用户名: 密码: 验证码:
整体叶轮铣削加工弹性变形预测及误差补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体叶轮采用一体式结构,不仅可以减少发动机的零件数量,而且在很大程度上提高了发动机的性能,因此在航空、航天领域得到了广泛应用。整体叶轮通常是利用多轴联动数控铣削方法加工成型。由于整体叶轮的叶片多为薄壁结构,所以在数控铣削过程中易受到切削力作用发生弹性变形,进而产生加工误差。薄壁叶片加工误差控制一直以来都是实现整体叶轮精密加工的关键和难点。加工过程物理仿真技术的出现和不断发展为解决上述问题提供了有效手段,但尚有许多研究工作亟待开展。为此,本文围绕提高整体叶轮薄壁叶片加工精度问题,对整体叶轮几何造型实现、无干涉刀位轨迹生成、多轴变工况条件下铣削力预测、自由曲面薄壁叶片弹性变形量计算以及加工误差补偿方法等内容进行了深入研究和探讨。
     对整体叶轮几何造型实现以及刀位轨迹生成方法进行了研究,为后续研究工作的开展奠定了基础。基于B样条技术给出了曲面延伸、曲面偏置、曲面裁剪、曲面间圆角过渡的实现算法,用于完成整体叶轮的几何造型。在此基础上,进行了半开式整体叶轮数控铣削加工工艺流程设计,给出了粗加工刀具尺寸选择、过切现象避免以及粗加工分层实现等关键问题的解决方法。建立了相邻刀触点间弦高误差计算模型,提出了一种自适应步长法完成了刀位轨迹规划工作,利用直接距离法实现了刀位干涉检查与修正,并针对双转台式五轴数控机床讨论了后置处理算法。
     对整体叶轮自由曲面薄壁叶片点铣加工过程中铣削力预测方法进行了研究。提出了一种瞬时参与切削刀刃微元的判定算法,用于确定瞬时铣削力模型中积分公式上下限,完成了瞬时铣削力的预测。该判定算法涉及到两个关键问题:一是数控铣削力工过程中刀具扫描体的求解;二是工件曲面Z-map模型的建立与更新。提出了一种五轴数控铣削加工过程中刀具扫描体的求解方法:先根据包络理论在刀位点处推导出包络轮廓线方程,然后再用B样条方法对刀位轨迹上所有刀位点处的包络轮廓线进行曲面拟合,进而获得刀具扫描体曲面。利用直线与自由曲面的求交算法实现了工件曲面和刀具扫描体曲面Z-map模型的建立,将两个Z-map模型进行布尔运算完成了工件曲面Z-map模型的更新。在此基础上,根据自由曲面薄壁叶片点铣加工刀位特点,建立了一个考虑刀具倾角因素的平均铣削力经验公式,设计了多因素正交试验,进而对经验公式中的铣削力系数进行了标定,并对叶片五轴数控铣削加工过程中的铣削力预测结果进行了验证。
     对整体叶轮自由曲而薄壁叶片点铣加工过程中弹性变形量计算及误差补偿方法进行了研究。考虑了铣削力与弹性变形之间的耦合效应,将切削深度,切削宽度和刀轴倾角三个切削因素作为迭代计算的反馈变量,建立了自由曲面薄壁叶片点铣加工过程中铣削力与弹性变形量之间的迭代格式,利用Matlab和Ansys软件集成实现了自由曲面薄壁叶片实例在各个刀触点处弹性变形量的计算,预测了薄壁叶片实例的弹性变形规律。在获得各刀触点处弹性变形量的基础上,对自由曲面薄壁叶片加工误差离线补偿方法进行了研究。首先给出了单次补偿情况下残余误差的计算方法,然后应用镜面补偿法对自由曲面薄壁叶片实例进行了加工误差补偿量的迭代计算。
     为了验证本文方法的可行性和有效性,开展了整体叶轮加工实验、叶片测量实验以及叶片加工误差分析等工作。首先在双转台式五轴联动数控机床上完成了自由曲面叶型整体叶轮的加工实验,选定两个相邻叶片作为实验样件,一个叶片是未进行补偿情况下加工获得的,另一个叶片是应用本文提出的方法进行误差补偿后加工获得的;然后进行了整体叶轮叶片数据测量实验,并利用逆向工程软件Geomagic完成了叶片曲面的重构;最后通过对两个叶片样件曲面加工误差进行对比分析,验证了本文自由曲面薄壁叶片铣削加工弹性变形预测及误差补偿方法的正确性和有效性。
Integral impeller is widely used in the field of aerospace engineering, which is beneficial to reduction of total engine parts and improvement of engine performance. It is usually machined by using multi-axis numerical control (NC) milling method. The vanes of most integral impellers have complex surface modeling with thin-walled structure, and they may easily produce deformation caused by cutting force during machining process. Deformation error control of thin-walled vane is always a key and difficult techonolgy to realize precision machining of integral impeller. Although machining process simulation technology is an effective way to solve the above problem, a plenty of research works need to be developed. Therefore, in order to improve machining accuracy of integral impeller, integral impeller geometric modeling, tool path generating, cutting force prediction for five-axis milling process, elastic deformation calculation of thin-walled vane and machining error compensation have been studied in this paper.
     Firstly, the method of integral impeller geometric modeling and tool path generating is researched to lay a foundation for the following chapters. On the basis of B-spline technique, some common methods of surface editing, such as surface extension, offsetting, trimming and fillet transition are achieved for geometric modeling of integral impeller. And then some works include design of NC milling technological process, tool path planning, tool interference checking and correction and post processing are researched.
