用户名: 密码: 验证码:
流态化脱硫反应过程的湍流气固两相相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了揭示流态化气固两相流以及在此基础上发生的中温烟气脱硫反应过程的规律,实现性能预测和过程优化,本文首先分别从脉动流和平均流两个层面研究了气固两相的湍流相互作用。
     气固两相在脉动流层面的相互作用,称为“湍流变动”。采用PDA方法测量了垂直突扩圆管内下行稀疏气固两相流场和湍流特性。提出研究湍流变动时,应首先解决流场比较的基准问题——消除流场拉伸效应和入口效应。研究证实了小颗粒削弱湍流的特性;在未充分发展的突扩流动中,湍流变动会不断累积;流场的强剪切可强化湍流变动。提出将气相脉动速度与平均流速度梯度之间的线性关系作为一个重要判据,用于判定流动的强剪切性,以及在强剪切流中是否发生了湍流变动。
     针对气固两相在平均流层面的相互作用,研究了非均匀流态化稠密气固两相流动的曳力问题。运用流态化多尺度最小能量原理(EMMS),与欧拉框架下的计算流体力学(CFD)相结合,发展出了不含经验系数的QL-EMMS非均匀曳力模型。通过与曳力实验数据和循环流化床实验数据的双重对比,证明了该曳力模型的准确性和普遍适用性。又结合O-S模型的合理内核发展了更加符合物理真实的QL-EMMSn模型,但仍需进一步数值检验。
     为实现中温烟气脱硫的数值模拟,建立了脱硫反应产物的质量守恒方程和适用于欧拉框架的T-T吸收剂中温固硫模型。发现了作为反应状态参数的钙转化率与固硫反应速率之间的分段平方线性关系,据此改进了固硫模型表达式。实现了化学反应方程与欧拉双流体气固两相流模型的成功耦合。
     分别采用O-S和QL-EMMS曳力模型数值研究了流化床中温烟气脱硫过程。通过非均匀系数分析,发现吸收剂颗粒浓度的非均匀度在浓、稀相过渡区达到最大;SO2浓度的非均匀度与颗粒浓度及其非均匀度的乘积存在一一对应的关系;证明了颗粒浓度的均匀分布可有效提高脱硫效率的推断;发现高风速会强化颗粒的均匀分布,但同时也会缩短气固有效反应时间。
     提出了基于撞击流原理的新型反应器结构,初步研究表明,新结构有强化气固两相传质、大幅度提高脱硫效率的作用,为后续研究奠定了重要的基础。
For the optimization and prediction of the moderate temperature flue gas desulfurization (FGD) process in the fluidized bed reactor, an investigation was conducted on the turbulent gas-solid two-phase interactions from the fluctuation level and mean flow level.
     To study the two-phase interaction occurs at fluctuation level, which is the so called“turbulence modulation”, PDA was used to measure the turbulent gas-solid two-phase flow field. A criterion that is to eliminate the elongation effects and inlet effects was first proposed to unify the basis for comparison of flow field variables. It is approved that fine particles attenuate turbulence. And in the under developing flows, the turbulence modulation will be accumulated. The intense shear can strengthen the turbulence modulation. The linear relationship between the gas fluctuation velocity and velocity gradient can be used as an important criterion to distinguish whether there is intense shear in the flow and further, whether the turbulence modulation occurs.
     The drag force in the heterogeneous dense fluidized flows, as a key problem of interactions in the mean flow level, was studied with theoretical analysis. The Energy Minimization Multi-scale (EMMS) theory was combined with Computational Fluid Dynamics (CFD) to develop an auto-adaptive drag force model, which is called QL-EMMS model. Comparison between the simulation and the experiment data approves the advances of the model. The model again was combined with the reasonable kernel of the O-S model to develop the QL-EMMSn model which was proved to be more close to physical reality. However, the new model is still need to be verified by numerical method.
     In the numerical study of dry FGD process at moderate temperature in CFB, an improved sulfur capture model for T-T sorbent is first obtained based on the finding that the reaction rate is proportional to the square of calcium conversion rate in different ranges.
