用户名: 密码: 验证码:
微乳模板性质及在纳米材料合成中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形貌和性能的控制是纳米材料制备的主要目标。微乳软界面模板法制备纳米材料具有结构、尺寸可控,实验条件温和,操作简单等特点,已成为纳米材料合成中最具应用前景的方法。研究微乳模板界面性质、微结构对晶体生长的诱导和控制效应是制备不同形貌、光电和催化性能纳米材料的关键。
     为研究合成纳米颗粒的分散性,论文首先以电导率实验证明了曲拉通(TritonX-100)微乳体系中微乳液滴以簇体或分散状态存在,并计算了液滴的水核半径等结构参数。
     以微乳水热法合成ZnO为例,提出了微乳界面和不同分子量聚乙二醇(PEG)对ZnO生长过程的协同控制机理。Zn(NO_3)_2溶液中PEG400浓度为12.5%或25.0%时,微乳界面强度增加,ZnO(0001)方向的生长得到控制,合成了直径50-80nm、长度80-100nm的单分散ZnO纳米柱。PEG400浓度为50%时,合成了粒径约45nm的球形颗粒,并存在一定程度的团聚现象。水核尺寸(2-20nm)小于颗粒粒径(40-200nm),说明颗粒生长过程中液滴发生了重组合并或界面强度降低。PEG400浓度由0.0%,12.5%,25.0%,50.0%逐渐增加时,氧化锌的带宽由3.06eV,3.02eV,2.95eV,2.85eV逐渐降低,低于主体氧化锌能带3.37eV,表明合成的ZnO材料吸收波长向可见光红移,吸光范围增加。
     论文将控制ZnO晶体生长的W/O微乳模板扩大到不同界面强度的双连续相、O/W微乳区域,在不同区域合成了粒径6-10nm的TiO_2颗粒。并通过控制水热温度调节同一微乳体系界面膜强度,制备了不同形貌和催化活性的TiO_2颗粒。水热温度由120℃逐渐升高到350℃,微乳界面波动增加、强度减弱,合成的颗粒结晶度提高,大小和晶体尺寸均增大,比表面积逐渐降低,TiO_2颗粒由球形转化为棒状和方形。其中在200-350℃温度范围内合成的TiO_2颗粒催化活性为0.086-0.097min~(-1),高于或接近商品化P-25 TiO_2颗粒活性(0.091min~(-1)),这缘于材料结晶度提高,光电子和正空穴重新结合几率降低。
     为进一步控制TiO_2的结构和形貌,将TritonX-100微乳模板延伸到高界面强度双表面活性剂分子2-二乙基己基酯磺酸钠/大豆卵磷脂软模板。钛酸异丙酯在模板水通道和油相界面迅速水解,水通道结构保持完整,制备了多孔TiO_2材料。剪切处理该模板使其水通道排列方向一致,并以此制备了孔道同向排列的TiO_2多孔材料,其通孔可使更多的光能进入到材料内部,增大材料对光的吸收效率,其催化活性较非剪切模板制备的材料有所提高,如W=70,提高36.0%。模板含水量由W=70增加到W=200,模板中的水通道直径增大,使合成材料平均孔径由100nm增大到200nm,且剪切材料的催化活性常数由0.0378min~(-1)增大到0.0417min~(-1),非剪切材料由0.0278min~(-1)增大到0.0335min~(-1)。
Precise control on the morphology and the function are the main objectives for preparation of nanomaterials.Surfactant molecule self-assembly soft template has attracted considerable interests due to its promising applications in preparation of nanomaterials.The study on the inducing and controlling effect of the template interface and the microstructure on crystal growth is crucial to the synthesis of nanomaterials with different structures, photoelectric and catalytic properties.
     It was proved by the conductivity property that there were clusters/aggregates or dispersed droplets in the microemulsion system.The state of the microemulsion droplets can be used to study the dispersity of the as-synthesized particles.Furthermore,the parametrs such as water core and hydrodynamic diameter of the droplets were calculated.
     The synergistic controlling mechnism of microemulsion interface and PEG400 on the growth of ZnO crystal have been proposed and discussed in detail.The monodispersed ZnO nanocolumns with 50-80nm in diameter and 80-100nm in length were prepared with 12.5%or 25.0%of PEG400 in Zn(NO_3)_2 solution,and this was due to the controlling effect on(0001) direction of ZnO crystal.ZnO nanostructures with band gap energy of 3.06eV,3.02eV, 2.95eV and 2.85eV were obtained with 0.0%,12.5%,25.0%and 50.0%of PEG400 in Zn(NO_3)_2 solution respectively,which are lower than that of bulk ZnO(3.37eV).The result demonstrates ZnO nanostructures with low band gap energy and different morphologies can be prepared by controlling the microemulsion interface strength.
     TiO_2 nanoparticles with 6-10nm in diameter were prepared in W/O,bicontinuous and O/W microemulsion zones respectively.TiO_2 nanostructures with different shapes and photocatalytic activities were obtained in a microemulsion system with different interface strength resulting from increasing the hydrothermal temperature.The increase of fluctuation and the decrease of strength of microemulsion interface with the increase of hydrothermal temperature result in the reduction of restrictions on the crystal growth.Accordingly,TiO_2 nanoparticles were synthesized at temperature of 120-200℃and TiO_2 nanorods and cubes were obtained at 200-350℃.The photocatalytic constants increase to 0.86-0.966cm~(-1) at 200-350℃,which is comparable or higher than that of P-25.The higher photoactivity of TiO_2 samples can be assigned to their higher crystallinity and lower surface defects.
