用户名: 密码: 验证码:
水工岩体结构三维精细建模与曲面块体分析理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大型水电工程中,岩体结构是控制坝基坝肩、地下结构和边坡工程等稳定的主要因素之一。对于深埋于坚硬、高应力的岩体内的地下引水发电系统,其区域性地质构造和岩体内随机发育的节理裂隙等构成了地下洞室区域复杂的地质环境,而这些岩体结构面和开挖面组合切割得到的工程岩石块体的失稳将导致洞室围岩的破坏并影响到工程安全。因此,准确分析和预测地下洞室区域的岩石块体信息,包括块体的位置、几何形态、块体与地下结构的相互关系的确定,是大跨度地下洞室设计与施工中需要解决的关键问题之一。本文在水电工程原始地质数据分析的基础上,针对不同类型的地质表达数据研究了确定型建模——地质构造三维建模技术和随机型建模——随机结构面三维网络模拟技术,提出了水电工程岩体结构三维精细建模的理论与方法;在岩体结构三维精细模型的支持下,进行地下洞室曲面块体的识别分析研究。本文主要工作与研究成果如下:
     1.针对水电工程地质构造特点,基于确定型地质数据,引入水电工程地质构造三维建模方法。研究了面向水电工程地质的三维混合数据结构,地质构造曲面和地质体的NURBS构造技术等,并对岩体结构中的地质构造对象(如地层、断层等)提出了相应的拟合构造和几何建模方法,完成水电工程三维地质构造模型的建立,该模型满足了精度高、数据量小的要求。
     2.针对裂隙发育的随机性、分组性和分区性特点,基于统计型裂隙数据,引入随机结构面三维网络模拟技术,进行工程区域随机裂隙网络模拟。研究了基于实测数据的模拟裂隙面动态校核技术,以保证模拟结果在采样区与现场情况一致,提高模拟真实性;在三维地质构造模型支持下,研究在地质构造约束区内裂隙面的动态模拟;耦合三维地质构造模型,建立了岩体结构三维精细模型,精细地描述了工程区域复杂的岩体构造系统。
     3.基于岩体结构三维精细模型,进行地下洞室工程岩石块体的识别分析研究。提出曲面块体的概念和数学定义,并提出曲面块体识别的三大定理——封闭性、完备性和唯一性,为块体识别奠定理论基础;提出了基于无向图的地质结构面网络优化方法,极大地提高了块体识别效率;结合洞室开挖面,设计了约束曲面块体和自由曲面块体的识别功能;研究曲面块体数据结构,并分析其空间几何形态,为进一步的块体稳定性分析提供可靠的地质属性和几何信息。
     4.依托某水电工程,对上述理论、技术和方法进行了完整、系统的应用研究。建立了该工程区域的三维地质构造模型和岩体结构三维精细模型,并进行地下洞室曲面块体识别和块体几何形态的分析,为进一步的稳定分析和围岩支护提供有价值的定性和定量数据。
Rock structure is one of main factors influencing stability problem of dam foundation, dam shoulder, underground structures and slope engineering. In large-scale hydroelectric project, underground water diversion and power generation system is mostly laid deeply into solid rock mass with high geo-stress, and complicate geological environment surrounding the underground structures is made up of regional geological structures, such as fault, weak intercalated layers, and interlayer shear zone, and fissure structures stochastically developing inside rock mass. These geological discontinuities and excavation face of underground structures intersect with each other, and many engineering blocks are cut off. Instability of these blocks will lead to destruction of cave surrounding rock, and then influence project safety. Therefore, accurate analysis and prediction for block information surrounding underground structures, including position, geometrical morphology and relationship with structures, is one of key problems during designing and construction of large span underground cavern. Base on analysis of geological data for hydroelectric project and combing 3D geological modeling with 3D network simulation of discontinuity, theory and method of 3D refined geological modeling for hydroelectric project was present, and, with the help of this model, rapid identification for surface-block of underground structures was studied. The main contents and achievements are as follows:
     1. Based on determinate geological data and according to geological structures characteristic, method of 3D geological modeling is introduced for hydroelectric project. Hybrid data structure of engineering geology and NURBS construction technology of geological structure for hydroelectric project are studied, and relevant geometry modeling methods are present for different kind of geological object. Then, 3D geological model for hydroelectric project is realized.
