用户名: 密码: 验证码:
微纳光纤直写技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在国内外首次提出了利用微纳光纤进行微触式直写曝光的新技术。实验结果表明,微纳光纤直写的分辨率可达350nm,如果是在不充分曝光的情况下,线宽则可达100nm,小于曝光波长(442nm)的四分之一。
     直接写入技术是无掩模的表面微纳结构制造方法。目前,开发分辨率更高、工艺更简单、性价比更高的直写新技术是亟待解决的问题。微纳光纤具有极强的光场约束、低的传输损耗、高比例的倏逝场分量、场增强作用等特点,近年来在科研领域引起了广泛关注,而它的这些特点对直写曝光都是非常有利的。首先,极强的光场约束有利于提高曝光分辨率;其次,低传输损耗和场增强作用保证了曝光的光能量;第三,高比例的倏逝场分量可以很容易地被耦合到光刻胶层中。基于这些特点,本论文提出了一种利用微纳光纤进行直写曝光的新技术,微纳光纤通过微接触将光能量导入到光刻胶层中,这就类似于一个装满墨水的钢笔在纸上写字。本文提到的直写用微纳光纤与传统的微纳光纤是有区别的,传统微纳光纤一般被用来制作诸如光纤光栅、Mach-Zehnder干涉仪、滤波器、环形谐振腔、结形激光器等微纳光子器件,它们都是利用了微纳光纤的波导特性,而直写用微纳光纤是一种截断式的微纳光纤,它利用了微纳光纤输出端的点光源特性。另外,直写用微纳光纤与传统的用来做传感、滤波、光镊等的光纤探针也是不同的,直写用微纳光纤的锥角非常小,它的直径是逐渐过渡到亚微米量级的。
     本论文详细展示了这一利用微纳光纤点光源特性和微接触模式的直接写入新技术。首先,我们展示了微纳光纤的传播特性和端面光场特性,并利用时域有限差分(FDTD)方法分析了微纳光纤直写模型的光场分布。其次,我们详细说明了微纳光纤直写的实验系统、工艺方法和操作步骤。接着,我们计算了微纳光纤直写的曝光模型,展示和分析了实际的直写实验结果。实验结果表明微纳光纤直写技术具有独特的优势:分辨率高、写入范围大、工艺简单以及线宽可控,另外,通过改变线条的写入方向还可以制作出结构复杂的图形。最后,我们还提出将表面等离子体技术引入到微纳光纤直写中的新方法,模拟分析表明通过激发表面等离子体,微纳光纤直写的分辨率还可以进一步地得到提高。
We firstly reports a novel direct writing technique using micro-and nanofiber worldwide, which adopts the micro touch model during the exposure. The experiment results show that the writing resolution can be up to 350 nm. In the condition of inadequate exposure, the 100-nm-lines are achieved, which is lower than one quarter of exposure wavelength (442 nm).
     Direct writing techniques allow maskless definition of surface micro-and nanostructures, and it is necessary to develop the simpler, more cost-effective and higher resolution direct writing technique. Optical micro-and nanofibers have attracted much attention due to their advantages, such as tight optical confinement, low optical loss, high fraction of evanescent fields, strong field enhancement. All these attractive properties make the micro-and nanofiber suitable for maskless lithography. First, tight optical confinement can provide high exposure resolution. Second, low optical loss and strong field enhancement ensure exposure power. Third, high fraction of evanescent fields can be easily coupled into photoresist layer. Based on these properties, this dissertation presents a novel direct writing technique utilizing the micro-and nanofibers. Herein, the fiber probes are similar to an inked pen, transferring a laser "ink" from the probe tip to a photoresist layer through direct micro touch. However, there are some differences between the direct writing fiber probes and the usual micro-and nanofibers. The usual micro-and nanofibers are used to fabricate a variety of micro-and nanophotonic components or devices, such as fiber gratings, Mach-Zehnder interferometers, filters, ring resonators, knot lasers, etc, where they act as waveguides. Contrary to the above-mentioned uninterrupted micro-and nanofibers, the micro-and nanofiber probes are interrupted and serve as submicron-dimension point sources. They are also different from usual fiber tapers, which have some applications, such as sensors, filters, optical tweezers, etc. The fiber probes for direct writing gradually change its diameter to a submicron tip, so their cone angles are much smaller than those of usual fiber tapers.