     The FGD process in CFB was simulated by using the O-S model and QL-EMMS model respectively. The results show that the heterogeneity of the particle volume fraction reaches a maximum at the transition region with a small peak near the outlet beneath the hat chamber structure. The sulfating reaction rate as well as the desulfurization efficiency increase as the heterogeneity of the particle volume fraction distribution decreases. Higher inlet gas velocity will intensify the uniform distribution of particles; however, it will also reduce the effective reaction time.
     A new reactor structure was proposed based on the impinging stream theory. It was found that, the new reactor can intensify two-phase mass transfer thus to improve the desulfuration efficiency. The present investigation provides an important potential for further study.
引文
[1]樊保国.第四个窗口-中温干法烟气脱硫研究[博士学位论文].北京:清华大学热能工程系, 2002
    [2]侯波.中温干法烟气脱硫过程实验研究[博士学位论文].北京:清华大学热能工程系, 2004
    [3]张颉.快速水和脱硫剂循环流态化中温烟气脱硫的过程研究[博士学位论文].北京:清华大学热能工程系, 2008
    [4]李天津.中温钙基脱硫条件下喷NH3脱除NO的实验研究[博士学位论文].北京:清华大学热能工程系, 2008
    [5]李天津,禚玉群,陈昌和,徐旭常.含水条件下多组分污染气体的FTIR同时在线测量.清华大学学报(自然科学版), 2008, 48(11): 1795-1799
    [6] Li Y R, Qi H Y, You C F, Xu X C. Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. Fuel, 2007, 86(5-6): 785-792
    [7]李玉然.用于中温烟气脱硫的钙基水和吸收剂固硫反应模型[硕士学位论文].北京:清华大学热能工程系, 2006
    [8] Qi H. Euler/Euler-simulation der Fluiddynamik Zirkulierender Wirbelschichten. Aachen, Germany: Verlag Mainz, Wissenschaftsverlag, 1997, 3-89653-224-3
    [9]罗坤.气固两相自由剪切流动的直接数值模拟和实验研究[博士学位论文].杭州:浙江大学工程热物理, 2005
    [10]孔珑.两相流体动力学.北京:高等教育出版社, 2004
    [11] Li J, Kwauk M. Particle-fluid two-phase flow, the energy-minimization multi-scale method. Beijing: Metallurgical Industry Press, 1994, ISBN 7-5024-1572-6
    [12]包英捷.颗粒团聚与突扩管内湍流变动研究[硕士学位论文].北京:清华大学热能工程系, 2005
    [13] Elghobashi S. On predicting particle-laden turbulent flows. Appl. Sci. Res., 1994, 52: 309-329
    [14] Gore R A, Crowe C T. Effect of particle size on modulating turbulent intensity. Int. J. Multiphase Flow, 1989, 15: 279-285
    [15] Hadinoto K, Jones E N, Yurteri C, Curtis J S. Reynolds number dependence of gas-phase turbulence in gas-particle flows. International Journal of Multiphase Flow, 2005, 31(4): 416-434
    [16] Hwang W, Eaton J K. Turbulence attenuation by small particles in the absence of gravity.International Journal of Multiphase Flow, 2006, 32(12): 1386-1396
    [17] Hetsroni G. Particle-turbulence interaction. Int. J. Multiphase Flow, 1989, 15: 735-746
    [18] Hetsroni G, Sokolov M. Distribution of mass, velocity, and intensity of turbulence in a two-phase turbulent jet. J. of Applied Mechanics, 1971, 38: 315-327
    [19] Kussin J, Sommerfeld M. Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 2002, 33(5): 143-159
    [20] Levy Y, Lockwood F C. Velocity measurements in a particle laden turbulent free jet. Combustion and flame, 1981, 40: 333-339
    [21] Ljus C, Johansson B, Almstedt A-E. Turbulence modification by particles in a horizontal pipe flow. International Journal of Multiphase Flow, 2002, 28(7): 1075-1090