     In order to further control the structure and the morphology of TiO_2 material,the bisurfactant AOT/Lecithin template with high interface strength instead of TritonX-100 microemulsion system were used to prepare porous TiO_2 nanostructure.The rapid hydrolysis of titanium isopropoxide(TIP) at the interface of water channels and oil phase resulted in the formation of porous titania material,leaving the integrity of the water channels in the template.The water channels in AOT/Lecithin template exhibit highly order upon shearing alignment.The patterned porous TiO_2 materials were prepared using the sheared soft template. The photocatalytic activity of the sheared samples increase by 36.0%compared with the unsheared TiO_2 samples at W=70.The enhancement of the activities of the sheared samples can be attributed to their open-end channels and higher photoenergy absorption efficiency. The average diameters of the pores in the sheared and unsheared materials increased from 100nm to 200nm with adjusting the water content from W=70 to W=200 respectively. Furthermore,the photocatalytic activities for degradation of Rhodamine B increased with the increase of pore diameters(0.0378-0.0417min~(-1) for sheared samples;0.0278-0.0335min~(-1) for unsheared materials).
引文
[1]Kokatur V R.A disperse technology for paraffin and paint:US,2111100[P].1935.
    [2]Hoar T P,Schulman J H,Microemulsion and emulsion[J].Nature,1943,152:102-103.
    [3]Schulman J H,Stoeckenius W,Prince L M.Mechanism of formation and structure of micro-emulsion by electron microscopy[J].The Journal of Physical Chemistry,1959,63:1677-1680.
    [4]Dinesh O.Shah.Macro and Microemu]sions[M].Washington,D.C.:American Chemical Society,1985.
    [5]Boutonnt M,Kizling J,Stnins P,Maine G.The preparation of monodisperse colloidal metal particles from microemulsions[J].Colloids and Surfaces,1982,5:209-225.
    [6]Michell D J,Ninham B W.Micel]es,vesicles and microemulsions[J].Journal of the Chemical Society,Faraday Transactions 2:Molecular and Chemical Physics,1981,77:601 - 629.
    [7]Prince h M,Microemulsion,Theory and Practice[M].New York:Academic Press,1977.
    [8]Robbins M L.Micellization,Solubilization and Microemulsion.2[M].New York:Plenum Press,1977,713-735.
    [9]Israelachvili J N,Mitcheli D J,NinhamBW.Theory of self-assembly of lipid bilayers and vesicles[J].Biochimica et biophysica acta,1977,470(2):185-201.
    [10]Kumar P,Mittal K L,Handbook of microemulsion science and technology[M],Marcel Dekker,Inc,New York,1999,5:252.
    [11]Winsor P A,Solvent properties of amphiphile compounds[M],Butterworth,London,1954.
    [12]Winsor P A.Hydrotropy,solubilisation and related emulsification processes [J].Transactions of the Faraday Society,1948,44:376-398.
    [13]Long Z Q,Rong X,Peng D,Baojun Q.Preparation and characterization of Mg(OH)_2nanoparticles and flame-retardant property of its nanocomposites with EVA [J].Composite Structures,2003,62(3/4):391-395.
    [14]张泽江,冯良荣,邱发礼.纳米无机阻燃剂的研究进展[J].化学进展,2004,16:508-515.
    [15]李富生,段明,王周玉,蒋珍菊,胡星琪.纳米材料及技术的应用现状[J].西南石油学院学报,2002,24:56-59.
    [16]谢济仁,邵刚勤,易忠来,段兴龙.纳米材料应用[J].武汉理工大学学报,2004,26:17-20.
    [17]杜仕国,施冬梅,韩其文.纳米颗粒的液相合成技术[J].粉末冶金技术,2000,18:46-50.
    [18]Henrist C,Mathieu J P,Vogels C et al.Morphological Study of Magnesium Hydroxide Nanoparticles Precipitated in Dilute Aqueous Solution[J].Journal of Crystal Growth,2003,249:321-330.
    [19]Rosenholm J,Toscano A.Precipitation of Nanoscale Aluminum Hydroxide Particles[J].Journal of Dispersion Science and Technology,2001,22:491-498.
    [20]Huaqiang W,Mingwang S et al.Microwave-assisted synthesis of fibre-like Mg(OH)_2 nanoparticles in aqueous solution at room temperature[J].Materials Letters,2004,58:2166-2169.
    [21]Jianping Lv,Longzhen Qiu et al.Controlled growth of three morphological structures of magnesium hydroxide nanoparticales by wet precipitation method[J].Journal of Crystal Growth,2004,367,676-684.
    [22]Uskokovic V,DrofenikM.,A Mechanism for the Formation of Nanostructured NiZn Ferrites via a Microemulsion-Assisted Precipitation Method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,266:168-174.
    [23]Yitai Q,Yi S,Yi X,Qianwang C and Zuyao C.Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite[J].Materials Research Bulletin,1995,30,5:601-605.
    [24]Babita B,Kishore K.D,Sunkara M V.Hydrothermal synthesis of highly crystalline ZnO nanoparticles:A competitive sensor for LPG and EtOH[J].Sensors and Actuators B,2006,119:676-682.
    [25]Sergiy K,Kazunori Y et al.Hydrothermal formation of diamond from chlorinated organic compounds[J].Materials Letters,2006,60:3041-3044.
    [26]Juan L,Qiaofeng H,XujieY,Lude L,Xin W.Preparation of ultra-long Sb_2Se_3 nanoribbons via a short-time solvothermal process[J].Materials Letters,2008,62:2415-2418.
    [27]Kaili L,Jiang C,Rongming C,Meiling R.Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution[J].Materials Letters,2007,61:1683-1687.
    [28]David Bourell L,Parimal,Wolfgang Kaysser.Sol-Gel Synthesis of Nanophase Yttria-Stabilized Tetragonal Zirconia and Densification Behavior below 1600 K[J].Journal of the American Ceramic Society,1993,76(3):705-711.