     In this dissertation, the direct writing technique using micro-and nanofibers is described in detail. The micro-and nanofiber serves as a tightly confined point source and it adopts micro touch mode in the process of writing. Firstly, the propagation and endface pattern of micro-and nanofiber are theoretically shown. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Secondly, the system and operation of laser direct writing using micro-and nanofiber are carefully established. Thirdly, the exposure model is caculated and the experimental results are presented. Experimental results demonstrate that micro-and nanofiber direct writing has some advantages:simple process, high resolution, large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated. In the end of this dissertation, the surface plasmons technique is introduced to this direct writing approach, and the simulation shows that the writing resolution is further improved via the excitation of surface plasmons.
引文
1. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-um-wavelength band[J]. Opt. Lett.,1997,22:419-421
    2. 张亮,李承芳,刘文等.一种亚波长偏振分波/合波器的研制[J].光学学报,2006,26(7):1048-1052
    3. F. Yang, M. Zhou, J. Dai, J. K. Di, and E. L. Zhao. Performance testing of log pile photonic crystal fast-fabricated by direct femtosecond laser writing[J]. Chin. Opt. Lett.,2008,6:864-867
    4. G. Y. Zhou and M. Gu. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal [J]. Optics Letters, 2006,31(18):2783-2785
    5. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla. Fiber Bragg grating inscription by high-intensity femtosecond UV laser light:comparison with other existing methods of fabrication[J]. J. Opt. Soc. Am. B,2005,22: 354-361
    6. H. C. Tapalian, J. Langseth, Y. Chen, J. W. Anderegg, and J. Shinar. Ultrafast laser direct-write actuable microstructures[J]. Appl. Phys. Lett.,2008,93: 243304
    7. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama. Direct writing of optical gratings using a scanning electron microscope [J]. Appl. Opt.,1978,17(15): 2342-2345
    8. T. Fujita, H. Nishihara, and J. Koyama. Fabrication of micro lenses using electron-beam lithography [J]. Opt. Lett.,1981,6(12):613-615
    9. 彭开武,田丰.纳米级高压扫描电子束曝光技术.显微、测量、微细加工技术与设备[J].2005,5:244-248
    10.刘伟.纳米级电子束曝光系统用图形发生器技术研究[博士论文].北京:中国科学院电工研究所.2005
    11. H. S. Sun, A. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, Z. W. Shi, J. D. Luo, A. K. Y. Jen, and L. R. Dalton. Polarization selective electro-optic polymer waveguide devices by direct electron beam writing[J]. Opt. Express,2008,16(12):8472-8479
    12. L. Mutter, M. Koechlin, M. Jazbinsek, and P. Gunter. Direct electron beam writing of channel waveguides in nonlinear optical organic crystals[J]. Opt. Express,2007,15:16828-16838
    13.李以贵,陈迪,朱军等.基于一种新微细加工技术的亚波长光栅的研制[J].光学学报,2002,22(8):1008-1010
    14. G. Subramania, Y-J. Lee, I. Brener, T. S. Luk, and P. G. Clem. Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal[J]. Opt. Express,2007,15(20): 13049-13057
    15. R. A. Becker, B. L. Sopori, and W. S. C. Chang. Focused laser lithographic system[J]. Appl. Opt.,1978,17(7):1069-1071
    16. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch. Laser-induced microscopic etching of GaAs and InP[J]. Appl. Phys. Lett.,1980,36(8): 698-700
    17. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch. Laser photochemical microalloying for etching of aluminum thim films[J]. Appl. Phys. Lett.,1981, 38(6):399-401
    18. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch. Laser chemical technique for rapid direct writing of surface relief in silicon[J]. Appl. Phys. Lett.,1981, 38(12):1018-1020
    19. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch. Direct writing of regions of high doping on semiconductors by UV-laser photodeposition[J]. Appl. Phys. Lett.,1981,38(12):916-918
    20. Michael T. Gale, and Karl Knop. The fabrication of fine lens arrays by laser beam writing. Proc. SPIE,1983,398:347-353
    21. Masamitsu Haruna, S. Yoshida, H. Toda, and H. Nishihara. Laser-beam writing system for optical integrated circuits[J]. Appl. Opt.,1987,26(21): 4587-4592
    22. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O, Poulsen. Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films[J]. Electron. Lett.1994,30:1401-1403
