrodynamics: Simulation Using Kinetic Theory. AIChE Journal. 2000, 46(1): 52-67
    130 S. Benyahia, M. Syamlal, T. J. O’Brien. Evaluation of Boundary Conditions Used to Model Dilute Turbulent Gas/Solids Flows in a Pipe. Powder Technology. 2005, 156: 67-72
    131刘敏,张会强,王希麟,郭印诚,林文漪.稠密气固流动中颗粒聚集现象的数值模拟.燃烧科学与技术. 2003, 9(2): 128-134
    132 Y. H. Zhang, J. M. Reese. The Drag Force in Two-Fluid Models of Gas-Solid Flows. Chemical Engineering Science. 2003, 58: 1641-1644
    133 Y. H. Zhang, J. M. Reese. Gas Turbulence Modulation in a Two-Fluid Model for Gas-Solid Flows. AIChE Journal. 2003, 49(12): 3048-3065
    134 M. Horio, K. Morishita, O. Tachibana. Solid Distribution and Movement in Circulating Fluidized Beds. In: P. Basu, F. Large(eds.) Circulating Fluidized Bed Technology II. Pergamon Press. 1988, 147-154
    135 M. Syamlal. MFIX Documentation - Numerical Technique. Technical Note DOE/MC31346-5824(DE98002029). 1998:48-53. (http://www.mfix.org)
    136 D. Ma, G. Ahmadi. An Equation of State for Dense Rigid Sphere Gases. Journal of Chemical Physic. 1986, 84(6): 3449-3450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700