    [29]熊纲,于山江,杨绪杰等.Y_2O_3纳米晶的制备和表征[J].功能材料,1998,29,1:92.
    [30]Man Sig Lee,Seong-Soo Hong et al.Synthesis of photocatalytic nanosized TiO_2-Ag particles with sol-gel method using reduction agent[J].Journal of Molecular Catalysis A:Chemical,2005,242:135-140.
    [31]Alan C.V,Shelley Savin L P.EXAFS study of nanocrystalline CeO_2 samples prepared by sol-gel and ball-milling routes[J].Journal of Alloys and Compounds,2006,in press.
    [32]Cizauskaite S,Reichlova V,Nenartaviciene G,Beganskiene A,Pinkas J and Kareiva A.Sol-gel preparation and characterization of gadolinium aluminate[J].Materials Chemistry and Physics,2007,102:105-110.
    [33]Chang S,Kangning S.Preparation and characterization of magnesium-substituted LiZn ferrites by a sol- gel method[J].Physica B,2007,391:335 - 338.
    [34]Boutonnet M.Kizling and F.Regali,Stud.Surf.Sci.Catal.,1998,118:495-504.
    [35]Yaacob S et al.Benzene-thermal synthesis and characterization of ultrafine powders of antimony sulfide Materr ResBull[J],1998,33:1207 1207-1211.
    [36]Kishida M,Hanaoka T.Novel preparation method for supported metal catalysts using microemulsion control of catalyst surface area[J].Studies in Surface Science and Catalysis,1998,118:265.
    [37]周海成,徐晟,李亚栋.AgBr纳米颗粒和纳米线的微乳合成[J].过程工程学报,200313:248-250.
    [38]Jian F,Chao-Ping Z.Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions[J].Journal of Colloid and Interface Science,2006,293:414-420.
    [39]催正刚,殷福珊,微乳化技术及应用[M],北京:中国轻工业出版社,2001:378.
    [40]Pileni M.Lisiecki I.Nanometer metallic copper particle synthesis in reverse micelles.[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1993,80:63-68.
    [41]Moran P D,et al.Cera.Proc.Sci.And Technol[C].Proc.5th Int.cont.1994.
    [42]马季铭,齐利民,程虎民等.微乳法制备PbTiO_3超细粒子[C].国家高新技术新材料领,1993年学术交流论文集.1993:170-176.
    [43]Takayuki H,Sato H.Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide[J].Industrial &engineering chemistry research,1993,32:3014-3019.
    [44]Masahiro K,Fujita T,Kazuyuki U,Junichi I,Hideo N and Katsuhiko W.Novel preparation of metal-supported catalysts by colloidal microparticles in a water-in-oil microemulsion;catalytic hydrogenation of carbon dioxide[J].Journal of the Chemical Society,Chemical Communications,1995,7:763.
    [45]Lianos P,Thomas J K.Cadmium sulfide of small dimensions produced in inverted micelles [J].Chemical Physics Letters,1986,125:299-302.
    [46]何方岳.微乳法制备纳米碳酸[J].化工新型材料,2001,29(7):15-16.
    [47]Petit C,Lixon P,Pileni M P.Synthesis of cadmium sulfide in situ in reverse micelles.2.Influenceof the interface on the growth of the particles[J].The Journal of Physical Chemistry,1990,94(4),1598-1603.
    [48]Motte L,Petit C,Boulangr L et al.Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle:polydispersity and photochemical reaction[J].Langmuir,1992,8(4),1049-1053.
    [49]Manoj K M,Jagakuma R,Rakshits K.physicochemical studies on reverse micelles of AOT at low water content[J].Langmuir,1996,12:4068-4072.
    [50]卢迪芬.反胶团微乳法制备微细颗粒的研究进展[J].化工新型材料,1998,2:28.
    [51]Fletcher P D,Howe A M,Robinson B H.The kinetics of solubilisate exchange between water droplet of a water-in oil microemulsion[J].Journal of the Chemical Society,Faraday Transactions 2,1987,83:985-1006.
    [52]Petit C,Lixons P,Pileni M-P.In situ synthesis of silver nanocluster in AOT reverse micelles[J].The Journal of Physical Chemistry,1993,97:12974-12983.
    [53]Yuhua S,Wenjin Y,Anjian X,Shikuo L,Zhen Q.Effects of amino acids on crystal growth of CAC2O4 in reverse microemulsion[J].Colloids and Surfaces B:Biointerfaces,2005,45:120-124.
    [54]Zhang X,Xie Y,Xu F,Xiaobo T.Growth of BaWO_4 fishbone-like nanostructures in w/o microemulsion[J].Journal of Colloid and Interface Science,2004,274:118-121.
    [55]Wang C C,Chen D H,Huang T C.Synthesis of palladium nanoparticles in water-in-oil microemulsion[J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,2001,189:145-154.
    [56]康鸿业,王允军,施展等.影响Fe_3O_4超微粒子性能因素的研究[J].高等学校化学学报,1991,12:684-685.
    [57]Qui X P.Synthesis and characterization of magnetic nanoparticles[J].Chinese Journal of Chemistry,2000,18:834-837.
    [58]Sakai H,Kawaha H,Shimazaki M,et al.Preparation of ultrafine titanium dioxide particles using hydrolysis of titanium tetrabutoxide[J].Industrial & Engineering Chemistry Research,1993,32:3014-3019.
    [59]Shiojiri S,Hirai T,Komasawa I.Preparation and photocatalytic reactions of titanium dioxide ultrafine particles in reverse micelles[J].Journal of Chemical Engineering of Japan,1997,30:137-145.