    [22] Ooms G, Poelma C, Poesio P, Pourquie M B M, Westerweel J. Verification of a model to predict the influence of particle inertia and gravity on a decaying turbulent particle-laden flow. International Journal of Multiphase Flow, 2008, 34(1): 29-41
    [23] Sheen H J, Jou B H, Lee Y T. Effect of particle size on a two-phase turbulent jet. Experimental Thermal and Fluid Science, 1994, 8: 315-327
    [24] Tashiro H, Watanabe E, Shinano H, Funatsu K, Tomita Y. Effect of mixing gas-fine particle suspension flow with small amount of coarse ones in a horizontal pipe. International Journal of Multiphase Flow, 2001, 27(11): 2001-2013
    [25] Tsuji Y, Morikawa Y. LDV measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mechanics, 1982, 120: 385-409
    [26] Tsuji Y, Morikawa Y, Shiomi H. LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mechanics, 1984, 139: 417-434
    [27] Tsuji Y, Morikawa Y, Tanaka T, Karimine K, Nishida S. Measurement of an axisymmetric jet laden with coase particles. Int. J. Mutiphase Flow, 1988, 14: 565-574
    [28] Li C, Mosyak A, Hetsroni G. Direct numerical simulation of particle-turbulence interaction. International Journal of Multiphase Flow, 1999, 25(2): 187-200
    [29] Yokomine T, Shimizu A. Prediction of turbulence modulation by using k -εmodel for gas-solid flows. Proceedings of The 2nd International Conference on Multiphase Flow '95-Kyoto. Kyoto, Japan: 1995
    [30] Yuan Z, Michaelides E E. Turbulence modulation in particulate flows--A theoretical approach. International Journal of Multiphase Flow, 1992, 18(5): 779-785
    [31] Elghobashi S, Truesdell G C. On the two-way interaction between homogeneous turbulence and dispersed solid particles. II: Particle dispersion. Phys. Fluids, 1994, 6(3): 1405-1407
    [32] Crowe C T. On models for turbulence modulation in fluid–particle flows. Int. J. Multiphase Flow, 2000, 26: 719-727
    [33] Kenning V M, Crowe C T. On the effect of particles on carrier phase turbulence in gas-particle flows. Int. J. Multiphase Flow, 1996, 23: 403-408
    [34]李玲,徐忠.颗粒存在对网栅后气相流动湍流特性的影响.应用力学学报, 2000, 17(1): 36-40
    [35] Bolio E J, Sinclare J. Gas Turbulence Modulation in the Pneumatic Conveying of Massive Particles in Vertical Tubes. Int. J. Multiphase Flow, 1995, 21: 985-1001
    [36] Yarin L P, Hetsroni G. Turbulence intensity in dilute two-phase flows: the particles-turbulence interaction in dilute two-phase flow. Int. J. Multiphase Flow, 1994, 20: 27-44
    [37] Zeng Z, Zhou L, Qi H. Large Eddy Simulation of Particle Wake Effect and RANS Simulation of Turbulence Modulation in Gas-Particle Flows. Chinese Journal of Chemical Engineering, 2007, 15(1): 12-16
    [38] Gore R A, Crowe C T. Modulation of turbulence by a dispersed phase. J. Fluids Engrg., 1991, 113(6): 304-307
    [39]燕小芬,王希麟.两相湍射流喷口附近湍流度影响因素研究.工程热物理学报, 2008, 29(1): 96-98
    [40]燕小芬,王希麟.不同材料颗粒对两相湍射流场的调制规律.清华大学学报(自然科学版), 2007, 47(8): 1375-1379
    [41]燕小芬,王兵,王希麟.颗粒对小突片喷口湍射流调制的研究.推进技术, 2007, 28(3): 253-257
    [42]于勇,周力行.突扩两相流动中颗粒相对气体湍流的影响.清华大学学报(自然科学版), 2005, 45(2): 271-274
    [43] Varaksin, Yu A, Kurosaki Y, Satoh I, Polezhaev, Yu V, Polyakov A F. Experimental study of the direct influence of the small particles on the carrier air turbulence intensity for pipe flow. Third International Conference on Multiphase Flow, ICMF'98. Lyon, France: 1998