    23. W. X. Yu, X.-C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and V. Koudriachov. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing[J]. Opt. Express,2002,10:443-448
    24. H. B. Sun and S. Kawata. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems[J]. J. Lightwave Technol. 2003,21:624-633
    25.侯德胜,杜春雷,邱传凯,白临波.ISI-2802激光直写系统及其应用[J].光电工程,1997,24(Sup.):26-30
    26.沈亦兵.极坐标激光直接写入系统及其光刻特性研究[博士论文].杭州:浙江大学.1998
    27.李凤有,卢振武,张殿文.激光直写写入工艺研究[J].光电子·激光,2001,12(9):949-952
    28.谢永军.曲面激光直接写入技术[博士论文].长春:中国科学院长春光学精密机械与物理研究所.2003
    29. http://www.advantools.com.cn/products.shtm?pc=262
    30. http://www.svgoptronics.com/ProductShow.asp?ID=134
    31.梁宜勇.可变线宽的无掩膜光刻理论与技术研究[博士论文].杭州:浙江大学.2005
    32. Yongjun Xie, Zhenwu Lu, Fengyou Li, Jingli Zhao, and Zhicheng Weng. Lithographic fabrication of large diffractive optical elements on a concave lens surface[J]. Opt. Express,2002,10(20):1043-1047
    33. Yongjun Xie, Zhenwu Lu, and Fengyou Li. Fabrication of large diffractive optical elements in thick film on a concave lens surface[J]. Opt. Express, 2003,11(9):992-995
    34. Yongjun Xie, Zhenwu Lu, and Fengyou Li. Lithographic fabrication of large curved hologram by laser writer[J]. Opt. Express,2004,12(9):1810-1814
    35. Jingsong Wei, Jing Liu, and Xinbing Jiao. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics[J]. Appl. Phys. Lett.,2009,95:241105
    36. Eric Betzig, and Jay K. Trautman. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science,1992,257:189-195
    37. Fred F. Froehlich, Tom D. Milster, and Robert Uber. High-resolution optical lithography-with a near-field scanning sub-wavelength aperture. Proc. SPIE, 1992,1751:312-320
    38. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida. Writing 40 nm marks by using a beaked metallic plate near-field optical probe[J]. Opt. Lett.,2006,31(2):259-261
    39. http://www.veeco.com/news/view press release.aspx?id=376
    40. M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda. A new lithography technique using super-resolution near-field structure[J]. Microelectronic Engineering,2000,53:535-538
    41. Linjie Li and John T. Fourkas. Multiphoton polymerization[J]. Materials Today,2007,10(6):30-37
    42. Tommaso Baldacchini, Christopher N. LaFratta, Richard A. Farrer, Malvin C. Teich, Bahaa E. A. Saleh, Michael J. Naughton, and John T. Fourkas. Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization[J]. Journal of Applied Physics,2004,95(11): 6072-6076
    43. Christopher A. Coenjarts and Christopher K. Ober. Two-photon three-dimensional micro fabrication of poly(dimethylsiloxane) elastomers[J]. Chem. Mater.,2004,16:5556-5558
    44. Stephen M. Kuebler, Mariacristina Rumi, Toshiyuki Watanabe, Kevin Braun, Brian H. Cumpston, Ahmed A. Heikal, Lael L. Erskine, S. Thayumanavan, Stephen Barlow, Seth R. Marder, and Joseph W. Perry. Optimizing two-photon initiators and exposure conditions for three-dimensional lithographic microfabrication[J]. Journal of Photopolymer Science and Technology,2001,14(4):657-668
    45. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics[J]. Opt. Lett.,2003,28(5):301-303
    46. Linjie Li, Rafael R. Gattass, Erez Gershgoren, Hana Hwang, and John T. Fourkas. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science,2009,324:910-913
    47.蒋中伟,袁大军,郭锐,徐藻,王翔,夏安东,黄文浩.双光子三维微细加工的分辨率研究[J].微细加工技术,2004,2:31-36
    48.潘传鹏,周明,刘立鹏,蔡兰,刘会霞,任仍飞,高传玉,王亚伟.双光子微加工技术与应用研究[J].纳米技术与精密工程,2004,2(4):278-283
    49.董贤子,段宣明.双光子三维微结构快速制备技术[J].光学精密工程,2007,15(4):441-446
    50.龚小竞,褚家如,王翔,黄文浩,杨建军,张铁群,朱小农.飞秒激光多次聚焦在并行加工中的应用[J].光学精密工程,2008,16(1):48-54
    51. Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell, and Eric Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature,2003,426:816-819
    52. J. Bures and R. Ghosh. Power density of the evanescent field in the vicinity of a tapered fiber[J]. J. Opt. Soc. Am. A,1999,16:1992-1996
    53. L. M. Tong, J. Y. Lou, and E. Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Opt. Express, 2004,12:1025-1035
    54. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason. Supersontinuum generation in submicron fibre waveguides[J]. Opt. Express,2004,12:2864-2869
    55. M. A. Foster, K. D. Moll, and A. L. Gaeta. Optimal waveguide dimensions for nonlinear interactions [J]. Opt. Express,2004,12:2880-2887
    56. M. Sumetsky. Uniform coil optical resonator and waveguide:transmission spectrum, eigenmodes, and dispersion relation[J]. Opt. Express,2005,13: 4331-4340