     2. According to fissure development characteristic, randomness, grouping and regionalization, the simulation technology of 3D discontinuity network is introduced to reconstruct stochastic fissure in engineering region. To improve the reality of simulation, the method of dynamic verification for simulated fissure, based on fissure data from field measurement, is researched, and then it is ensured that simulation result will keep the same as field condition in sampling area. With the help of 3D geological structure model, fissure surfaces are dynamically simulated, and 3D refined geological model is rebuilt, which finely descript the complicate geological environment in engineering region.
     3. Based on 3D refined geological model, the identification method of surface-block in underground structures is studied. Concept of surface-block is presented, and its definition is made. Three theorems, sealability, completeness and uniqueness, are put forward to realize identification of surface-block. To improve identification efficiency, geological structure surface network is optimized with undirected graph, and identification functions of restrict surface block and free surface block are designed.
     4. The above theories and methods have been applied to a hydroelectric project. 3D geological model and 3D refined geological model are reconstructed, then, identification of surface blocks surrounding underground structures is done, and geometry of these blocks are analyzed, which supplies many useful qualitative and quantitative data for the following stability analysis and surrounding rock support.
引文
[1]刘阜羊,朱珍德,孙少锐.块体理论及其在洞室围岩稳定分析中的应用.地下空间与工程学报, 2006, 2(B08): 1408-1412
    [2]胡瑞华,王秋明.水利水电工程三维地质模型的研究和应用.人民长江, 2002, 33(6): 57-58
    [3]钟登华,李明超,王刚.大型水电工程地质信息三维可视化分析理论与应用.天津大学学报, 2004, 37(12): 1046-1052
    [4]陈昌彦,张菊明,杜永廉,等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用.岩土工程学报, 1998, 20(4): 1-6
    [5]贾洪彪,唐辉明,刘佑荣,等.岩体结构面三维网络模拟理论与工程应用.北京:科学出版社, 2008
    [6]巨能攀,黄润秋,许模,等.某水电站地下洞室随机块体稳定性评价及系统锚固设计.工程地质学报, 2004, 12(2): 208-214
    [7] Houlding, S.W. 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Berlin: Springer-Verlag, 1994
    [8]孟小红,王卫民,姚长利,等.地质模型计算机辅助设计原理与应用.北京:地质出版社, 2001
    [9] Mallet, J.L. Discrete smooth interpolation in geometric modeling. Computer Aided Design, 1992, 24(4): 178-190
    [10] De Kemp, E.A. Visualization of complex geological structures using 3-D Bézier construction tools. Computers & Geosciences, 1999, 25(5): 581-597
    [11] Sprague, K.B., De Kemp, E.A. Interpretive tools for 3-D structural geological modelling Part II: Surface design from sparse spatial data. GeoInformatica, 2005, 9(1): 5-32
    [12] Courrioux, G., Nullans, S., Guillen, A., et al. 3D volumetric modelling of Cadomian terranes (Northern Brittany, France): an automatic method using Vorono? diagrams. Tectonophysics, 2001, 331(1-2): 181-196
    [13]柴贺军.大型地质工程岩体结构三维可视化建模及其工程应用研究[博士后学位论文].成都:四川大学, 2001
    [14]柴贺军,黄地龙,黄润秋,等.岩体结构三维可视化及其工程应用研究.岩土工程学报, 2001, 23(2): 217-220
    [15]黄地龙,柴贺军,黄润秋.岩体结构可视化软件系统研究.成都理工学院学报, 2001, 28(4): 416-420
    [16]王秋明,甘三才,胡瑞华,等.三维地质建模技术及在工程中的应用.人民长江, 2005, 36(3): 60-62
    [17]钟登华,李明超.水利水电工程地质三维建模与分析理论及实践.北京:中国水利水电出版社,2006
    [18] Shanely R.J., Mahlab M.A. Delineation and Analysis of Cluster in Orientation Data. Mathematic Geology, 1976, 8(1): 9-23
    [19] Gaziev E G., Tiden E N. Probabilistic Approach to the Study of Jointing in Rock Masses. Bulletin of the Int. Assoc. of Engineering Geology, 1979, 20.
