用户名: 密码: 验证码:
对流扩散方程的特征有限元方法以及气泡行为模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了五个不同有限单元的改进特征有限元格式在对流扩散方程中的应用。然后分别采用改进的VOF模型和DPM模型对气泡在离子液体中的运动行为做出数值模拟。采用欧拉-欧拉和群平衡模型(PBM)的耦合模型对离子液体吸收二氧化碳过程中的质量传递以及气液两相流的流场进行了模拟研究。
     第二章对对流占优的对流扩散方程分别提出了五节点单元、双线性单元、旋转Q1单元、带限制的旋转Q1单元有限元逼近方法。在整个过程中,利用有限元插值代替了以往文献中收敛分析必不可少的Ritz投影,并且利用插值算子的性质以及平均值技巧来对对流扩散方程进行逼近。与特征扩展混合元的方法相比,当解充分光滑的时候,将空间上L2模的误差估计从O(h)提高到O(h2)阶。与此同时得到了在正则网格下采用协调有限元逼近方程同样的收敛阶。最后针对每一种有限单元进了数值试验验证,通过数值试验验证,我们取得了同理论分析一致的结果。其次对该方程提出了非协调特征扩展混合有限元逼近,得到了与正则网格下的协调扩展混合元逼近格式相同的误差估计并且进行了数值模拟验证。
     第三章我们采用改进的VOF模型和DPM模型对离子液体中的气泡行为进行了数值模拟研究。在改进的模型中,除了考虑了重力和表面张力对气泡的影响外,一个新的相间作用力被添加到动量方程中对离子液体中气液界面来进行模拟研究。在DPM模型中引入了一个基于离子液体体系的新曳力模型。在模拟中考虑了气泡在三种不同的离子液体bmimBF4,bmimPF6和omimBF4中的变形、速度、等效直径等因素,并且与实验数据进行对比,取得很好的一致性。此外采用改进的模型,对气泡周围的压强场、速度场进行了预测。通过该工作对了解离子液体中的气泡行为以及为离子液体作为溶剂的鼓泡塔设计提供有力的工具。
     尽管利用离子液体从烟道气中捕集二氧化碳是一种新的有效方法,但是关于这种新溶剂的二氧化碳吸收传质特性还没有研究过。在本文第四章中一个耦合的流体动力学模型和群平衡模型用来研究离子液体溶剂吸收二氧化碳的传质特性。考虑到离子液体独特的物理性质,引入了新的曳力模型的欧拉-欧拉模型用来模拟气液两相流体动力学,气泡尺寸大小分布采用群平衡模型来计算。在模拟过程中,气含率、气液相界面积、气泡大小直径分布得到了预测。质量传递速率的计算采用Higbie的渗透理论模型。通过模型获得的数值模拟值与鼓泡塔设备中获得的实验数据取得了很好的一致性。此外通过改进的模型我们获得了二氧化碳吸收过程中气液两相流的压强场和速度场的分布。
Abstr
     Five different finite elements for the convection-diffusion problem with a modified charac-teristic finite element scheme are studied in this paper. Then numerical simulations are studied to investigate the motion of bubbles in ionic liquids using an improved volume-of-fluid (VOF) model and DPM model. A coupled Computational Fluid Dynamic (CFD) model and Population Balance Model(PBM) have been applied to study the mass transfer properties for capturing CO2 with ionic liquids solvents.
     In Chapter 2, firstly, finite element method for the convection-diffusion problem with a mod-ified characteristic finite element scheme is studied. We discuss five-node element, the constrained rotated Q1 element, bilinear finite element and the popular ratated Q1 element. The O(h2) or-der error estimate in L2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Then some numerical results are provided to verify our theoretical analy-sis. Secondly, we apply a nonconforming finite element to the same equation with the expanded characteristic-mixed finite element scheme with respect to the space. When the requirement of the exact solution's regularity is lower, the optimal estimates are obtained as the same as the pre-vious literature for the conforming finite element under regular meshes. We verify our theoretical analysis with some numerical results.