    [60]Kim E J,Kim S,et al.Effect of calcination on the microstructures prepared in w/o microemulsion[J].Journal of Materials Science,2002,37:1455-1460.
    [61]Soo H Set al.Synthesis of titanium dioxides in water-in-carbon dioxide microemulsion and their micelle photocatalytic activity[J].Materials Letters,2003,57:2975-2979.
    [62]Joselevich E,Willner I.Photosensitization of quantum-sized TiO_2 particles in water in oil microemulsions[J].Journal of Physical Chemistry,1994,98:7628-7635.
    [63]施利毅,胡莹玉,张建平等.微乳法合成超细二氧化钛粒子[J],功能材料,1999,30:495-497.
    [64]Kim E J,Oh S H,t al.Influences of calcination on microstructures and photoactivities of alkoxide-derived TiO_2 nanoparticles prepared in w/o microemulsions[J].Chemical Engineering Communications,2001,187:171-184.
    [65]Pillai V,Kumar P,Multani M S,Shah D O.Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing [J],Colloids and Surfaces A:Phisicochemical and Engineering Aspects,1993,80:69-75.
    [66]Pillai V,Kumar P,Hou J M,Ayyub P,Shah D O,Preparation of nanoparticles of silver halides,superconductors and magnetic materials using water in oil microemulsion as nano-reactors[J],Advances in Colloids and Interface Science,1995,55:241-269.
    [67]Kandori K,Kon-no K,Kitahara A.Dispersion stability of nonaqueous calcium carbonate dispersion prepared in water core of W/O microemulsion[J].Journal of Colloid and Interface Science,1987,115:579-582.
    [68]Steigerwald M L et al.Surface derivatization and isolation of semiconductor cluster molecules[J].Journal of the American Chemical Society,1988,110:3046-1050.
    [69]Barnickel P,et al.Size tailoring of silver colloids by reduction in W/O microemulsion [J].Journal of Colloid and Interface Science,1992,148:80-90.
    [70]Touroude R,Girard P et al.Prepartion of colloidal platinum/palladium alloy particles from non-ionic microemulsions:Charaterization and catalytic behavior[J].Colloids and Surfaces,1992,67:9-19.
    [71]Bayrak Y,Iscan M.Study on the phase behavior of the system non-ionic surfactant /alcohol/alkane/H20[J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,2005,268:99-103.
    [72]石硕,鲁润华,王汉卿.SDBS/正辛烷/正丁醇/盐水体系中相微乳液微观结构的研究[J].化学研究与应用,1998,10:600-604.
    [73]Neuma de Castro Dantas T,Da Silva A C,Nero A A.New microemuslion systems using diesel and vegetables oils[5].Fuel,2001,80(1):75-81.
    [74]Kinugasa T,Kondo A,Mouri E et al.Effects of ions species in aqueous phase on protein extraction into reversed micelles solution[J].Separation and Purification Technology,2003,31:251-259.
    [75]Hong D P,Lee S S,Kuboi R.Conformational transition and mass transfer in extraction of proteins by AOT-alcohol-isooctane reverse micellar systems[J].Journal of Chromatography B:Biomedical Sciences and Applications,2000,?43:203-213.
    [76]Ethayaraja M,Dutta K,Muthukumaran D,Bandyopadhyaya R.Nanoparticle formation in water-in-oil microemulsions:experiments,mechanism,and Monte Carlo simulation [J].Langmuir,200?,23:3418-3423.
    [77]Kimijima K,Sugimoto T.Growth mechanism of AgCl nanoparticles in a reverse micelle system[J].The Journal of Physical Chemistry B,2004,I08:3735-3738.
    [78]D' Aprano A,Lizzio A,rurco Liveri V.Enthalpies of solution and volumes of water in reversed AOT micelles[J].The Journal of Physical Chemistry,1987,91:4749-4751.
    [79]Goto A,Harada S,Fujita T,Miwa Y,Yoshioka H,Kishimoto H.Enthalpic studies on the state of water in sodium bis(2-ethylhexyl)sulfosuccinate reversed micelles[J].Langmuir,1993,9:86-89.
    [80]Zana R.Surfactant Solutions,Surface Science Series Vol 22[M].New York:Marcel Dekker,1987.
    [81]Lang J,Mascolo G,Zana R,Luigi Luisi P.Structure and dynamics of cetyltrimethylammonium bromide water-in-oil microemulsions[J].The Journal of Physical Chemistry,1990,94:3069-3074.
    [82]Bowcott J E,Schulman J H,Elecktrochem Z.Journal of Physics Chemstry,1955,5:283.
    [83]Fang J,Venable R L.Conductivity study of the microemulsion system sodium dodecyl sulfate hexylamine heptane water[J].Journal of Colloids and Interface Science,1987,116:269-277.
    [84]Bisal S,Bhattacharya P K,Moulik S P.Conductivity study of microemulsions:Dependence of structural behavior of water/oil systems on surfactant,cosurfactant,oil,and temperature[J],The Journal of Physical Chemistry,1990,94:350-355.
    [85]施长云,王运东,戴猷元.(EOXPOYEOX)型嵌段共聚物反胶团形成的影响因素[J],化工学报,2002,53:263-268.
    [86]施长云,王运东,戴猷元,PEO-PPO嵌段共聚物反胶束的形成及其热力力学行为[J],应用化学,2000,17:581-584.
    [87]Kahlweit M,Strey R,Busse G.Microemulsions:a qualitative thermodynamic approach[J].The Journal of Physical Chemistry,1990,94:3881-3894.
    [88]程能林.溶剂手册[M].第二版.北京:化学工业出版社,1994.
    [89]Mitra R K,Paul B K.Effect of NaC1 and temperature on the water solubilization behavior of AOT/nonionics mixed reverse micellar systems stabilized in IPM oil[J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,2005,255:165-180.