    [44] Gillandt I, Crowe C T. Turbulence modulation of fluid-particle flows-a basic approach. Third International Conference on Multiphase Flow, ICMF'98. Lyon, France: 1998
    [45]张兆顺,崔柱香.流体力学.北京:清华大学出版社, 1999
    [46]陈懋章.粘性流体动力学基础.北京:高等教育出版社, 2002
    [47] Lapple C E, Shepherd C B. Calculation of particle trajectories. Ind. Eng. Chem., 1940, 32(5): 605-617
    [48]杨猛.计算流体力学两相流流动的模拟及两相流模型的研究[硕士学位论文].天津:天津大学化学工程, 2005
    [49] Clift R, Grace J R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978
    [50] Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 1989, 58(1): 63-70
    [51]许光文.循环流化床中非均匀流动结构的模拟[博士学位论文].北京:中国科学院化工冶金研究所, 1996
    [52]李静海,欧阳洁,高士秋,葛蔚,杨宁,宋文立.颗粒流体复杂系统的多尺度模拟.北京:科学出版社, 2005
    [53] Wen C Y, Yu Y H. Mechanics of fluidization. AICHE Symp., 1966, Ser.62: 100-111
    [54] Li J, Kuipers J A M. Gas-particle interactions in dense gas-fluidized beds. Chemical Engineering Science, 2003, 58: 711-718
    [55] Schiller L, Naumann A. Uber die grundlegenden Berechungen bei der Schwerkaftaufbereitung. Ver. Deutsch. Ing., 1933, 77(5): 318-327
    [56] Massey B S. Mechanics of Fluids. New York: D. Van Nostrand Company, 1968
    [57] Clift R, Gauvin W H. The motion of particles in turbulent gas streams. Proc. Chemeca, 1970, 70(1): 14-21
    [58] Richardson J F, Davidson F, Harrison D. Fluidisation. London and New York: Academic Press, 1971
    [59] Molerus O. A coherent representation of pressure drop in fixed beds and of bed expansion for particulate fluidized beds. Chemical Engineering Science, 1980, 35(6): 1331-1340
    [60] White F M. Viscos Fluid Flow. New York: McGraw-Hill, 1991
    [61] Ganser G H. A rational approach to drag prediction of spherical and nonspherical particles. Powder Technology, 1993, 77(2): 143-152
    [62] Khan A R, Richardson J F. Pressure gradient and friction factor for sedimentation and fluidisation of uniform spheres in liquids. Chemical Engineering Science, 1990, 45(1): 255-265
    [63] Liu D Y, Anders K, Frohn A. Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube. International Journal of Multiphase Flow, 1988, 14(217-232)
    [64]刘大有.二相流体动力学.北京:高等教育出版社, 1993
    [65] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. Boston: Academic Press, 1994, ISBN 0122824709
    [66] Syamlal M, O' Brien T J. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 1988, 14(5): 473-481
    [67] Syamlal M, O' Brien T J. Computation of flow patterns in circulating fluidized bed. Aiche. Symposium 1989. 22-31
    [68] Di Felice R. The voidage function for fluid-particle interaction systems. InternationalJournal of Multiphase Flow, 1994, 20(1): 153-159
    [69] Mazzei L, Lettieri P. A drag force closure for uniformly dispersed fluidized suspensions. Chemical Engineering Science, 2007, 62(22): 6129-6142
    [70] Hill R J, Koch D L, Ladd J C. The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech., 2001, 448: 213-241
    [71] Hill R J, Koch D L, Ladd J C. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech., 2001, 448: 243-278
    [72] Ergun S. Fluid flow through packed columns. Chem. Engng. Progr., 1952, 48(1): 89-94