    [20] Miller S. M., Borgman L. E. Spectral Type Simulation of Spatially Correlated Fracture Set Properties. Mathematical Geology, 1985, 17
    [21] Kulatilake, P.H.S.W., Wu, T.H., Wathugala, D.N. Probabilistic modelling of joint orientation. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(5): 325-350
    [22]陈剑平,石丙飞,王树林,等.单测线法估算随机节理迹长的数值技术.岩石力学与工程学报, 2004. 23(10): 1755-1759
    [23]陈剑平,吴源,尚晓春.取样窗口迹长均值估计方法的讨论.工程地质学报, 2001, 9(3): 302-307
    [24]黄国明,黄润秋.基于交切条件的不连续面平均迹长估算法.地质科技情报, 1999, 18(1): 105-107
    [25] Kulatilake, P.H.S.W., Wu, T.H. The density of discontinuity traces in sampling windows. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1984, 21(6): 345-347
    [26] Zhang, L., Einstein, H.H. Estimating the mean trace length of rock discontinuities. Rock Mechanics and Rock Engineering, 1998, 31(4): 217-235
    [27] Kulatilake, P.H.S.W., Wu, T.H. ESTIMATION OF MEAN TRACE LENGTH OF DISCONTINUITIES. Rock Mechanics and Rock Engineering, 1984, 17(4): 215-232
    [28] Cruden, D.M. DESCRIBING THE SIZE OF DISCONTINUITIES. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1977, 14(3): 133-137
    [29] Kulatilake, P.H.S.W., Wu, T.H. RELATION BETWEEN DISCONTINUITY SIZE AND TRACE LENGTH, in Rock Mechanics: Key to Energy Production, Proceedings of the 27th US Symposium on Rock Mechanics. 1986, Soc of Mining Engineers of AIME: Tuscaloosa, AL, USA, 130-133
    [30] Priest, S.D., Hudson, J.A. ESTIMATION OF DISCONTINUITY SPACING AND TRACE LENGTH USING SCANLINE SURVEYS. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(3): 183-197
    [31] Priest, S.D. and Hudson, J.A. DISCONTINUITY SPACINGS IN ROCK. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(5): 135-148
    [32] Karzulovic, A., Goodman, R.E. DETERMINATION OF PRINCIPAL JOINT FREQUENCIES. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(6): 471-473
    [33]徐光黎,潘别同,唐明辉,等.岩体结构模型与应用.武汉:中国地质大学出版社,1993
    [34]李新强,杨松青,汪小刚.岩体随机结构面三维网络的生成和可视化技术.岩石力学与工程学报, 2007, 26(12): 2564-2569
    [35]赵红亮,陈剑平.裂隙岩体三维网络流的渗透路径搜索.岩石力学与工程学报, 2005, 24(4): 622-627
    [36]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(I):裂隙网络的随机生成.岩石力学与工程学报, 2004, 23(12): 2015-2020
    [37]李新强,陈平.岩体结构面的渗透性网络模拟研究.湖南科技大学学报:自然科学版, 2004, 19(2): 49-52
    [38]王贵宾,杨春和,殷黎明.岩体节理三维网络模拟技术及渗透率张量分析.岩石力学与工程学报, 2004, 23(21): 3591-3594
    [39]汪斌,唐辉明,简文星,等.结构面三维网络模拟在岩体质量评价中的应用.岩土力学, 2006, 27(4): 594-596
    [40]贾洪彪,马淑芝,唐辉明,等.岩体结构面网络三维模拟的工程应用研究.岩石力学与工程学报, 2002, 21(7): 976-979
    [41]庞作会,邓建辉,葛修润.在节理网络图上全自动生成有限元网络.岩石力学与工程学报, 1999, 18(2): 197-200
    [42]罗平平,朱岳明,黄金桂,等.二维随机裂隙岩体灌浆数值模拟.河海大学学报:自然科学版, 2006, 34(3): 295-298
    [43]郝哲,王介强,何修仁.岩体裂隙注浆的计算机模拟研究.岩土工程学报, 1999, 21(6): 727-730
    [44]王渭明,仇圣华.裂隙岩体巷道中的“危石”的预测模型.岩石力学与工程学报, 2000, 19(2): 215-218
    [45]邬爱清,周火明.岩体三维网络模拟技术及其在三峡工程中的应用.长江科学院院报, 1998, 15(6): 15-18,22
    [46]张奇华,邬爱清.边坡及洞室岩体的全空间块体拓扑搜索研究.岩石力学与工程学报, 2008, 27(10): 2072-2078