     Secondly, the method of cutting force prediction for NC milling process of free-form surface thin-walled vane is researched. An algorithm for instantaneous engaged cutting edge elements identification is proposed to ascertain upper and lower limits of the integral in a cutting force model. This identification algorithm involves two key techniques:one is the generation of the tool swept volume; the other is establishment and the update of Z-map model. Based on the envelope theory, the equation of envelope curve at each cutter location point is derived, and then tool swept volume surface for five-axis NC milling is constructed by B-spline fitting. The Z-map models of workpiece and tool swept volume are established by an intersection algorithm between line and free-form surface, and then update of the workpiece is realized by a boolean operation between workpiece Z-map model and tool swept volume Z-map model. According the cutter location characteristics of free-form surface thin-walled vane milling process, an empirical formula considered tool inclination angle of average cutting force is established, the undetermined coefficients is calibrated by carrying out an orthogonal test, and then the validity of this empirical formula is verified by using the AdvantEdge PM software.
     Thirdly, the method of elastic deformation calculating and error compensation for NC milling process of free-form surface thin-walled vane is researched. Considering the coupling relationship between cutting force and elastic deformation, an iteration format for calculating elastic deformation of free-form surface thin-walled vane is presented with cutting depth, cutting width and tool inclination angle as feedback variables, and then elastic deformation at each cutter contact point of a free-form surface thin-walled vane example is calculated in accordance with this iteration format by using Matalb and Ansys software. Base on this, the error compensation of the thin-walled vane example is studied by applying mirror method.
     Finally, in order to verify validation of the methods proposed in this paper, some works such as machining experiment of integral impeller, measuring experiment of vane and analysis of vane machining error are developed successively. During machining experiment of integral impeller under five-axis CNC machine with dual rotary tables, two adjacent vanes are selected as sample pieces, one is without error compensation, and the other is with error compensation proposed in this paper. Data measurement of impeller is carried out by using a3D scanner, and then surface reconstruction of the sample pieces is completed by applying Geomagic software. Comparison analysis of machining errors from two sample pieces is done, and the results indicate that the methods proposed in this paper are effective and valid.
引文
[1]姬俊锋,周来水,安鲁陵.开式整体叶轮数控加工技术研究[J].中国制造业信息化,2009,38(7):30-34.