    [73] Foscolo P U, Gibilaro L G, Waldram S P. A unified model for particulate expansion of fluidised beds and flow in fixed porous media. Chemical Engineering Science, 1983, 38(8): 1251-1260
    [74] Gibilaro L G, Di Felice R, Waldram S P, Foscolo P U. Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chemical Engineering Science, 1985, 40(10): 1817-1823
    [75] Gidaspow D. Hydrodynamics of fluidization and heat trasfer: supercomputer modeling. Appl. Mech. Rev., 1986, 39(1): 1-22
    [76] Happel J. Viscous flow in multi-particle systems: Slow motion of fluids relative to beds of spherical particles. AICHE Journal, 1958, 4: 197-202
    [77] Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICHE Journal, 1979, 25(6): 843-855
    [78] Arastoopour H, Pakdel P, Adewumi M. Hydrodynamic analysis of dilute gas--solids flow in a vertical pipe. Powder Technology, 1990, 62(2): 163-170
    [79] Bokkers G A, van Sint Annaland M, Kuipers J A M. Mixing and segregation in a bidisperse gas-solid fluidised bed: a numerical and experimental study. Powder Technology, 2004, 140(3): 176-186
    [80] Benyahia S, Syamlal M, O'Brien T. Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technology, 2006, 162: 166-174
    [81] Koch D L, Hill R J. INERTIAL EFFECTSIN SUSPENSION AND POROUS-MEDIA FLOWS. Annu. Rev. Fluid Mech., 2001, 33: 619-647
    [82] Ding J, Gidaspow D. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. Aiche Journal, 1990, 36(4): 523-538
    [83] Jiradilok V, Gidaspow D, Damronglerd S, Koves W J, Mostofi R. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chemical Engineering Science, 2006, 61(17): 5544-5559
    [84] Kato K, Takarada T, Tamura T. Particle hold_up distribution in a circulating fluidized beds.The 3rd Int. Conf. on Circulating Fluidized Bed Combustion. Japan: 1990
    [85] Miller A, Gidaspow D. Dense, Verticle Gas-Solid Flow in a Pipe. Aiche Journal, 1992, 38(11): 1801-1815
    [86] Samuelsberg A, Hjertager B H. Computational Modeling of Gas/Particle Flow in a Riser. Aiche Journal, 1996, 42(6): 1536-1546
    [87] Sinclair J L. Gas-Particle Flow in a Verticle Pipe with Particle-Particle Interactions. Aiche Journal, 1989, 35(9): 1473-1486
    [88] Tsuo Y P, Gidaspow D. Computation of Flow Patterns in Circulating Fluidized Beds. Aiche Journal, 1990, 36(6): 885-896
    [89] Zheng Y, Wan X, Qian Z, Wei F, Jin Y. Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-Θtwo-fluid model. Chemical Engineering Science, 2001, 56(24): 6813-6822
    [90]万晓涛,郑雨,魏飞,金涌.循环流化床提升管气固湍流的计算流体力学模型——k-ε-kp-εp-Θ5参数双流体模型.化工学报, 2002, 53(5): 461-468
    [91] Bai D, Issangya Y S, Grace J R. Characteristics of gas-fuidized beds in different fow regimes. Industrial Engineering Chemistry Research, 1999, 38: 803-811
    [92] Cui H, Li J, Kwauk M, An H, Chen M, Ma Z, Wu G. Dynamic behaviors of heterogeneous flow structure in gas-solid fluidization. Powder Technology, 2000, 112(1-2): 7-23
    [93] Lin Q, Wei F, Jin Y. Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization. Chemical Engineering Science, 2001, 56(6): 2179-2189
    [94] Zhang M, Qian Z, Yu H, Wei F. The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. Powder Technology, 2003, 129: 46-52
