用户名: 密码: 验证码:
可生物降解聚酰胺酸酐和聚酯酸酐的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,生物可降解高分子材料被广泛应用于药物控制释放,手术缝合线,人造皮肤,骨固定和修复以及细胞组织工程等领域。与非生物降解型高分子材料相比,生物降解型具有更大的优点,它不需要二次手术,是生物医用高分子材料发展的主流方向,本文概述了生物可降解高分子材料的研究进展。其中聚酸酐类可降解性高分子材料是80年代初发展起来的一类新型可生物降解材料。由于其具有良好的生物相容性、表面溶释降解性、降解速度可调及易加工性等优异性能,很快在医学前沿领域得到应用。本文概述了聚酸酐的合成进展以及其临床应用概况。
     聚酰胺酸酐是一类新型的聚酸酐材料。高分子主链上交替的酰胺键不但降低了聚合物的降解速度,还改善了聚合物的物理和机械性能。文章合成了化合物N,N’双(L-丙氨酸)癸二酰胺(BASM),并聚合得到了PBASM,还将它与1,6-双(对羧基苯氧基)己烷(CPH)共聚得到了共聚物P(CPH-BASM)。另外文章还制备了不同重量比的共混物P(CPH-BASM)/PLA,研究了聚合物的体外降解性能(PBS,pH=7.4,37℃)并用DSC研究了它们的热学性质。
     为了制备这类性能良好的聚酰胺酸酐的单体,论文还将丁二酸酐、戊二酸酐以及己二酸酐分别与甘氨酸和L-丙氨酸制备了N-羧甲基琥珀酰胺酸、N-(1-羧乙基)琥珀酰胺酸、4-羧甲基氨基甲酰丁酸、4-(1-羧乙基)氨基甲酰丁酸、5-羧甲基氨基甲酰戊酸、5-(1-羧乙基)氨基甲酰戊酸。将得到的目标化合物用IR,~1H NMR进行了表征。
     高分子前药和共轭前药最近得到了广泛的研究,与单独给药的药物相比,这类高分子药物可以延长药物的血液浓度。它们有以下几个优点:一是可以使药物以一定的规律释放;二是可以减少由药物的突然释放而引起的副作用。本文首次以己二酸酐和水杨酸为原料,制备了己二酸单(2-羧苯酚)酯,并以它为单体聚合得到了相应得聚酯酸酐。另外还讨论了聚合温度、真空度等对分子量的影响。另外本文还对聚合物在不同的pH值条件下的体外降解行为进行了研究。
In recent years, biodegradable polymeric materials have been used for drug delivery, bone and cartilage repairing, cell issue engineering application. Compared to non-biodegradable polymers, they have favorable advantages. That is, they do not need to be taken out and can degrade into small molecules in body. Biodegradable polymers are the most potential materials for biomedical applications. In this paper, recent developments of biopolymers were reviewed. Novel biodegradable polymers-poly anhydrides have been developed since 1980s' by the group of Langer. These materials are highly biocompatible, demonstrated by tissue response and toxicological study. In addition, they show surface-eroding behavior, thus provide a sustained release rate over a long period of time, and the rate is adjustable. So these materials are very promising in biomedical applications. This paper presented an outline of recent researches and clinical applications of this kind of polymers.
    Amide containing polyanhydrides based on natural amino acids are novel materials which have lots of superior properties. One advantage is that the alternate amide groups in the main chains slow down the rate of degradation. Another important advantage is that the physical and mechanical properties are raised as the result of the incorporation of hydrogen bonds which reinforce the polymer by intermolecular attractive forces. In this paper we synthesized N,N'-bis(L-alanine)sebacoylamide(BASM) and PBASM, a novel amide-containing polyanhydride. BASM was then copolymerized with CPH which increased the hydrophobic property and slowed down the release rate. Then the blends of copolymers and PLA with different weight ratios were prepared. The thermal properties and in vitro degradation(PBS, pH=7.4, 37C) of these polymers were studied in this research.
    In order to prepare monomers of this kind of poly(amide-anhydrides), N-Carboxymeth yl-succinamic acid, N-(1-Carboxy-ethyl)- succinamic acid, 4-(Carboxymethyl- carbamo- yl)- butyric acid, 4-(1-Carboxy-ethyl carbamoyl)-butyric acid, 5 -(Carboxym- ethylcarb- amoyl)- pentanoic acid, 5-(1-Carboxy-ethylcarb amoyl)-pentanoic acid were synthesized by the react of adipic anhydride with glycine and L-alanine respectively. The intermediates and objective products were identified by spectrum of IR, 1HNMR.
    Recently, many polymeric and conjugated prodrugs have been developed which prolong the blood concentration of the drug as compared to the free drug given alone.