    [47]石根华.岩体稳定分析的赤平投影方法.中国科学, 1977, (3): 260-270
    [48] Goodman, R.E., Shi, G.H. Block theory and its application to rock engineering. Prentice-Hall: New Jersey, 1985
    [49]刘锦华,吕祖珩.块体理论在工程岩体稳定分析中的应用.北京:水利电力出版社, 1988
    [50] Lin, D., Fairhurst, C., Starfield, A.M. GEOMETRICAL IDENTIFICATION OF THREE-DIMENSIONAL ROCK BLOCK SYSTEMS USING TOPOLOGICAL TECHNIQUES. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(6): 331-338
    [51] Hoerger, S.F. Probabilistic and Deterministic Keyblock Analyses for Excavation Design. Michigan Technological University, 1988
    [52] Kottenstette, J.T. Block theory techniques used in arch dam foundation stability analysis. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3-4): 163
    [53] Jing, L., Stephansson, O. Topological identification of block assemblages for jointed rock masses. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1994, 31(2): 163-172
    [54] Mito Y., Kikuchi K., Hirano I., et al. Stochastic Block Theory for Initial Support Decision of Large Slope. International Journal Of Rock Mechanics And Mining Sciences, 1997, 34 (3-4) : 202
    [55] Shi G H, Goodman R E. The Key Blocks of Unrolled Joint Traces in Developed Maps of Tunnel Walls. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, (13):131-158
    [56] Shi G H. Single and multiple block limit equilibrium of key block method and discontinuous deformation analysis. In:Y.H.Hatzor(ed).Stability of Rock Structures Proceedings of the Fifth International Conference on Analysis of Discontinuous Deformation, Balkema, 2002, 3-43
    [57] Chan, L.Y. Application of Block Theory and Simulation Techniques to Optimum Design of Rock Excavations. University of California, Berkeley, 1987
    [58] Kuszmaul, J.S. Estimating keyblock sizes in underground excavations: accounting for joint set spacing. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 217-232
    [59] Kuszmaul J S, Goodman R E. An analytical model for estimating keyblock sizes in excavations in jointed rock masses. In: Fractured and jointed Rock Masses. Rotterdam:Balkem A A, 1995:19-26
    [60] Ikegawa, Y. and Hudson, J.A. Novel automatic identification system for three-dimensional multi-block systems. Engineering Computations, 1992, 9(2): 169-179
    [61] Shi, G H. Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2161-2170
    [62] Nakai T, Ryu M, Ohnishi Y, et al. Support design of river crossing tunnel using keyblock concept and its validating by monitoring of the countermeasure by digital photogrammetry at Suzuda tunnel. In: Ming Lu(ed.), Development and Application of Discontinuous Modeling for Rock Engineering, The Sixth International Conference on analysis of Discontinuous Deformation, Balkema, 2003, 175-181