    [2]蔺小军,刘维维,任军学等.薄壁叶片加上变形误差补偿技术[J].航空制造技术,2010,(14):54-56.
    [3]毕运波.铣削加工过程物理仿真及其在航空整体结构件加工变形预测中的应用研究[博士学位论文].浙江:浙江大学,2008.
    [4]国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2011~2020)[R].机械与制造科学,北京:科学出版社,2010.
    [5]Erik L J Bohez, S D Ranjith Senadhera, Ketan Pole, et al. A geometric modeling and five-axis machining algorithm for centrifugal impellers[J]. Journal of Manufacturing Systems,1997, 16(6):422-436.
    [6]Young H T, Chuang L C. An integrated machining approach for a centrifugal impeller[J]. International Journal of Advanced Manufacturing Technology,2003,21(8):556-563.
    [7]John C J, Chiou. Accurate tool position for five-axis ruled surface machining by swept envelope approach[J]. Computer-Aided Design,2004,36(10):967-974.
    [8]Johanna Senatore, Frederic Monies, Jean-Max Redonnet, et al. Analysis of improved positioning in five-axis ruled surface milling using envelope surface[J]. Computer-Aided Design,2005,37(10):989-998.
    [9]Johanna Senatore, Frederic Monies, Jean-Max Redonnet, et al. Improved positioning for side milling of ruled surfaces:Analysis of the rotation axis's influence on machining error[J]. International Journal of Machine Tools and Manufacture,2007,47(6):934-945.
    [10]Julien Chaves-Jacob, Gerard Poulachon, Emmanuel Duc. New approach to 5-axis flank milling of free-form surfaces:Computation of adapted tool shape[J]. Computer-Aided Design, 2009,41(12):918-929.
    [11]孔马斌,胡自化,李慧等.整体叶轮五轴侧铣刀位优化新算法与误差分析[J].计算机集成制造系统,2008,14(7):1386-1391.
    [12]曹利新,苏云玲,金玉淑.三元整体叶轮的几何造型与数控加工刀具路径规划[J].推进技术,2005,26(2):188-192.
    [13]曹利新,苏云玲.三元整体叶轮曲面造型及其计算机辅助制造技术[J].大连理工大学学报,2004,44(5):681-684.
    [14]曹利新,马晓嘉.五坐标加工整体叶轮粗加工刀位规划[J].大连理工大学学报,2008, 48(1):68-73.
    [15]陈良骥,上永章.整体叶轮五轴侧铣数控加工方法的研究[J].计算机集成制造系统,2007,13(1):141-146.
    [16]孙春华,陈皓晖,刘华明.整体叶轮侧铣数控加工刀位轨迹生成新方法[J].推进技术,2000,21(5):86-88.
    [17]孙春华,陈皓晖,刘华明.复杂曲面整体叶轮CAD/CAM技术研究[J].高技术通讯,2003,13(6):51-53.
    [18]姬俊锋,周来水,安鲁陵,庄伟娜.自由曲面叶片数控加工刀具轨迹规划方法[J].机械科学与技术,2008,27(5):652-656.
    [19]姬俊锋,周来水,安鲁陵.整体叶轮轮毂曲面数控加工刀具轨迹规划方法[J].机械科学与技术,2009,28(9):1175-1179.
    [20]姬俊锋,周来水,安鲁陵,李桂东.一类开式整体叶轮五坐标数控加工刀轴矢量生成及其光顺方法的研究[J].中国机械上程,2009,20(2):202-206.
    [21]蔡永林,查建中,孙卫青.叶轮四坐标数控加工中刀轴矢量的计算[J].推进技术,2004,25(2):183-186.
    [22]蔡永林,孙卫青,姜虹.叶轮数控加工中的十涉检查[J].中国机械工程,2007,18(19):2287-2290.
    [23]吴宝海,王尚锦.自由曲面叶轮的四坐标数控加工研究[J].航空学报,2007,8(4):993-998.