    [90]Ray S,Moulik S P.Phase behavior,transport properties,and thermodynamics of water/AOT/Alkanol microemulsion systems[J].Journal of Colloids and Interface Science,1995,173:28-33.
    [91]Mitra R K,Paul B K.Investigation on percolation in conductance of mixed reverse micelles[J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,2005,252:243-259.
    [92]Zhang X G,Dong J F,Zhang G Y,Hong X L,Li X F.The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J].Journal of Colloids and Interface Science,2005,285:336-341.
    [93]沈兴海,王文清,顾国兴.W/O型微乳液活化能和导电机理研究[J].高等学校化学学报,1993,14:717-719.
    [94]Liu D J,Ma J M,Cheng H M,Zhao Z G.Conducting properties of mixed reverse micelles [J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,1999,148:291-297.
    [95]Liu D J,Ma J M,Cheng H M,Zhao Z G.Investigation on the conductivity and microstructure of AOT/non-ionic surfactants/water/n-heptane mixed reverse micelles [J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,1998,135:157-164.
    [96]De Young R L,Dill K A.Conductivity of microemulsions:Refinement of Charge Fluctuation Model[J].The Journal of Physical Chemistry,1990,94:4755-4756.
    [97]辛寅昌.以非离子表面活性剂组成的W/O型微乳液的渗滤现象[J].化学学报,1996,54:132-139.
    [98]Eicke H F,Borkovec M,Gupta B D.Conductivity of water-in-oil microemulsions:a quantitative charge fluctuation model[J].J.Phys.Chem.,1989,93:314-317.
    [99]Paul S,Bisa]S,Moulik S P.Physicochemical studies on microemulsions:Test of Theories of Percolation[J].The Journal of Physical Chemistry,1992,96:896-901.
    [100]Fu X,Pan Y,Hu Z S,Ma Z F.Conductivity study on the w/o microemulsion of a saponified mono(2-ethylhexyl) phosphoric acid extractant system[J].Colloids and Surfaces A:Phisicochemical and Engineering Aspects,1996,110:55-61.
    [101]周文杰.辛基酚聚氧乙烯醚/正庚烷/醇/盐酸微乳体系的热力学性质研究[J].湘潭大学自然科学学报,2004,26:67-70.
    [102]杨中民,信文瑜,张瑾.w/o型微乳的结构参数、自由能、活化能及其影响因素[J].云南大学学报,2000,22:126-130.
    [103]沈兴海,王文清,高宏成.稀释法求微乳体系的结构参数[J].北京大学学报,1994,30:147-154.
    [104]Rabie H R,Vera J H.Counterion effect of amino acids in reverse micelles[J].Fluid Phase Equilibria,1997,135:269-278.
    [105]Shi H T,Wang X H,Zhang N N,Qi L M,Ma J M.[J].The Journal of Physical Chemistry B,2006,110:748-753.
    [106]Shen Y H,Yue W J,Xie A J,Li S K,Qian Z.Effects of amino acids on crystal growth of CaC_2O_4 in reverse microemulsion[J].Colloids and Surfaces B:Biointerfaces,2005,45:120-124.
    [107]Bomimel A V,MacIsaac G,Livingstone N,Palepu R.Dynamics of percolation and energetics of clustering of water/AOT/isooctane microemulsions in the presence of propylene glycol and its oligomers[J].Fluid Phase Equilibria,2005,23:59-67.
    [108]Chakraborty A,Sarkar M,Basak S.Stabilizing effect of low concentrations of urea on reverse micelles[J].Journal of Colloid and Interface Science,2005,287:312-317.
    [109]Paul B K,Mitra R K.Water solubilization capacity of mixed reverse micelles:Effect of surfactant component,the nature of the oil,and electrolyte concentration[J].Journal of Colloid and Interface Science,2005,288:261-279.
    [110]Li Q,Li T,Wu J G.Water solubilization capacity and conductance behaviors of AOT and NaDEHP systems in the presence of additives[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,197:101-109.
    [111]Yamazaki K J,Imai M,Suzuki I.Water solubilization capacity and mean emulsion size of phospholipid-based isooctane-alcohol W/O microemulsion[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,29:241-246.
    [112]Elles C G,Levinger N E.Effect of aprotic solvents on the enzymatic activity of lipase in AOT reverse micelles[J].Chemical Physics Letters,2000,317:624-630.
    [113]Butler W H,Zhang X G,et al.Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches[J],Physical Review B,2001,63:1-12.
    [114]Hamada K,Ikeda T,Kawai T,Kon-No K.Ionic strength effects of electrolytes on solubilized states of water in AOT reversedmicelles[J].Journal of Colloid and Interface Science,2001,233:166-170.
    [115]HouZ,Li Z,Wang H.The effect of poly(ethylene oxide) on the characteristics of Triton X-100/1-butanol/n-octane/water reverse micelles[J].Colloid and Polymer Science,2001,279:8-13.
    [116]Guo G S,Gu F B,Wang Z H,Guo H Y.Synthesis and characterization of La_2(CO_3)_3 nanostructures in the Triton X-100/cyclohexane/water reverse micelles[J].Journal of Crystal Growth,2005,277:631-635.
    [117]Han D Y,Yang H Y,Shen C B,Zhou X,Wang F H.Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion[J].Powder Technology,2004,147:113-116.
    [118]Zhan Z L,Song W H,Jiang D G.Preparation of nanometer-sized In_2O_3 particles by a reverse microemulsion method[J].Journal of Colloid and Interface Science,2004,271:366-371.