     In Chapter 3, a numerical simulation is studied to investigate the motion of bubbles in ionic liquids using an improved volume-of-fluid (VOF) model and DPM model. In the improved method, besides the gravity and surface tension, a new force between two phases is added to the momentum equation in order to describe the gas-liquid interaction much rigorously in the ionic liquids which possess some special properties compared with the traditional solvents. In DPM model, a new drag force model is added. The deformation, velocity and equivalent diameter of bubble rising in three ionic liquids, i.e., bmimBF4, bmimPF6 and omimBF4 are simulated and the calculation results are agreed well with the experimental data. Furthermore, the detailed velocity fields and pressure fields around the bubble are also predicted with the proposed numerical simulation models. This work is important for understanding the fluid dynamic performance of bubbles in ionic liquids, and could provide a useful tool for designing a bubble column with ionic liquids as its solvents.
     Although separating CO2 from flue gas with ionic liquids has been regarded as a new and effective method, the mass transfer properties of the CO2 absorption in these new solvents have still been rarely researched. In Chapter 4, a coupled Computational Fluid Dynamic (CFD) model and Population Balance Model (PBM) have been applied to study the mass transfer properties for capturing CO2 with ionic liquids solvents. Considering the unique properties of ionic liquids, the Eulerian-Eulerian two-flow model with a new drag model is employed for the gas-liquid fluid dynamic simulation. The bubble size distribution is predicted by the PBM method. The gas holdup, interfacial area and bubble size distribution in the bubble column reactor are predicted. The mass transfer rates are estimated with the Higbie's penetration model. Furthermore, the velocity field and pressure field in the reactor are also predicted.
引文
[1]P. G. Ciarlet, The Finite Element Method for Elliptic Problems[M]. North-Holland, Amsterdam, NewYork, Oxford,1978.
    [2]S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods[M]. New York, Springer,1994.
    [3]T. Apel, Anisotropic Finite Elements:Local Estimates and Applications[M]. B. G. Teubner Stuttgart, Leipzig,1999.
    [4]T. Apel, M. Dobrowolski, Anisotropic interpolation with applications to the finite element method[J]. Computing,1992,47:227-293.
    [5]S. C. Chen, D. Y. Shi, Y. C. Zhao, Narrow arbitrary quadrilateral quasi-Wilson element[J]. IMA J. Numer. Anal.,2004,24:77-95.
    [6]S. C. Chen, Z. C. Shi, Double set parameter method of constructing a matrix[J], Chinese J. Numer. Math. Appl.,1991,4:55-69.
    [7]S. C. Chen, Y. C. Zhao, D. Y. Shi, Anisotropic interpolation with application to nonconforming elements[J]. Appl. Numer. Math.,2004,49(2):135-152.
    [8]C. Johnson, Streamline diffusiion methods for problems in fluid mechanics, in Finite Elements in fluids[M]. Wiley, New York,1986.
    [9]D. P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems[J]. Math.Comp.,2000,69:929-936.
    [10]C. N. Dawson, T. F. Russell, M. F. Wheeler, Some improved error estimates for the modified method of characteristics[J]. SIAM J. Numer. Anal.,1989,26:1487-1512.
    [11]R. E. Ewing, T. F. Russell, M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics[J]. Comput. Methods Appl. Mech. Engrg.,1984,47:73-92.
    [12]李立康,索伯列夫空间引论[M].上海,上海科技出版社,1981.
    [13]李开泰,黄艾香,黄庆怀,有限元方法的及其应用[M].北京,科学出版社,2006.
    [14]R. A. Adams, Sobolev Spaces[M]. Academic Press, New York,1975.
    [15]王烈衡,许学军,有限元方法的数学基础[M].北京,科学出版社.2004.
    [16]石东洋,非协调有限元问题的研究[D].博士毕业论文,西安交通大学,1997.
    [17]张恭庆,林源渠,泛函分析讲义(上册)[M].北京,北京大学出版社,1987.
    [18]明平兵,非协调元VS Locking问题[D].博士毕业论文,中国科学院数学与系统科学院计算数学所,2000.