    [24]任军学,张定华等.离心叶轮的小摆角五坐标数控加工方法研究[J].机械科学与技术,2004,23(3):332-334.
    [25]胡自化.薄壁件数控侧铣若十基础理论、实验及集成技术问题的研究[博士学位论文].湖南:湘潭大学,2008.
    [26]百万金.航空薄壁件精密铣削加工变形的预测理论及方法研究[博士学位论文].浙江:浙江大学,2008.
    [27]庞丽君,尚晓峰.金属切削原理[M].北京:国防工业出版社,2009.
    [28]刘战强,艾兴,李甜甜,万熠PCBN刀具加上TC4钛合金的切削加上性[J].山东大学学报,2009,39(1):77-83.
    [29]刘鹏,徐九华,冯素玲等.PCD刀具高速铣削TA15钛合金切削力的研究[J].南京航空航天大学学报,2010,42(2):224-229.
    [30]闫雪,陶华,高晓兵等.300M超高强度钢高速铣削切削力建模研究[J].机械强度,2008,30(5):860-863.
    [31]郭魂.航空多框整体结构件铣削变形机理与预测分析研究[博士学位论文].江苏:南京航空航天大学,2005.
    [32]H Ernst, M E Merchant. Chip formation, friction and high quality machined surfaces in "Surface Treatment of Metals" [J].American Society of Metals,1941,29(2):299-335.
    [33]M E Merchant. Basic mechanics of the metal cutting process[J]. Journal of Applied Mechanics,1944,67:168-175.
    [34]M E Merchant. Mechanics of the metal cutting process[J]. Journal of Applied Physics,1945, 16(6):318-324.
    [35]E H Lee, B W Shaffer. The theory of plasticity applied to the problem of machining[J]. Journal of Applied Mechanics,1951,18(4):405-441.
    [36]P L B Oxley. The mechanics of machining[M]. Ellis Horwood Limited,1989
    [37]李炳林,王学林,胡于进,李成刚.直角切削的热力建模与仿真分析[J].华中科技大学学报,2010,38(12):121-125.
    [38]Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficient from orthogonal cutting data[J]. ASME Journal of Engineering for Industry,1996,118:216-224.
    [39]郑夕健,戚作秋,张国忠.正交切削加工过程仿真[J].计算机辅助工程,2007,16(4):40-42,46.
    [40]朱江新,李言.切削模拟过程中关键技术问题的处理[J].西安理工大学学报,2005,21(2):125-128.
    [41]Xianbing L, Soshi M, et al. A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro feature[J]. Transactions of the ASME, 2006,128:74-84.
    [42]Kline W A, DeVor R E, Lindberg J R. The prediction of cutting forces in end milling with application to cornering cuts[J]. Int. J. Mach. Tool Des. Res.,1982,22:7-22.
    [43]Kline W A, DeVor R E. The effect of run-out on cutting geometry and forces in end milling[J]. Int. J. Mach. Tool Des. Res.,1983,23:123-140.
    [44]Yucesan F, Altintas Y. Prediction of ball end milling force[J]. ASME J. Eng. Ind.,1996,118: 95-103.
    [45]Feng H Y, Menq C H. A flexible ball-end milling system model for cutting force and machining error prediction[J]. ASME J. Manuf. Sci. Eng.,1996,118:461-469.
    [46]Feng H Y, Su Ning. A mechanistic cutting force model for 3D ball-end milling[J]. Journal of Manufacturing Science and Engineering,2001,123:23-29.
    [47]Bailey T, Elbestawi M A, Ei-Wardany T I, Fitzpatrick P. Generic simulation approach for multi-axis machining, part 1:modeling methodology [J]. ASME J. Manuf. Sci. Eng.,2002, 124:624-633.
    [48]Lazoglu I, Liang S Y. Sculpture Surface Machining: A generalized model of ball-end milling force system[J]. Int. J. Mach. Tools Manuf.,2003,43:453-462.