    [63] Yarahmadi Bafghi, A.R., Verdel, T. The probabilistic key-group method.International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(9): 899-917
    [64] Goodman R E, Powell C, Investigations of Blocks in Foundations and Abutments of Concrete Dams, Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129 (2) : 105-126
    [65] Unwedge User's guide, 3D visualization of potentially unstable wedges in the rock surrounding underground excavation and calculation of factors of safety and support requirements for these wedges, 1992-1999, rocscience, inc
    [66]邬爱清,朱虹,李信广.一种考虑块体侧面一般水压分布模式下的块体稳定性计算方法.岩石力学与工程学报, 2000, 19(增): 936-940
    [67]毛海和,夏才初,张子新.块体理论赤平解析法在龙滩水电站地下厂房洞室群稳定分析中的应用.岩石力学与工程学报, 2005, 24(8): 1308-1314
    [68]张子新,孙钧.块体理论赤平解析法及其在硐室稳定分析中的应用.岩石力学与工程学报, 2002, 21(12): 1756-1760
    [69]怀超.关键块体理论在高速公路连拱隧道围岩稳定性分析中的应用[硕士学位论文].西安:长安大学, 2005
    [70]张子新,孙钧.三峡高边坡关键分形块体的概率分析.同济大学学报, 1998, 26 (3) : 335-339
    [71]王英学,高波.节理岩体的块体尺寸特征分析及其可靠度评价.岩土力学, 2000, 21(4): 397-400
    [72]张奇华.基于块体加与块体减算法的岩石块体几何形态分析.水利学报, 2006, 37(4): 418-424
    [73]谢全敏,朱瑞赓,程康.可疑关键块体成为真正关键块体的概率分析.武汉工业大学学报, 1998, 20(3): 98-100
    [74]汪卫明,陈胜宏.三维岩石块体系统的自动识别方法.武汉水利电力大学学报, 1998, 31(5): 51-55
    [75]盛谦,黄正加,邬爱清.三峡工程地下厂房随机块体稳定性分析.岩土力学, 2002, 23(6): 747-749,753
    [76]黄正加,邬爱清,盛谦.块体理论在三峡工程中的应用.岩石力学与工程学报, 2001, 20(5): 648-652
    [77]陈剑平,卢波,王良奎.复杂不稳定块体的自动搜索及其失稳方式判断——基于随机不连续面三维网络模型.岩石力学与工程学报, 2003, 22(7): 1126-1131
    [78]向晓辉,王俐,葛修润.基于三维裂隙网络模拟的有限块体面积判断法.岩土力学, 2006, 27(9): 1633-1636
    [79]吴旭东.基于块体理论的岩体稳定性可视化分析软件开发[硕士学位论文].南京:河海大学, 2007
    [80]殷德胜,汪卫明,陈胜宏.三维岩石随机裂隙网络的块体自动识别.长江科学院院报, 2008, 25(5): 72-74
    [81]张发明.多尺度三维地质结构几何模拟与工程应用.北京:科学出版社, 2007
    [82]张咸恭,李智毅,郑达辉,等.专门工程地质学.北京:地质出版社, 1988
    [83]王刚.锦屏一级水电站工程地质信息空间解译与分析研究[硕士学位论文].天津:天津大学,2005
    [84] Zhong D.H., Li M.C., Song L.G., et al. Enhanced NURBS modeling and visualization for 3D large geoengineering applications: An example from the Jinping first-level hydropower enginnering. Computers & Geosciences, 2006, 32(7): 1270-1282
    [85]张咸恭,王思敬,张倬元.中国工程地质学.北京:科学出版社, 2000
    [86]李明超.大型水利水电工程地质信息三维建模与分析研究[博士学位论文].天津:天津大学, 2006
    [87]钟登华,李明超,刘杰.水利水电工程地质三维统一建模方法研究.中国科学E辑:技术科学, 2007, 37(3): 455-466
    [88] Zhong Denghua, Li Mingchao, Liu Jie. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects. Science in China Series E: Technological Sciences, 2007, 50(3): 329-342
    [89] Piegl, L., Tiller, W. The NURBS Book, 2nd Edition. New York: Springer, 1997
    [90]李清泉,李德仁.三维地理信息系统中的数据结构.武汉测绘科技大学学报, 1996, 21(2): 128-133
    [91] Ahmed, K., Bernd, H. Elliptic grid generation using NURBS surfaces. Computer Aided Geometric Design, 1996, 13(4): 369-386
    [92]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).北京:高等教育出版社, 2001
    [93] Hu, S.M., Li, Y.F., Ju, T., et al. Modifying the shape of NURBS surfaces with geometric constraints. Computer-Aided Design, 2001, 33: 903-912
    [94]李志林,朱庆.数字高程模型.武汉:武汉测绘科技大学出版社, 2000