    [19]F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers[J]. RAIRO Ser. Rough Anal. Numer. R-2 1974,129-151.
    [20]K. Dong, S. Zhang, D. Wang, X. Yao, Hydrogen bonds in imidazolium ionic liquids[J]. J. Phys. Chem.2006,110:9775-9782.
    [21]J. F. Brennecke, E. J. Maginn, Ionic liquids:Innovative fluids for chemical processing[J]. AIChE J.,2001,47:2384-2389.
    [22]R. D. Rogers, K. R. Seddon, Ionic liquids-solvents of the future[J]. Science,2003,302: 792-793.
    [23]L. S. Fan, Gas-liquid-solid fluidization engineering[M]. Stoneham, MA (USA), Butterworth Publishers,1989.
    [24]M. Ishii, Thermo-fluid dynamic theory of two-Phase flow[M]. Paris, Eyvolles,1975.
    [25]S. L. Soo, Fluid dynamic of multiphase Systems[M]. Waltham, Blaisdeu Publishing Co, 1967.
    [26]H. K. Versteeg, W. Malalasekera, An introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. Wiley, New York,1995.
    [27]S. V. Patankar, Numerical Heat Transfer and Fluid Flow[M]. Hemisphere, Washington, 1980.
    [28]F. H.Harlow, Numerical calculation of multi-Phase fluid flow[J]. J. Appl. Phys.,1975,17: 19-25.
    [29]V. L. Streeter, Handbook of Fluid Dynamics[M]. Mc Gram-Hill, New York,1961.
    [30]周力行,湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [31]C. Asbach, J. H. Kim, S. J. Yook, et al., Analytical modeling of particle stopping distance at low pressure to evaluate protection schemes for extreme ultraviolet lithography masks[J]. Journal of Vacuum Science and Technology,2005,23:2419-2426.
    [32]N. Y. Mendoza-Gonzalez, P. Proulx, B. Goortani, Numerical study of the synthesis of nanoparticles in an inductively coupled plasma reactor[J]. Czechoslovak Journal of Physics, 2006,56:1263-1270.
    [33]R. T. Lahey, D. A. Drew, The current state-of-the-art in the modeling of vapor/liquid two-phase flows. In:Proceedings of the ASME Winter Annual Meeting, November 25-30, 1990.
    [34]K. T. Frantz, Flow Structure in Bubble Columns[J]. Chem. Eng.,1984,7:365-381.
    [35]J. M.Delhaye, Space/time and time/space-averaged equations, in two-Phase flow and heat transfer[M]. Washindon DC, Hemisphere,1977,1:101-114.
    [36]王福军等,计算流体动力学分析-CFD软件原理与应用[M].清华大学出版社,2007.
    [37]D. Khismatullin, Y. Renardy, M. Renardy, Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations[J]. Journal of Non-Newtonian Fluid Mechanics,2006,140:120-131.
    [38]J. Lopez, J. Hernandez, P. Gomez, et al, A volume of fluid method based on multidimensional advection and spline interface reconstruction [J]. Journal of Computational Physics,2005,208:51-74.
    [39]S. Osher, J A. Sethian, Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations[J]. J. Comput. Phys,1988,79:12-49
    [40]M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow[J]. J. Comput.Phys.,1994,114:146-159.
    [41]D. Peng, B. Merriman, S. Osher, et al., A PDE-based fast local level set method[J]. J. Comput. Phys.,1999,155:410-438.
    [42]卢作伟,崔桂香,张兆顺,气泡在液体中运动过程的数值模拟[J].计算力学学报,1997,14:125-133.
    [43]徐军,分界面拓扑改变的水平集方法数值模拟[M].博士学位论文,北京大学数学科学学院,1998.
    [44]Z. Cai, J. Mandel, S. McCormick, The finite volume element methods for diffusion equations on general triangulations[J]. SIAM J. Numer. Anal.,1991,28:392-402.
    [45]J. Jr. Douglas, T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM J. Numer. Anal.,1982,19:871-885.