    [49]Wang J J, Zheng C M. Identification of shearing and ploughing cutting constants from average forces in ball-end milling[J]. Int. J. Mach. Tools Manuf.,2002,42:695-705.
    [50]Jeong Hoon Ko, Dong-Woo Cho.3D ball-end milling force model using instantaneous cutting force coefficients[J]. ASME Journal of Manufacturing Science and Engineering,2005,127: 1-12.
    [51]Han UI Lee, Dong-Woo Cho. A mechanistic model of cutting forces in micro-end-milling with cutting-condition-Independent cutting force coefficients[J]. Journal of Manufacturing Science and Engineering,2008,130:1-9.
    [52]Wan M, Zhang W H. Systematic study on cutting force modelling methods for peripheral milling[J]. International Journal of Machine Tools & Manufacture,2009,49:424-432.
    [53]G M Kim, P J Cho, C N Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map[J]. International Journal of Machine Tools & Manufacture,2000,40:277-291.
    [54]B K Fussell, R B Jerard, J G Hemmett. Modeling of cutting geometry and forces for 5-axis sculptured surface machining[J]. Computer Aided Design,2003,35:333-346.
    [55]荆怀靖,姚英学等.平头立铣刀铣削力模型中积分限的确定方法[J].工具技术,2004,38(4):11-13.
    [56]倪其民,李从心等.考虑刀具变形的球头铣刀铣削力建模与仿真[J].机械工程学报,2002,38(3):108-112.
    [57]戴海港,邓志平.基于神经网络的数控加工物理仿真的研究[J].机床与液压,2010,38(23):117-121.
    [58]胡创国.薄壁件精密切削变形控制与误差补偿技术研究[博士学位论文].陕西:西北工业大学,2007.
    [59]Tae-Yong Kim, Joongwon Woo, Dongwon Shin, Jongwon Kim. Indirect cutting force measurement in multi-axis simultaneous NC milling processes[J]. International Journal of Machine Tools and Manufacture,1999,39(11):1717-1731.
    [60]K Hans Raj, Rahul Swarup Sharma, Sanjay Srivastava, C Patvardhan. Modeling of manufacturing processes with ANNs for intelligent manufacturing[J]. International Journal of Machine Tools and Manufacture,2000,40(6):851-868.
    [61]Wen-Tung Chien, Chung-Yi Chou. The predictive model for machinability of 304 stainless steel[J]. Journal of Materials Processing Technology,2001,118(1-3):442-447.
    [62]E O Ezugwu, D A Fadare, J Bonney, et al. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network[J]. International Journal of Machine Tools and Manufacture,2005, 45(12-13):1375-1385.
    [63]Wangshen Hao, Xunsheng Zhu, et al. Prediction of cutting force for self-propelled rotary tool using artificial neural networks[J]. Journal of Materials Processing Technology,2006, 180(1-3):23-29.
    [64]Abdullah Kurt. Modelling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks[J]. Expert Systems with Applications,2009,36(6):9645-9657.
    [65]王占礼,黄福志,李静.数控车削加工仿真中的切削力预测[J].大连交通大学学报,2010,31(1):17-20,25.
    [66]栾敏.基于两级神经网络分析的切削力与切削功率的研究[J].机械设计与制造,2009,5:61-63.
    [67]W J Deng, W Xia. Determine the distribution and history of workpiece temperature for dry milling[J]. Journal of Advanced Manufacturing Systems,2008,7(2):279-282.
    [68]Y P Chen, W B Lee, S To, H Wang. Finite element modelling of micro-cutting processes from crystal plasticity[J]. International Journal of Modern Physics B,2008,21(31-32):5943-5948.
    [69]Turul Ozel, Taylan Altan. Process simulation using finite element method- prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J]. International Journal of Machine Tools and Manufacture,2000,40(5):713-738.
    [70]Mofid Mahdi, Liangchi Zhang. A finite element model for the orthogonal cutting of fiber-reinforced composite materials[J]. Journal of Materials Processing Technology,2001, 113(1-3):373-377.