    [119]Kim K D,Kim H T.Comparison of the growth mechanism of TiO_2-coated SiO_2 particles prepared by sol-gel process and water-in-oil type microemulsion method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,255:131-137.
    [120]Hirai T,Asada Y.Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties[J].Journal of Colloid and Interface Science,2005,284:184-189.
    [121]Rodriguze R,Vargas S,Fernandez-Velasco D A.Reverse Micelle Systems Composed of Water,Triton X-100,and Phospholipids in Organic Solvents:1.Phase Boundary Titrations and Dynamic Light Scattering Analysis[J].Journal of Colloid and Interface Science,1998,197:21-28.
    [122]Goddeeris C,Cuppo F,Reynaers H,Bouwman WG,Van den Mooter G.Light scattering measurements on microemulsions:Estimation of droplet sizes[J].International Journal of Pharmaceutics,2006,312:187-195.
    [123]Kallay N,Chittofrati A.Conductivity of microemulsions:refinement of charge fluctuation model[J].The Journal of Physical Chemistry,1990,94:4755-4756.
    [124]Georg Krei A,Helmut Hustedt.Extraction of enzymes by reversemicelles[J].Chemical Engineering Science,1992,47:99-111.
    [125]张丽,张冬柏,马季铭,程虎民,齐利民.非水反相微乳的加溶与电导性质研究[J].物理化学学报,2003,19:120-124.
    [126]Masuda Y,Kinoshita N,Koumoto K.Morphology control of ZnO crystalline particles in aqueous solution[J].Electrochimica Acta,2007,53:171-174.
    [127]Yubuta K,Sato T,Nomura A,Haga K,Shishido T.Structural characterization of ZnO nano-chains studied by electron microscopy[J].Journal of Alloys and Compounds,200?,436:396-399.
    [128]Wang H T,Kang B S,Ren F,Tien L,Sadik P W,Norton D P,Pearton,Lin S J.Hydrogen-selective sensing at room temperature with ZnO nanorods[J].Applied Physics Letters,2005,86:243503.
    [129]Bao J M,Zimmler M A,Capasso F,Wang X W,Ren Z F.Controllable preparation of ZnO hollow microspheres by self-assembled block copolymer[J].Nano Letters,2006,6:1719.
    [130]Bedja I,Prashant K V,Hua X,Lappin A G,and Hotchandani S.Photosensitization of Nanocrystalline ZnO Films by Bis(2,2-bipyridine)(2,2-bipyridine-4,4-dicarboxylic acid)ruthenium(Ⅱ)[J].Langmuir,1997,13:2398-2403.
    [131]#12
    [132]Vlasenflin T H,Tanaka M.P-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus[J].Solid State Communications,2007,142:292-294.
    [133]Sun H K,Luo M,Weng W J,Cheng K,Du P Y,Shen G,Han G R.Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route[J].Nanotechnology,2008,19:125603.
    [134]Kobayashi A,Shirakura Y,Miyamura K,Ohta J,Fujioka H.Structural properties of GaN grown on Zn-face ZnO at room temperature[J].Journal of Crystal Growth,200?,305:70-73.
    [135]Hirai T,Asada Y.Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties[J].Journal of Colloid and Interface Science,2005,284:184.
    [136]Liu Y K,Liu Z H,Wang G H.Synthesis and characterization of ZnO nanorods[J].Journal of Crystal Growth,2003,252:213.
    [137]Fan L B,Song H W,Li T,Liu L X,Yu Z X,Pan G H,Lei Y Q,Bai X,Wang T,Zheng Z H,Kong X G.Hydrothermal synthesis and photoluminescent properties of ZnO nanorods[J].Journal of Luminescene,2007,122:819-821.
    [138]Zhou H,Fan T X,Zhang D.Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J].Microporous and Mesoporous Materials,2007,100:322-327.
    [139]Tay Y Y,Li S,Boey F,Cheng Y H,Liang M H.Growth mechanism of spherical ZnO nanostructures synthesized via colloid chemistry[J].Physica B:Condensed Matter,2007,394:372-376.
    [140]Shan G Y,Xiao X L,Wang X,Kong X G,Liu Y C.Growth mechanism of ZnO nanocrystals with Zn-rich from dots to rods[J].Journal of Colloid and Interface Science,2006,298:172-176.
    [141]Li G R,Dawa C R,Bu Q,Zhen Fu L,et al.Electrochemical synthesis of orientation-ordered ZnO nanorod bundles[J].Electrochemistry Communications,2007,9:863-868.
    [142]Hou X M,Zhou F,Liu W M,A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature[J].Materials Letters,2006,60:3786-3788.
    [143]Wang Y,Li M.Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods[J].Materials Letters,2006,60:266-269.
    [144]Jitianu M,Dan Goia V.Zinc oxide colloids with controlled size,shape,and structure[J].Journal of Colloid and Interface Science,2007,309:78-85.
    [145]Ge M Y,Wu H P,Niu L,Liu J F,Chen S Y,Shen P Y,Zeng Y W,Wang Y W,Zhang G Q,Jiang J Z.Nanostructured ZnO:From monodisperse nanoparticles to nanorods[J].Journal of Crystal Growth,2007,305:162-166.
    [146]Bacsa R,Kihn Y,Verelst M,Dexpert J,Bacsa W,Serp P.Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterisation[J].Surface and Coatings Technology,2007,201:9200-9204.
    [147]Wu Y L,Tok A L Y,Boey F Y C,Zhang X T,Zhang X H.Surface modification of ZnO nanocrystals[J].Applied Surface Science,2007,253:5473-5479.
    [l48]Tong Y H,Dong L,Liu Y C,Zhao D X,Zhang J Y,Lu Y M,Shen D Z,Fan X W.Growth and optical properties of ZnO nanoods by introducing ZnO sols prior to hydrothermal process[J].Materials letters,2007,61:3578-3581.