    57. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur. Supercontinuum generation in submicrometer diameter silica fibers[J]. Opt. Express,2006,14: 9408-9414
    58. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta. Nonlinear optics in photonic nanowires[J]. Opt. Express,2008,16:1300-1320
    59. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv. Highly sensitive fiber bragg grating refractive index sensors[J]. Appl. Phys. Lett.,2005,86:151122
    60. Y. H. Li and L. M. Tong. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers[J]. Opt. Lett.,2008,33:303-305
    61. Pavel Polynkin, Alexander Polynkin, N. Peyghambarian, and Masud Mansuripur. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels[J]. Opt. Lett.,2005,30(11):1273-1275
    62. J. Villator and D. Monzon-Hernandez. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers[J]. Opt. Express,2005,13: 5087-5092
    63. Xin Guo and Limin Tong. Supported microfiber loops for optical sensing[J]. Opt. Express,2008,16(19):14429-14434
    64. Lei Zhang, Fuxing Gu, Jingyi Lou, Xuefeng Yin, and Limin Tong. Fast detection of humidity with a sub wavelength-diameter fiber taper coated with gelatin film[J]. Opt. Express,2008,16(17):13349-13353
    65. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale. Optical microfiber loop resonator[J]. Appl. Phys. Lett.,2005,86:161108
    66. Shan-Shan Wang, Zhi-Fang Hu, Yu-Hang Li, and Li-Min Tong. All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors [J]. Opt. Lett.,2009,34(3):253-255
    67. Xiaoshun Jiang, Yuan Chen, Guillaume Vienne, and Limin Tong. All-fiber add-drop filters based on microfiber knot resonators [J]. Opt. Lett.,2007, 32(12):1710-1712
    68. Wu Yu, Zeng Xu, Hou Changlun, Bai Jian, and Yang Guoguang. A tunable all-fiber filter based on microfiber loop resonator[J]. Appl. Phys. Lett.,2008, 92:191112
    69. Xiaoshun Jiang, Qing Yang, Guillaume Vienne, Yuhang Li, and Limin Tong. Demonstration of microfiber knot laser[J]. Appl. Phys. Lett.,2006,89: 143513
    1.陈军.光学电磁理论.北京:科学出版社.2005
    2. L. M. Tong, J. Y. Lou, and E. Mazur. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Opt. Express, 2004,12:1025-1035
    3. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y Shen, I. Maxwell, and E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature,2006,426:816-819
    4. W. Snyder, and J. D. Love. Optical Waveguide Theory. Chapman and Hall, New York,1983
    5. V. Bondarenko, and Y. Zhao. "Needle beam:" Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide[J]. Appl. Phys. Lett.,2006,89(14):141103
    6. L. K.van Vugt, S. Ruhle, and D. Vanmaekelbergh. Phase-correlated nondirectional laser emission from the end facets of a ZnO Nanowire[J]. Nano Lett.,2006,6(12):2707-2711
    7. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang. Tunable nanowire nonlinear optical proble[J]. Nature,2007,447(7148):1098-1101
    8. G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson. Optical propulsion of individual and clustered microspheres along sub-micron optical wires[J]. Jpn. J. Appl. Phys.,2008,47(8):6716-6718
    9. W. L. She, J. H. Yu, and R. H. Feng. Observation of apush force on the end face of a nanometer silica filament exerted by outgoing light[J]. Phys. Rev. Lett.,2008,101(24):243601
    10. J. H. Yu, R. H. Feng, and W. L. She. Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgong light[J]. Opt. Express, 2009,17(6):4640-4645
    11. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong. Modeling endface output patterns of optical micro/nanofibers[J]. Opt. Express,2008, 16(12):8887-8895
    12. F. Tian, G. G. Yang, J. Bai, J. F. Xu, C. L. Hou, Y. Y. Liang, and K. W. Wang. Laser direct writing using submicron-diameter fibers [J]. Opt. Express,2009, 17(22):19960-19968
    13.葛德彪,闫玉波.西安:西安电子科技大学出版社.2005
    14. P. Klocek. Handbook of Infrared Optical Materials. Marcel Dekker, New York,1991
    15. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber. Single-nanowire electrically driven lasers[J]. Nature,2003,421(6920):241-245
    16. S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong. Endface revlectivities of optical nanowires[J]. Opt. Express,2009,17(13): 10881-10886
    1. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis. Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process[J]. Appl. Phys. Lett.,1995,67:3859-3861