    [71]A G Mamalis, M Horvath, A S Branis, D E Manolakos. Finite element simulation of chip formation in orthogonal metal cutting[J]. Journal of Materials Processing Technology,2001, 110(1):19-27.
    [72]A G Mamalis, M Horvath, A S Branis, D E Manolakos. Modelling of precision hard cutting using implicit finite element methods[J]. Journal of Materials Processing Technology,2002, 123(3):464-475.
    [73]John S Strenkowski, Albert J Shih, Jong-Cherng Lin. An analytical finite element model for predicting three-dimensional tool forces and chip flow[J]. International Journal of Machine Tools and Manufacture,2002,42(6):723-731.
    [74]K Li, X L Gao, J W Sutherland. Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process[J]. Journal of Materials Processing Technology,2002,127(3):309-324.
    [75]Halil Bil, S Engin (?), A Erman Tekkaya. A comparison of orthogonal cutting data from experiments with three different finite element models[J]. International Journal of Machine Tools and Manufacture,2004,44(9):933-944.
    [76]Z G Wang, M Rahman, Y S Wong, X P Li. A Hybrid Cutting Force Model for High-speed Milling of Titanium Alloys. CIRP Annals - Manufacturing Technology,2005,54(1):71-74.
    [77]Martin Baker. Finite element simulation of high-speed cutting forces[J]. Journal of Materials Processing Technology,2006,176(1-3):117-126.
    [78]Jun Yan, John S Strenkowski. A finite element analysis of orthogonal rubber cutting[J]. Journal of Materials Processing Technology,2006,174(1-3):102-108.
    [79]Zone-Ching Lin, Jen-Ching Huang. The influence of different cutting speeds on the cutting force and strain-stress behaviors of single crystal copper during nano-scale orthogonal cutting[J]. Journal of Materials Processing Technology,2008,201(1-3):477-482.
    [80]R J Saffar, M R Razfar, O Zarei, E Ghassemieh. Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method[J]. Simulation Modelling Practice and Theory,2008,16(10):1677-1688.
    [81]杨勇,方强,柯映林,董辉跃.基于有限元模拟的钛合金锯齿状切屑形成机理[J].浙江大学学报,2008,42(6):1010-1014.
    [82]吴红兵,柯映林,刘刚,董辉跃.航空框类整体结构件铣削加工变形研究[J].浙江大学学报,2009,43(3):546-550.
    [83]毕运波,方强,董辉跃,柯映林.航空铝合金高速铣削温度场的三维有限元模拟及试验研究[J].机械上程学报,2010,46(7):160-165.
    [84]曹自洋,何宁,李亮,朱文明.高速切削钛合金Ti6A14V切屑的形成及其数值模拟[J].中国机械工程,2008,19(20):2450-2454.
    [85]郭魂,左敦稳,刘远伟等.航空腔型薄壁件铣削变形的预测[J].吉林大学学报,2008,38(1):84-88.
    [86]刘东,陈五一.钛合金TC4切削过程流动应力模型研究[J].塑性工程学报,2008,15(1):167-171.
    [87]张以都,张洪伟.航空整体结构件加工变形有限元数值仿真[J].北京航空航天大学学报,2009,35(2):188-192.
    [88]辛顺强,叶海潮,王聪康.航空薄壁件三维铣削过程的有限元仿真[J].制造技术与机床,2010,4:120-123.
    [89]上聪康,彭承明,路冬,钟晓宏.航空铝合金7075一T7451薄壁件铣削加上模拟及变形预测[J].制造技术与机床,2010,8:87-90.
    [90]李国和,王敏杰,段春争.基于ANSYS/LS-DYNA的金属切削过程有限元模拟[J].农业机械学报,2007,38(12):173-176.
    [91]王殿龙,于贻鹏.金属切削过程的有限元法仿真研究[J].大连理工大学学报,2007,47(6): 829-833.