    [149]Yao C W,Wu H P,Ge M Y.Triangle-shape ZnO prepared by thermal decomposition[J],Materials Letters,2007,61:3416-3420.
    [150]Liu J P,Huang X T,Li Y Y,Sulieman K M,Sun F L,He X.Selective growth and properties of zinc oxide nanostructures[J].Scripta Materialia,2006,55:795-798.
    [151]储芸,马建中.表面活性剂在纳米材料研究中的应用[J].皮革科学与工程,2006,14:33-38.
    [152]莫春生,邬实华.十六烷基三甲基溴化铵/正丁醇/正庚烷/水四组分体系的相行为及微乳结构的研究[J].江西师范大学学报(自然科学版),2001,25:144-149.
    [153]Lu C H,Wu W H,Kate R B.Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO_2 powders[J].Journal of Hazardous Materials,2008,154:649-654.
    [154]Lu C H,Wen M C.Synthesis of nanosized TiO_2 powders via a hydrothermal microemulsion process[J].Journal of Alloys and Compounds,2008,448:153-158.
    [155]Deorsola F A,Vallauri D.Study of the process parameters in the synthesis of TiO_2nanospheres through reactive microemulsion precipitation[J].Powder Technology,2008,1n Press.
    [156]Chavadej S,Phuaphromyod P,Gulari E,Rangsunvigit P,Sreethawong T.Photocatalytic degradation of 2-propanol by using Pt/TiO_2 prepared by microemulsion technique[J].Chemical Engineering Journal,2008,137:489-495.
    [157]Inada R,Fukahori T,Hamamoto M,Ohno T.Synthesis of nanosized TiO_2 particles in reverse micelle systems and their photocayalytic activity for degradation of toluene in gas phase[J].Journal of Molecular A:Chemical,2006,206:247-254.
    [158]Gratzel M.Photoelectrochemical cells[J].Nature,2001,414:334-338.
    [159]Tan 8,Wu Y.Dye sensitized solar cells based on anatase TiO_2 nanoparticles/nanowire composites[J].The Journal of Physical Chemistry B,2006,110:15932-15938.
    [160]Venkatachalam N,Palanichamy M,Murugesan V.Sol-gel preparation and charterization of alkaline earth metal doped nano TiO_2:Efficient photocatalytic degradation of 4-chlorophenol[J].Journal of Molecular Catalysis A:Chemical,2007,273:177-185.
    [161]Yu J,Wang G,Cheng B,Zhou M.Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO_2 powders[J].Applied Catalysis B:Environmental,2007,69:171-180.
    [162]Borse P H,Kankate L S,Dassenoy F,Vogel W,Urban J,Kulkaini S K.Synthesis and investigations of rutile phase nanoparticles of TiO_2[J].Journal of Materials Science,2002,13:553-559.
    [163]Byun D,Jin Y,Kim B,Lee J K,Park D.Photocatalytic TiO_2 deposition by chemical vapor deposition[J].The Journal of Hazardous Materials,2000,73:3887-3896.
    [164]Zhu D M,Wu X,Schelly Z A.Investigation of the micropolarities in reverse micelles of Triton X-100 in mixed solvents of benzene and n-hexane[J].The Journal of Physical Chemistry,1992,96:7121-7126.
    [165]Qi L M,Ma J M.Investigation of the microemulsion microenvironment in nonionic reverse micelles using methyl orange and methylene blue as absorption probes[J].Journal of Colloid and Interface Science,1998,197:36-42.
    [166]Garti N,Aserin A,Trunova I,Fanun M.A DSC study of water behavior in water in oil microemulsions stabilized by sucrose esters and butanol[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,170:1-18.
    [167]Senatra D.Procedures for DSC analysis of percolative microemulsions[J].Thermochimica Acta,2000,345:39-46.
    [168]Senatra D.Dielectric analysis and Differential Scanning Calorimetry of water-in-oilmicroemulsions[J].Advanced in Colloids and Interface Science,2006,123-126:415-424.
    [169]Lee M S,Park S S,Lee G D,Lu C S,Hong S S.Synthesis of TiO_2 particles by reverse microemulsion method using nonionic surfactants with different hydrophilic andhydrophobic group and their photocatalytic activity[J].Catalysis Today,2005,101:283-290.
    [170]Sreethawong T,Yoshikawa S.Ethanol photocatalytic hydrogen evolution over Pt supported on mesoporous TiO_2 prepared by single-step sol-gel process with surfactant template[J].International Journal of Hydrogen Energy,2006,31:786-796.
    [171]Chi B,Zhao L,Jin T.One step template free for synthesis of mesoporous N-Doped titania spheres[J].The Journal of Physical Chemistry C,2007,111:6189-6193.
    [172]Kim D S,Han S J,Kwak S Y.Synthesis and photocatalytic activity of mesoporous TiO_2 with the surface area,crystalline size,and pore size[J].Journal of Colloid and Interface Science,2007,316:85-91.
    [173]Yu J G,Yu J C,Leung M K P,Ho W K,Cheng B,Zhao X J,Zhao J C.Effects of acidic and basic hydrolysis catalysis on the photocatalytic activity and microstructures of bimodal mesoporous titania[J].Journal of Catalysis,2003,217:69-78.
    [174]Yu J,Su Y R,Cheng B,Zhou M H.Effects of pH on the microstructures and photocatalytic activity of mesoporous titania powders prepared via hydrothermal method[J].Journal of Molecular Catalysis A:Chemical,2006,258:104-112.
    [175]Tsai C C,Teng H.Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatments[J].Chemistry of Materials,2004,16:4352-4358.