    [46]T. J. R. Hughes, American Society of Methanical Engineers, in Finite element methods for convection dominated flows[M]. NewYork,1979.
    [47]Q. Lin, L. Tobiska, A. H. Zhou, Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation[J]. IMA J. Numer. Anal.,2005,25:160-181.
    [48]D. Y. Shi, S. P. Mao, S. C. Chen, An anisotropic nonconforming finite element with some .superconvergence results[J]. J. Comput. Math.,2005,23:261-274.
    [49]L. Guo, H. Z. Chen, An expanded characteristic-mixed finite element method for a convection-dominated transport problem [J]. J. Comput. Math.,2005,23:479-490.
    [50]J. Jr. Douglas, J. E. Roberts, Global estimates for mixed methods for second order elliptic quations[J]. Math. Comp.,1985,44:39-52.
    [51]H. X. Rui, M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems[J]. Numer. Math.,2002,92:161-177.
    [52]R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element[J]. Numer. Meth. for PDEs,1992,8:97-111.
    [53]R. Becker, R. Rannacher, Finite element solution of the incompressible Navier-Stokes equations on anisotropically refined meshes[M]. In Fast solvers for flow problems. Volume 49 of Notes on Numerical Fluid Mechanics, Wiesbaden,1995.
    |[54] T. Apel, S. Nicaise, J. Schoberl, Crouzeix-Raviart type finite elements on anisotropic meshes[J]. Numer. Math.,2001,89:193-223.
    [55]P. Ming, Z. Shi, Nonconforming rotated Q1 element for reissner-mindlin plate[J]. Mathematical Models and Methods in Applied Sciences,2001,11:1311-1342.
    [56]林群,严宁宁,高效有限元构造与分析[M].保定,河北大学出版社,1996.
    [57]J. Hu, Z. C. Shi, Constrained quadrilateral nonconforming rotated Q1 element[J]. J. Comput. Math.,2005,23:561-586.
    [58]D. W. Moore, The velocity of rise of distorted gas bubbles in a liquid of small viscosity[J]. Journal of Fluid Mechanics Digital Archive,2006,23:749-766.
    [59]F. Raymond, J. M. Rosant, A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids[J]. Chemical Engineering Science,2000,55:943-955.
    [60]A. A. Kulkarni, J. B. Joshi, Bubble Formation and Bubble Rise Velocity in Gas Liquid Systems:A Review[J]. Industrial and Engineering Chemistry Research,2005,44: 5873-5931.
    [61]T. J. Lin, K. Tsuchiya, L.S. Fan, Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. A.I.Ch.E. Journal,1998,44.
    [62]W. L. Haberman, R. K. Morton, An experimental investigation of the drag and shape of air bubbles rising in various liquids[M]. Storming Media,1953.
    [63]R. Krishna, M. I. Urseanu, J. M. Van Baten, et al., Rise velocity of a swarm of large gas bubbles in liquids[J]. Chemical Engineering Science,1999a,54:171-183.
    [64]B. Van Wachem, J. C. Schouten, R. Krishna, et al., Eulerian simulations of bubbling behavior in gas-solid fluidised beds[J]. Computers and Chemical Engineering,1998,22: 299-306.
    [65]D. Pfleger, S. Gomes, N. Gilbert, et al., Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modelling approach[J]. Chemical Engineering Science,1999,54:5091-5099.
    [66]B. Van Wachem, J. C. Schouten, R. Krishna, et al., Validation of the Eulerian simulated dynamic behaviour of gas-solid fluidised beds[J]. Chemical Engineering Science,1999,54: 2141-2149.
    [67]T. Hughes, W. Liu, T. Zimmermann, Lagrangian-Eulerian finite element formulation from incompressible viscous flows[M]. College of Engineering and School of Civil & Environmental Engineering of Cornell University,1981.
    [68]C. Hirt, A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics,1997,135:203-216.
    [69]M. Chiesa, V. Mathiesen, J. A. Melheim, et al., Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed[J]. Computers and Chemical Engineering,2005,29:291-304.