    [92]邓文君,夏伟,张卫文.倒角刀刃切削过程中切削力的有限元法预测[J].华南理工大学学报,2003,31(10):20-23.
    [93]吴春凌,叶邦彦.纳米/超细晶切屑形成机理的有限元研究[J].华南理工大学学报,2010,38(8):78-82.
    [94]胡志明,王仲奇,吴建军,楼文明.航空薄壁件铣削加工铣削力预测方法研究[J].机床与液压,2008,36(3):1-4,12.
    [95]S Ratchev, S Liu, W Huang, A A Becker. A flexible force model for end milling of low-rigidity parts[J]. Journal of Materials Processing Technology,2004,153-154:134-138
    [96]S Ratchev, Stan Nikov, Idir Moualek. Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA[J]. Advances in Engineering Software,2004, 35(8-9):481-491.
    [97]S Ratchev, S Liu, W Huang, A A Becker. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004,44(15):1629-1641.
    [98]S Ratchev, S Liu, A A Becker. Error compensation strategy in milling flexible thin-wall parts. Journal of Materials Processing Technology,2005,162-163(15):673-681.
    [99]S Ratchev, S Liu, W Huang, A A Becker. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006,46(5):542-551.
    [100]梅中义,王运巧,范玉青.飞机结构件数控加上变形控制研究与仿真[J].航空学报,2005,26(2):234-239.
    [101]王运巧,梅中义,范玉青.薄壁弧形件装夹布局有限元优化[J].机械工程学报,2005,41(62):14-217,223.
    [102]王运巧,梅中义,范玉青.航空薄壁弧形件加工变形的非线性有限元分析[J].航空制造技术,2004,6:84-86.
    [103]万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报,2005,26(5):598-603.
    [104]秦国华,吴竹溪,张卫红,薄壁件的装夹变形机理分析与控制技术[J].机械工程学报,2007,43(4):211-216,223.
    [105]武凯,何宁,廖文和等.基于薄壁件变形分析的铣削加工瞬态力学模型研究[J].应用科学学报,2005,23(6):631-634.
    [106]武凯,何宁,廖文和等.薄壁腹板加工变形规律及其变形控制方案的研究[J].中国机械上程,2004,15(8):670-674.
    [107]张臣,周来水,安鲁陵,周儒荣.刀具变形引起的球头铣刀加上误差建模[J].南京航空航天大学学报,2008,40(1):94-99.
    [108]张臣.数控铣削加上物理仿关键技术研究[博士学位论文],南京:南京航空航天大学,2006.
    [109]Zbigniew Lechniak, Andrzej Werner, Konstanty Skalski, Krzysztof Kdzior. Methodology of off-line software compensation for errors in the machining process on the CNC machine tool[J]. Journal of Materials Processing Technology,1998,76(1-3):42-48.
    [110]Kris M. Y. Law, A. Geddam, V. A. Ostafiev. A process-design approach to error compensation in the end milling of pockets[J]. Journal of Materials Processing Technology,1999,89-90: 238-244.
    [111]Kris M. Y. Law, A. Geddam. Error compensation in the end milling of pockets:a methodology[J]. Journal of Materials Processing Technology,2003,139(1-3):21-27.
    [112]R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tools - a review:Part I: geometric, cutting-force induced and fixture-dependent errors[J]. International Journal of Machine Tools and Manufacture,2000,40(9):1235-1256.
    [113]Chana Raksiri, Manukid Pamichkun. Geometric and force errors compensation in a 3-axis CNC milling machine[J]. International Journal of Machine Tools and Manufacture,2004, 44(12-13):1283-1291.
    [114]Thomas A. Dow, Edward L. Miller. Kenneth Garrard. Tool force and deflection compensation for small milling tools[J]. Precision Engineering,2004,28(1):31-45.
    [115]Eyup Sabri Topal, Can Qogun. A cutting force induced error elimination method for turning operations[J].Journal of Materials Processing Technology,2005,170(1-2):192-203.