    [95] Zhu H, Zhu J. Characterization of fluidization behavior in the bottom region of CFB risers. Chemical Engineering Journal, 2008, 141(1-3): 169-179
    [96]刘会娥.不同结构循环流化床流动、混合研究及其反应器数学模拟[博士学位论文].北京:清华大学化学工程系, 2002
    [97]张明辉,钱震,余皓,魏飞,金涌.大型循环流化床流动结构分析.化工学报, 2003, 54(2): 182-188
    [98] Yerushalmi J, Cankurt N T. Further studies of the regimes of fluidization. Powder technology, 1979, 24(2): 187-205
    [99] O' Brien T J, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed. 4th International Conference on CFB. Somerset, USA: 1993. 430-435
    [100] Yerushalmi J, Turner D H, Squires M. The fast fluidized bed. Ind. eng. chem. process des. dev., 1976, 15(1): 47-54
    [101]王勤辉,高琼,石惠娴,吴学成,骆仲泱,岑可法.循环流化床中的颗粒团形成、结构及其运动.浙江大学学报(工学版), 2006, 40(1): 118-122
    [102] Grace J R, Tuot J. A theory for cluster formation in vertically conveyed suspensions of intermediate density. Trans. Inst. Chem. Eng., 1979, 57: 49-54
    [103]肖海涛.欧拉气固曳力模型的理论研究与数值模拟[硕士学位论文].北京:清华大学热能工程系, 2001
    [104] Li J, Kwauk M. Multiscale Nature of Complex Fluid-Particle Systems. Ind. Eng. Chem. Res., 2001, 40(20): 4227–4237
    [105] Li J, Kwauk M. Exploring complex systems in chemical engineering--the multi-scale methodology. Chemical Engineering Science, 2003, 58(3-6): 521-535
    [106] Yang N, Wang W, Ge W, Li J. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal, 2003, 96(1-3): 71-80
    [107]肖海涛,祁海鹰,由长福,徐旭常.一个气固两相流动阻力的新模型.化工学报, 2003, 54(3): 311-315
    [108] Ge W, Li J. Physical mapping of fluidization regimes--the EMMS approach. Chemical Engineering Science, 2002, 57(18): 3993-4004
    [109] Wang W, Li J. Simulation of gas-solid two-phase flow by a multi-scale CFD approach--of the EMMS model to the sub-grid level. Chemical Engineering Science, 2007, 62(1-2): 208-231
    [110] Wang J, Ge W, Li J. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical Engineering Science, 2008, 63(6): 1553-1571
    [111]李静海.两相流多尺度作用模型和能量最小方法[博士学位论文].北京:中国科学院化工冶金研究所, 1987
    [112]程从礼.循环流化床能量最小多尺度环核模型[博士学位论文].北京:中国科学院过程工程研究所, 2001
    [113] Wang W, Lu B, Zhang N, Shi Z, Li J. A review of variational multiscale CFD for gas-solid CFB modeling. International Journal of Multiphase Flow, In Press, Accepted Manuscript
    [114] Lu B, Wang W, Li J, Wang X, Gao S, Lu W, Xu Y, Long J. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chemical Engineering Science, 2007, 62(18-20): 5487-5494
    [115] Wang W, Lu B, Li J. Choking and flow regime transitions: Simulation by a multi-scale CFD approach. Chemical Engineering Science, 2007, 62(3): 814-819
    [116] Wang W, Lu B, Dong W, Li J. Multi-scale CFD simulation of operating diagram for gas-solid risers. The Canadian Journal of Chemical Engineering, 2008, 86: 448-457
    [117] Li Y, Kwauk M. The dynamics of fluidization. Fluidiaztion. New York: Plenum Press.1980. 537-544
    [118] Yang N, Wang W, Ge W, Li J. Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow. China Particuology, 2003, 1(1): 38-41
    [119] Yang N, Wang W, Ge W, Wang L, Li J. Simulation of Heterogeneous Structure in a Circulating Fluidized-Bed Riser by Combing the Two-Fluid Model with the EMMS Approach. Ind. Eng. Chem. Res., 2004, 43: 5548-5561