    [70]Y. Li, J. Zhang, L. S. Fan, Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method:bubble wake behavior[J]. Chemical Engineering Science,1999,54:5101-5107.
    [71]I. Ginzburg, G. Wittum, Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants[J]. Journal of Computational Physics,2001, 166:302-335.
    [72]M. Meier, G. Yadigaroglu, B. L. Smith, A novel technique for including surface tension in PLIC-VOF methods[J]. European Journal of Mechanics/B Fluids,2002,21:61-73.
    [73]G. Son, V. K. Dhir, Numerical simulation of film boiling near critical pressures with a level set method[J]. Journal of Heat Transfer,1998,120,183-192.
    [74]H. K. Zhao, B. Merriman, S. Osher, et al., Capturing the behavior of bubbles and drops using the variational level set approach[J]. Journal of Computational Physics,1998,143:495-518.
    [75]M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics,2003,187: 110-136.
    [76]S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics,1992,100:25-37.
    [77]张丽,高黏度牛顿流体和剪切变稀非牛顿流体中单气泡的运动和传质[D].博士论文,中国科学院过程工程研究所,2008.
    [78]R. Krishna, J. M. Van Baten, Scaling up bubble column reactors with the aid of CFD[J]. Chemical Engineering Research and Design,2001,79:283-309.
    [79]G. F. Woerlee, J. Berends, Z. Olujic, et al., A comprehensive model for the pressure drop in vertical pipes and packed columns[J]. Chemical Engineering Journal,2001,84:367-379.
    [80]M. E. Abou-el-Hassan, A generalized bubble rise velocity correlation[J]. Chemical Engineering Communications,1983,22:243-250.
    [81]D. L. Youngs, Time-dependent multi-material flow with large fluid distortion[J]. Numerical methods for fluid dynamics,1982,1:27-41.
    [82]M. H. Ghatee, A. R. Zolghadr, Surface tension measurements of imidazolium-based ionic liquids at liquid-vapor equilibrium[J]. Fluid Phase Equilibria,2008,263:168-175.
    [83]A. Sokolichin, G. Eigenberger, A. Lapin, Simulation of buoyancy driven bubbly flow: Established simplifications and open questions[J]. A.I.Ch.E. Journal,2004,50:24-45.
    [84]M. Abou-El-Hassan, A generalized bubble rise velocity correlation[J]. Chemical Engineering Communications,1983,22:243-250.
    [85]D. Rodrigue, Generalized correlation for bubble motion[J]. A.I.Ch.E. Journal,2001,47.
    [86]S. J. Zhang, X. M. Lv, Ionic liquids:From Fundamentals to Applications[M]. Science Press:Beijing.2006.
    [87]J. D. Bugg, G. A. Saad, The velocity field around a Taylor bubble rising in a stagnant viscous fluid:numerical and experimental results[J]. International Journal of Multiphase Flow,2002,28:791-803.
    [88]J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100:335-354.
    [89]S. Maalej, B. Benadda, M. Otterbein, Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures[J]. Chemical Engineering Science,2003, 58:2365-2376.
    [90]A. A. Kulkarni, Mass Transfer in Bubble Column Reactors:Effect of Bubble Size Distribution[J]. Industrial & Engineering Chemistry Research,2007,46:2205-2211.
    [91]M. Bauer, G. Eigenberger, Multi scale modeling of hydrodynamics, mass transfer and reaction in bubble column reactors[J]. Chemical Engineering Science,2001,56:1067-1074.
    [92]K. Shimizu, S.Takada, K. Minekawa, et al., Phenomenological model for bubble column reactors:prediction of gas hold-ups and volumetric mass transfer coefficients[J]. Chemical Engineering Journal,2000,78:21-28.
    [93]H. Chaumat, A. M. Billet, H. Delmas, Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension[J]. Chemical Engineering Science,2007,62: 7378-7390.
    [94]K. Akita, F. Yoshida, Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties[J]. Industrial & Engineering Chemistry Process Design and Development,1973,12:76-80.