    [116]Philippe Depince, Jean-Yves Hascoet. Active integration of tool deflection effects in end milling. Part 1:Prediction of milled surfaces[J]. International Journal of Machine Tools and Manufacture,2006,46(9):937-944.
    [117]Philippe Depince, Jean-Yves Hascoet. Active integration of tool deflection effects in end milling. Part 2:Compensation of tool deflection[J]. International Journal of Machine Tools and Manufacture,2006,46(9):945-956.
    [118]V. S. Rao, P. V. M. Rao. Tool deflection compensation in peripheral milling of curved geometries[J]. International Journal of Machine Tools and Manufacture,2006,46(15): 2036-2043.
    [119]M. Wan, W.H. Zhang. Efficient algorithms for calculations of static form errors in peripheral milling[J]. Journal of Materials Processing Technology,2006,171(1):156-165.
    [120]M. Wan, W.H. Zhang, G.H. Qin, Z.P. Wang. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International Journal of Machine Tools and Manufacture,2008,48,(12-13):1366-1374.
    [121]任涛.整体叶轮的五轴数控编程与加工[J]. CAD/CAM与制造业信息化,2009,1:122-125.
    [122]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.
    [123]付国卫.离心叶轮多坐标数控加工刀具轨迹规划[硕士学位论文],北京:北京交通大学,2008.
    [124]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,2003.
    [125]霍颖,杨茂奎,陈益林.多轴数控加工刀位轨迹的生成技术综述[J].机械加工与自动化,2004,12:27-29.
    [126]蔡永林,孙卫青,姜虹.叶轮数控加工中的十涉检查[J].中国机械工程,2007,18(19):2287-2290.
    [127]何永红,齐乐华,赵宝林.双转台五轴数控机床后置处理算法研究[J].制造技术与机床,2006,1:9-12.
    [128]孙晶.闭式叶轮数控粗加工的刀位轨迹规划研究[硕士学位论文],北京:北京交通大学,2009.
    [129]Wang W P, Wang K K. Geometric modeling for swept volume of moving solids[J]. IEEE CG&A,1986,6(12):8-17.
    [130]Malek K A, Yeh H J. Geometric representation of the swept volume using Jacobian rank-deficiency conditions[J]. Computer Aided Design,1997,29(6):457-468.
    [131]Blackmore D, Leu M C, Wang L P. The sweep envelope differential equation algorithm and its application to NC machining verification[J]. Computer Aided Design,1997,29(9): 629-637.
    [132]上哲,王知行,钟诗胜.刀具扫描体生成新算法及在数控加工仿真中的应用[J].机械工程学报,2001,37(1):28-31.
    [133]郝猛,肖田元,韩向利.五轴加工中刀具扫描体的构造和显示[J].机械科学与技术,2003,22(4):535-537.
    [134]陈益林,杨茂奎.刀具扫描体的显式计算与精度控制[J].中国制造业信息化.2004,7:112-114.
    [135]何朝阳,李际军NURBS扫描体的逼近算法研究[J].计算机工程,2006,32(15):58-60,63.
    [136]荆怀靖.面向铣削加工误差预测与补偿的虚拟加上技术的研究[博士学位论文].黑龙江:哈尔滨工业大学,2005.
    [137]邱轶兵.实验设计与数据处理[M].安徽:中国科技大学出版社,2008.
    [138]陈焱.逆向上程在曲面零件设计与检测中的应用研究[硕士学位论文].河北:燕山大学,2007.
    [139]解科峰.逆向上程技术的相关理论及工程应用研究[硕士学位论文].安徽:合肥工业大学,2007.
    [140]李帼英.发动机曲柄连杆机构三维建模与性能仿真[硕士学位论文].辽宁:大连理工大学,2008.
    [141]谢韶旺,刘立岩,杨才洪.基于Geomagic Studio技术实现叶轮重构[J].航空制造技术,2010,1:102-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700