    [120]肖显斌.循环流化床锅炉燃烧室多维数学模型与试验研究[博士学位论文].北京:清华大学热能工程系, 2006
    [121] Dong W, Wang W, Li J. A multiscale mass transfer model for gas-solid riser flows: Part II--Sub-grid simulation of ozone decomposition. Chemical Engineering Science, 2008, 63(10): 2811-2823
    [122] Dong W, Wang W, Li J. A multiscale mass transfer model for gas-solid riser flows: Part 1 -- Sub-grid model and simple tests. Chemical Engineering Science, 2008, 63(10): 2798-2810
    [123] Zhang N, Lu B, Wang W, Li J. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed. Particuology, In Press, Corrected Proof
    [124] Richardson J F, Zaki W N. Sedimentation and fluidization: Part I. Trans. Int. Chem. Engr., 1954, 32(1): 35-53
    [125]王雪瑶,吴学智,姜凡,徐详,肖云汉.高固体通量、高气速循环流化床提升管内气固两相流动的实验和CFD研究.中国工程热物理年会多相流分会.青岛: 2008
    [126]吴学智,王雪瑶,姜凡,徐详,肖云汉. T型突变口循环流化床内气固流动的数值模拟研究.中国工程热物理年会多相流分会.青岛: 2008
    [127] Harris A T, Davidson J F, Thorpe R B. The prediction of particle cluster properties in the near wall region of a vertical riser (200157). Powder Technology, 2002, 127(2): 128-143
    [128]于勇.两相流动气体湍流变动模型和稠密两相湍流模型的研究[博士学位论文].北京:清华大学工程力学系, 2004
    [129] DANTEC. PDA Installation and User’s Guide. Denmark: 1994
    [130]龚晓波,林高平,冯霄,郁永章.突扩管道中密相两相湍流的数值研究.西安交通大学学报, 2001, 35(8): 858-863
    [131] Hinze J O. Turbulence. McGraw-Hill Book Company, 1975
    [132] Prandtl L. Essentials of Fluid Dynamics. Hafner Publishing Company, 1952
    [133]吴昊,郭印诚.下行槽道气粒两相流中颗粒速度的PIV测量.中国工程热物理学会第十二届年会多相流分会.重庆: 2007. 468-472
    [134] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles Press, 1975, ISBN 0387283218
    [135] Matsen J M. Mechanisms of choking and entrainment. Powder Technology. Powder Technology, 1982, 32(1): 21-27
    [136] Tanner H. Lokale stromungsmechanik in hochexpanderten zirkulierenden gas/feststoff-wirbelschichten[Dissertation]. Schweiz: ETH Zurich, 1994
    [137] Johnson P C, Jackson R. Frictional-collisional collisional constitutive relations for grannular material. J. Fluid Mech., 1987, 176: 67-93
    [138] Bi H T, Grace J R, Zhu J X. Types of choking in vertical pneumatic systems. International Journal of Multiphase Flow, 1993, 19(6): 1077-1092
    [139] Yang W-C. "Choking" revisited. Ind. Eng. Chem. Res., 2004, 43(18): 5496-5506
    [140] Bai D, Issangya A S, Grace J R. A novel method for determination of choking velocities. Powder Technology, 1998, 97(1): 59-62
    [141] Ouyang S, Li X G, Potter O E. Circulating fluidized bed as a catalytic reactor: experimental study. A.I.Ch.E. Journal, 1995, 41(6): 1534-1542
    [142]张奇.新型中温烟气脱硫剂制备工艺研究[学士学位论文].北京:清华大学热能工程系, 2002
    [143]侯波,祁海鹰,由长福,徐旭常.用于中温烟气脱硫的新型钙基脱硫剂.工程热物理学报, 2004, 25(1): 159-162
    [144]陈兵,张学学.干法脱硫中单颗粒数学模型研究进展.工业锅炉, 2003(1): 16-19
    [145] Bortz S J, Roman V P, Yang R J, Offen G R. Dry hydroxide injection at economizer temperature for improved SO2 control technologies. Joint Symposium on dry SO2 and Simultaneous SO2/NOx Control Technologies,. Raleigh, North Carolina, U.S.A.: 1986
    [146] Tremple D P, Rochelle G T. Reaction of SO2 with Ca(OH)2 and CaO at 100 to 800℃. A.I.Ch.E. Meeting on SO2 Emission Control Technology and Strategies. Pliladephia: 1989