    [176]Tian G H,Fu H G,Jing L Q,Xin B F,Pan K.Preparation and characterization of stable bipahse TiO_2 photocatalyst with high crystallinity large surface area,and enhanced photoactivity[J].The Journal of Physical Chemistry C,2008,112:3083-3089.
    [177]Yu J G,Liu W,Yu H G.A one pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J].Crystal Growth and Design,2008,8:930-934.
    [178]Mohapatra P,Mishra T,Parida K M.Effect of microemulsion composition on textural and photocatalytic activity of titania nanomaterials[J].Applied Catalysis A:General,2006,310:183-189.
    [179]Song X F and Gao L.Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol—Gel Process and Enhanced Photocatalytic Activities[J].The Journal of Physical Chemistry C,2007,111:8180-8187.
    [180]Aarthi T and Giridhar Madras.Photocatalytic Degradation of Rhodamine Dyes with Nano-Ti02[J].Industrial & Engineering Chemistry Research,2007,46:7—14.
    [181]Wang X C,Jimmy C Y,Ho C,Hou Y D,and Fu X Z.Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania[J].Langmuir,2005,21:2552-2559.
    [182]Sathish M,Viswanathan B,Viswanath R P,Chinnakonda S G.Synthesis,Characterization,Electronic Structure,and Photocatalytic Activity of Nitrogen-Doped TiO_2 Nanocatalyst[J].Chemistry of Materials,2005,17:6349-6353.
    [183]Andersson M,Osterlund L,Ljungstrom S,and Palmqvist A.Preparation of Nanosize Anatase and Rutile TiO_2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol[J].The Journal of Physical Chemistry B,2002,106:10674-10679.
    [184]Srinivasan M and White T.Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania[J].Environmental Science & Technology,2007,41:4405-4409.
    [185]Chen L,Yao B D,Cao Y,and Fan K N.Synthesis of Well-Ordered Mesoporous Titania with Tunable Phase Content and High Photoactivity[J].The Journal of Physical Chemistry C,2007,111:11849-11853.
    [186]Yu J G,Zhang L J,Cheng B,and Su Y R.Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania[J]The Journal of Physical Chemistry C,2007,111:10582-10589.
    [187]Trung Tran H,Atsuko Nosaka Y,and Yoshio Nosaka.Adsorption and Photocatalytic Decomposition of Amino Acids in TiO_2 Photocatalytic Systems[J].The Journal of Physical Chemistry B,2006,110:25525-25531.
    [188]Jiang X and Wang T.Influence of Preparation Method on Morphology and Photocatalysis Activity of Nanostructured TiO_2[J].Environmental Science & Technology,2007,41:4441-4446.
    [189]Ren M M,Ravikrishna R,and Kalliat V T.Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania[J].Environmental Science & Technology,2006,40:7029-7033.
    [190]Xie C,Yang Q Y,Xu Z L,Liu X J,and Du Y G.New Route to Synthesize Highly Active Nanocrystalline Sulfated Titania—Silica:Synergetic Effects between Sulfate Species and Silica in Enhancing the Photocatalysis Efficiency[J].The Journal of Physical Chemistry B,2006,110:8587-8592.
    [191]Liu R L,Ren Y J,Shi Y F,Zhang F,Zhang L J,Tu B and Zhao D Y.Controlled Synthesis of Ordered Mesoporous C—TiO_2 Nanocomposites with Crystalline Titania Frameworks from Organic—Inorganic—Amphiphilic Coassembly[J].Chemistry of Materials,2008,20:1140-1146.
    [192]Lee D W,Park S J,Ihm S K,and Lee K H.Synthesis of Bimodal Mesoporous Titania with High Thermal Stability via Replication of Citric Acid-Templated Mesoporous Silica[J].Chemistry of Materials,2007,19:937-941.
    [193]Masuda H,Nishio K and Baba N.Fabrication of Porous TiO_2 Films Using Two-Step Replication of Microstructure of Anodic Alumina[J].Japanese Journal of Applied Physics,1992,31:1775-1777.
    [194]Sanz R,Johansson A,Skupinski M,Jensen J,et al.Fabrication of Well-Ordered High-Aspect-Ratio Nanopore Arrays in TiO_2 Single Crystals[J].Nano Letters,2006,6:1065-1068.
    [195]Pileni M P.The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J].Nature Materials,2003,2:145-150.
    [196]Blake Simmons A,Glenlrvin C,Vivek Agarwal,Arijit Bose,Vijay John T,GaryMcPherson L,and Nitash P.Balsara.Small Angle Neutron Scattering Study of Microstructural Transitions in a Surfactant-Based Gel Mesophase[J].Langmuir,2002,18:624-632.
    [197]Liu L M,John V T,et al.IP and 1H NMR as Probes of Domain Alignment in a Rigid Crystalline Surfactant Mesophase[J].Langmuir,2005,21:3795-3801.
    [198]Ramos L,Molino F,and Porte G.Shear Melting in Lyotropic Hexagonal Phases[J].Langmuir,2000,16:5846-5848.
    [199]Liu LM,Singh M,John V T,et al.Shear-Induced Alignment and Nanowire Silica Synthesis in a Rigid Crystalline Surfactant Mesophase[J].Journal of the American Chemical Society,2004,126:2276-2277.
    [200]Mariscal R,L(?)pez-Granados M,Fierro J L G,Sotelo J L,Martos C,and Van Grieken R.Morphology and Surface Properties of Titania-Silica Hydrophobic Xerogels[J].Langmuir,2000,16:9460-9467.
    [201]Anders H,Michael G.Light-Induced Redox Reactions in Nanocrystalline Systems[J].Chemical Reviews,1995,95:49-68.
    [202]Debra R R.Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportanceof Periodicity[J].Science,2003,299:1698-1701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700