    2. SURUGA SEIKI CO., LTD.2001-2002 Optical Research Equipment Catalog.
    3. AZ(?) MIRTM 701 Photoresist Positive Tone i-line Photoresist Data Package. AZ Electronic Materials
    4.维基百科.http://zh.wikipedia.org/zh-sg/光刻
    5. Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout. Silica nanotubes and nanofiber arrays[J]. Adv. Mater.,2000,12:1938-1940
    6. Zheng Wei Pan, Zu Rong Dai, Chris Ma, and Zhong L. Wang. Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires[J]. J. Am. Chem. Soc.,2002,124:1817-1822
    7. J.-Q. Hu, X.-M. Meng, Y. Jiang, C.-S. Lee, S.-T. Lee. Fabrication of Germanium-Filled Silica Nanotubes and Aligned Silica Nanofibers[J]. Adv. Mater.,2003,15:70-73
    8. Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell, and Eric Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature,2003,426:816-819
    1.百度百科,http://baike.baidu.com/view/981200.htm
    2. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw. Characterization of positive photoresist[J]. IEEE Trans. Electron Devices,1975,22:445-452
    3. Xiaochun Dong, Chunlei Du, Shuhong Li, Changtao Wang, and Yongqi Fu. Control approach for form accuracy of microlenses with continuous relief[J]. Opt. Express,2005,13(5):1353-1360
    4. Chris A. Mack. Development of positive photoresists[J]. J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY,1987,134(1):148-152
    5. Chris A. Mack. New Kinetic model for resist dissolution[J]. J. Electrochem. Soc.,1992,139(4):L35-L37
    6. C. A. Mack and G. Arthur. Notch model for photoresist dissolution[J]. Electrochem. Solid-State Lett.,1998,1:86-88
    7. Chris A Mack, Mark John Maslow, Atsushi Sekiguchi, and Ron Carpio. New model for the effect of developer temperature on photoresist dissolution. Proc. SPIE,1998,3333:1218-1231
    8. G. G. Arthur, C. Wallace, and B. Martin. Comparison of recent development models in optical lithography simulation. Proc. SPIE,1998,3332:538-549
    1.D.B.Shao and S. C.Chen. Surface-plasmon-assisted nanoscalephotolithography by polarized light[J]. Appl. Phys. Lett., 2005, 86: 253107
    2.Xiangang Luo and Teruya Ishihara. Surface Plasmon resonant interferencenanolithography technique[J]. Appl. Phys. Lett., 2004, 84(23): 4780~4782
    3.Xingzhan Wei, Xiangang Luo, Xiaochun Dong, and Chunlei Du. Localizedsurface Plasmon nanolithography with ultrahigh resolution[J]. Opt. Express,2007,15(21): 14177~14183
    4.Werayut Srituravanich, Nicholas Fang, Cheng Sun, Qi Luo, and Xiang Zhang.Plasmonic nanolithography[J]. Nano Lett., 2004, 4(6): 1085~1088
    5.M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming.Sub-diffraction-limited patterning using evanescent near-field optical lithography[J]. Appl. Phys. Lett., 1999, 75(22): 3560-3562
    6.D. B. Shao and S.C. Chen. Numerical simulation of surface-plasmon-assisted nanolithography[J]. Opt. Express, 2005, 13(18):6964~6973
    7.R. R. Kunz and M. Rothschild. Large-area patterning of -50 nm structures on flexible substrates using near-field 193 nm radiation[J]. J. Vac. Sci. Technol.B, 21(1): 78~81
    8.James G. Goodberlet. Patterning sub-50 nm features with near-field embedded-amplitude masks[J]. Appl. Phys. Lett., 2002, 81(7): 1315~1317
    9.Nicholas Fang, Hyesog Lee, Cheng Sun, and Xiang Zhang. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science,2005, 308: 534~537
    10.Nicholas Fang, Zhaowei Liu, Ta-Jen Yen, and Xiang Zhang. Regenerating evanescent waves from a silver superlens[J]. Opt. Express, 2003, 11(7):682~687

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700