    [147] Hartman M, Trnka O. Reactions between calcium oxide and flue gas containing sulfur dioxide at lower temperature. A.I.Ch.E. Journal, 1993, 39(4): 615-623
    [148] Fernandez I, Viguri J R, Irabien A. Kinetic behaviour of desulfurization processes at medium temperature (350oC) using calcium hydroxide. Proceedings of the 3rd international conference on combustion technologies for a clean environment. Lisboa: 1995
    [149] Fernandez I, Garea A, Irabien A. SO2 Reaction with Ca(OH)2 at Medium Temperatures (300-425℃): Kinetic Behaviour. Chemical Engineering Science, 1998, 53(10): 1869-1881
    [150] Garea A, Viguri J R, Irabien A. Kinetics of flue gas desulphurization at low temperatures: fly ash/calcium (3/l) sorbent behaviour. Chemical Engineering Science, 1997, 52(5): 715-732
    [151] Fernandez I, Garea A, Irabien A. Flue-gas Desulfurization at Medium Temperatures. Kinetic Model Validation from Thermogravimetric Data. Fuel, 1997, 77(7): 749-755
    [152] Liu C F, Shih S M, Lin R B. Kinetic model for the reaction of Ca(OH)2/fly ash sorbents with SO2 at low temperatures. Ind. Eng. Chem. Res., 2004, 43(15): 4112-4117
    [153] Liu C F, Shih S M, Lin R B. Kinetics of the reaction of Ca(OH)2/fly ash sorbent with SO2 at low temperatures. Chemical Engineering Science, 2002, 57(1): 93-104
    [154] Ho C S, Shih S M, Liu C F. Kinetics of the sulfation of Ca(OH)2 at low temperatures. Ind. Eng. Chem. Res., 2002, 41(14): 3357-3364
    [155] Shih S M, Ho C S, Song Y S, Lin J P. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind. Eng. Chem. Res., 1999, 38(4): 1316-1322
    [156] Zhang J, You C, Qi H, Chen C, Xu X. Effect of Solids Concentration Distribution on the Flue Gas Desulfurization Process. Environ. Sci. Technol., 2006, 40: 4010-4015
    [157] Garea A, Viguri J R, Irabien A. Kinetics of flue gas desulphurization at low temperatures: fly ash/calcium (3/l) sorbent behaviour. Chemical Engineering Science, 1997, 52(5): 715-732
    [158] Irabien A, Cortabitarte F, Ortiz M I. Kinetics of flue gas desulfurization at low temperatures: Nonideal surface adsorption model. Chemical Engineering Science, 1992, 47(7): 1533-1543
    [159]钟秦.燃煤烟气脱硫脱硝技术及工程实践(第二版).北京:化学工业出版社, 2007, ISBN 978-7-122-00321-8
    [160]范维澄,陈义良,洪茂玲.计算燃烧学.合肥:安徽科学技术出版社, 1987
    [161] Zheng Y, Wan X, Qian Z, Wei F, Jin Y. Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-[var epsilon]-kp-[var epsilon]p-[Theta] two-fluid model. Chemical Engineering Science, 2001, 56(24): 6813-6822
    [162]郭印诚,陈新国,徐春明.运用稠密气体理论建立气粒两相流流动模型.化学反应工程与工艺, 1999, 15(4): 416-423
    [163] Noh Y-H, Yoo K. Internet, inequality and growth. Journal of Policy Modeling, 2008, 30(6): 1005-1016
    [164]解火亘,莫旋.论不平等程度度量的统计方法.邢台职业技术学院学报, 2006, 23(1): 26-30
    [165] Samuelson P A, Nordhaus W D. Macroeconomics: A Version of Economics. New York: McGraw-Hill, 1989, 0070548773, 9780070548770
    [166] Peng Y Y, Song J F, Wei Y D, Shi M X, Zhu T Y. Research progress of sintering flue gas desulphurization in iron and steel industry. Energy for Metallurgical Industry, 2008, 27(3): 55-58
    [167]怀秀兰,刘登瀛,吴涛.半环对撞干燥的实验研究.工程热物理学报, 1999, 20(2): 199-204
    [168]伍沅.撞击流.北京:化学工业出版社, 2006, ISBN 7-5025-7957-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700