    [95]H. Rangwala, Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors[J]. Journal of Membrane Science,1996,112:229-240.
    [96]S. Zhang, Y. Chen, F. Li, et al., Fixation and conversion of CO2 using ionic liquids[J]. Catalysis Today,2006,115:61-69.
    [97]S. J. Zhang, S. Zhang, K. Dong, et al., Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chemistry Weinheim European Journal, 2006,12:4021.
    [98]M. Laakkonen, P. Moilanen, T. Miettinen, et al., Local bubble size distributions in agitated vessel comparison of three experimental techniques[J]. Chemical Engineering Research and Design,2005,83:50-58.
    [99]M. R. Bhole, J. B. Joshi, D. Ramkrishna, CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science,2008,63:2267-2282.
    [100]D. Colella, D. Vinci, R. Bagatin, et al., A study on coalescence and breakage mechanisms in three different bubble columns[J]. Chemical Engineering Science,1999,54:4767-4777.
    [101]P. Chen, J. Sanyal, M. Dudukovi, Numerical simulation of bubble columns flows:effect of different breakup and coalescence closures[J]. Chemical Engineering Science,2005,60: 1085-1101.
    [102]T. Wang, J. Wang, Y. Jin, A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal,2006,52:125-140.
    [103]J. GIMBUN, N. Zoltan, C. RIELLY, International Symposium on Mixing in Industrial Processes 6, Canada,2008.
    [104]S. Zhang, N. Sun, X. He, et al., Physical Properties of Ionic Liquids:Database and Evaluation[J]. Journal of Physical and Chemical Reference Data,2006,35:1475-1517.
    [105]T. Sherwood, R. Pigford, C. Wilke, Mass transfer[M]. McGraw-Hill Companies,1975.
    [106]R. Haggerty, S. Gorelick, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity [J]. Water Resources Research,1995,31.
    [107]E. Cussler, Diffusion:Mass transfer in fluid systems[M]. Cambridge University Press,1997.
    [108]T. Wang, J. Wang, Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model[J]. Chemical Engineering Science,2007,62:7107-7118.
    [109]B. Jajuee, A. Margaritis, D. Karamanev, et al., Application of surface-renewal-stretch model for interface mass transfer[J]. Chemical Engineering Science,2006,61:3917-3929.
    [110]G. L. Lane, M. P. Schwarz, G. M. Evans, Numerical modelling of gas-liquid flow in stirred tanks[J]. Chemical Engineering Science,2005,60:2203-2214.
    [111]H. Dong, X. Wang, L. Zhao, et al., Experimental study of the velocity and shape of a bubble in stagnant ionic liquids.1st Asia Pacific Conference on Ionic Liquids and Green Processes, 2008.
    [112]V. Ranade, Modelling of turbulent flow in a bubble column reactor[J]. Chemical Engineering Research and Design,1997,75:14-23.
    [113]H. M. Hulburt, S. Katz, Some problems in particle technology. A statistical mechanical formulation[J]. Chemical Engineering Science,1964,19:555-578.
    [114]R. McGraw, Description of aerosol dynamics by the quadrature method of moments[J]. Aerosol Science and Technology,1997,27:255-265.
    [115]D. Marchisio, R. Vigil, R. Fox, Quadrature method of moments for aggregation-breakage processes[J]. Journal of colloid and interface science,2003,258:322-334.
    [116]Fluent 6.2 user's guide,2005.
    [117]H. Luo, H. F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions[J]. A.I.Ch.E. Journal,1996,42:1225-1233.
    [118]R. Higbie, The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. A.I.Ch.E. Journal,1935,31:365-388.
    [119]J. Huddleston, A. Visser, W. Reichert, et al., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chemistry,2001,3:156-164.
    [120]L. Schiller, A. Naumann, Uber die grundlegenden berechungen bei der schwerkraftaufbereitung[J], Vereines Deutscher Ingenieure,1933,77:318-320.
    [121]F. Kerdouss, A. Bannari, P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank[J]. Chemical Engineering Science,2006,61:3313-3322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700