    [95] Fang, T.P., Piegl, L. Delaunay triangulation in three dimensions. IEEE Computer Graphics and Applications, 1995, 15(5): 62-69
    [96]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法.北京:科学出版社, 2005
    [97] Raghothama, S., Shapiro, V. Boundary representation deformation in parametric solid modeling. ACM Transactions on Graphics, 1998, 17(4): 259-286
    [98] Apprato, D., Gout, Ch., Komatitsch, D. A new method for Ck-Surface approximation from a set of curves, with application to ship track data in the Marianas trench. Mathematical Geology, 2002, 34(7): 831-843
    [99] Piegl, L., Tiller, W. Algorithm for approximate NURBS skinning. Computer-Aided Design, 1996, 28 (9): 699-706
    [100]钟登华,李明超,王刚,等.复杂地质体NURBS辅助建模及可视化分析.计算机辅助设计与图形学学报, 2005, 17(2): 284-290
    [101]钟登华,郑家祥,刘东海,等.可视化仿真技术及其应用.北京:中国水利水电出版社, 2002
    [102] Zhong Denghua, Liu Jie, Li Mingchao. An approach to 3D NURBS modeling of complex fault network considering its historic tectonics. Progress in Nature Science, 2006, 16(5): 546-553
    [103] Li Z.L., Zhu Q. Digital Elevation Model. Wuhan: Wuhan University Press, 2005
    [104]俞鸿年,卢华复.构造地质学原理.南京:南京大学出版社, 1998
    [105] Sartaj, S. Data Structures, Algorithms, and Application in C++, 2nd Edition. New Jersey: Silicon Press, 2004
    [106]苏永华,何满潮,刘晓明.裂隙化硬岩洞室围岩稳定概率分析方法.水利学报, 2004, 46-51
    [107]王旭,晏鄂川.节理岩体结构面连通性研究及其应用.岩石力学与工程学报, 2005, 24(A01): 4905-4911
    [108]李浩,张雅楠,杨彪,等.影像地质编录成果的三维可视化及查询分析方法.河海大学学报:自然科学版, 2007, 35(6): 668-672
    [109] Baecher, G.B., Lanney, N.A., Einstein, H.H. Statistical description of rock properties and sampling, in Proceeding of the 18th US Symp, Rock Mechanics(5C). 1977, Johnson Pub. Co.: Golden, Colorado, 1-8
    [110] EINSTEIN H H,BAECHER G B,VENEZIANO D,et al. Risk analysis for rock slopes in open pit mines—final technical report[R]. Cambridge,USA:Department of Civil Engineering,Massachusetts Institute of Technology,1984
    [111] Fisher, R.A. Dispersion on a sphere. Proc. in the Royal Society of London, Series A, 1953, 217: 295-306
    [112]高惠旋.统计计算.北京:北京大学出版社,1995
    [113]于青春,薛果夫,陈德基.裂隙岩体一般块体理论.北京:中国水利水电出版社, 2006
    [114] Philip J.Schneider, David H.Eberly.周长发,译.计算机图形学几何工具算法详解.北京:电子工业出版社, 2005
    [115]王树林,陈剑平,石丙飞.岩体随机结构面三维网络数值模型有效性检验.工程地质学报, 2004, 12(2): 177-181
    [116]张奇华,邬爱清.随机结构面切割下的全空间块体拓扑搜索一般方法.岩石力学与工程学报, 2007, 26(10): 2043-2048
    [117]卢波,陈剑平,王良奎.基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几何形状的判定.岩石力学与工程学报, 2002, 21(8): 1232-1238
    [118]赵国瑞,汪大菊,陆明.计算机软件技术基础.天津:天津大学出版社,2004
    [119]张奇华,邬爱清.基于凹形区分类的块体几何形态分析方法.岩土工程学报, 2005, 27(3): 299-303
    [120] Armstrong M A.基础拓扑学.孙以丰译.北京:北京大学出版社,1983
    [121]张奇华.基于块体加与块体减算法的岩石块体几何形态分析.水利学报, 2006, 37(4): 418-424
    [122]陈绍平,陈宾康.二次NURBS曲线下的面积的精确计算公式.武汉理工大学学报, 2001, 25(1): 87~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700