    
    
    This phenomenon is indicative of the prodrug's ability to release the drug in a controlled manner and reduced the site effects which may be incurred if the drug is released immediately. In this paper, o-Carboxy phenyl adipic monoester was synthesized for the first time from adipic anhydride and salicylic acid, from which the related polymers were prepared. Additionally, several factors which affected the molecular weight had also been studied, such as vacuum, temperature and so on. The degradation under PBS with different pH was also estimated.
引文
1. Yannas I V, Burke J F. Design of an Artificial Skin. Ⅰ: Characterization, Degradation, and Release Characteristics, J Biomed Mater Res, 1980, 14: 65.
    2. Kato Y P, Christiansen D, Hahn R, et al. Mechanical Properties of Collegan Fibers: Evaluation of Biocompatibility, Biomaterials, 1989, 10: 38.
    3. Majeti N V, Kumar R. Nano and Mieropartieals as Controlled Drag Delivery Devices and Mechanical Properties. Bull Mater Sci, 1999, 22: 905.
    4. Francis J K, Matthew W T. Application of Chitosan-based Polysaccharide Biomaterials in Cartilage Tissue Engineering: a Review, Biomaterials, 2000, 21: 2589.
    5.赵中丹等,替加氟白蛋白微球的制备,广东医学,2000,10(30):19.
    6. Tabata Y, et al. Synthesis of Gelatin Microspheres Containing Interferon, J Pharm Res, 1989, 6: 422.
    7. Yan C, Zhang X, Zhou C, et al. Synthesis of Polymeric Latexes for Diagnosis Reagent Carders, Biomaterials, 1991, 12: 640.
    8. Tabata Y, Yoshito I. Targeting of Muramyl Dipeptide to Macrophaes by Gelatin Conjugation to Enhanced their in vivo Antitumor Activity, J Controlled Release, 1993, 27: 79.
    9. Tabata Y, et al. Suppressive Efevt of Recombinat THF-gelatin Conjugate on Murine Tumor Growth in vivo, J Pharm Pharmacol, 1993, 45: 303.
    10.赖凌燕,艾长荣,壳聚糖制剂研究及应用,广西医学,1999,21(5):878.
    11.梁桂媛,方华丰等,5-氟尿嘧啶壳聚糖微球的制备,广东药学院学报,2000,6(1):7.
    12.梁佩红,李芳,马福广等,以Ⅰ型胶原为基底的表皮细胞培养法,实用医学杂志,1999,11(3):149.
    13. Watanabe K, Saiki I, Uraki Y, et al. 6-O-Carboxymethyl-Chitin(CM-Citin) as a Drug Carder, Chem Pharm Bull, 1990, 38(2): 506.
    14. Allcock H R. Macromolecular and Materials Design Using Polyphosphazenes, Poymer Prepr, 1993, 34(1): 261.
    15. Allcock H R, Fuller T J, et al. Polyphosphazenes as Carrier Molecules for
    
    Controlled Release Systems, Polym Prepr, 1980, 21(1): 111.
    16. Allcock H R, Kown S R. Bioerodible Polymers with a Phosphorus-Nitrogen Backbone, Polym Prepr, 1990, 31(2): 180.
    17. Allcock H R. Fuller T J, et al. Synthesis of Poly[(amino acid alkyl ester) phosphazene], Macromolecules, 1977, 10(4): 824.
    18. Allcock H R, Shawn R Pucher. Synthesis of Poly(organophosphazenes) with Glycoic Acid Ester and Lactic Acid Ester Side Group: Prototypes for New Biodegradable Polymers, Macromolecules, 1994, 27(1): 1.
    19. Hideki H, Makiya N, Yoshinobu T. Development and Pharmacokinetics of Galactosylated Poly(L-glutamic acid) as a Biodegradable Carriers for Liver Specific Drug Delivery, Pharmaceutical Research, 1996, 13(6): 880.
    20. Hoste K, Schacht E, Seymour L. New Derivatives of Poly(glutamic acid) as Drug Carrier Systems. Journal of Controlled Release, 2000, 64: 53.
    21. Yasuyosi M, Kazuyuki J, Masahito O, et al. Preparation and Properties of Biodegradable Copoly(N-hydroxyalklyl-D, L-glutamine) membranes, European Polymer Journal, 1999, 35: 767.
    22. Antoni G, Neri P, Peders T G.. Hydroxynamic Properties of a New Plasm Aespander: Poly Aspartamide, Biopolymers, 1974, 13: 1721.
    23. Claudia SL, David R. In Vitro Study for the Assessment of Poly(L-aspartics) as a Drug Carrier for Colon Specific Drug Delivery, International Journal of Pharmacuetics, 1995, 126: 139.
    24. Zore B, Magsing D, Tomarchio V, et al. Macromolecular Prodrugs. V: Polymer-roxuridine Conjugates, International Journal of Pharmaceutics, 1995, 123: 63.
    25.吕正荣,余家会,卓仁禧等.聚(L-天冬氨酸)衍生物-顺铂结合物的制备及体外细胞毒性研究,高等学校化学学报,1998,19(5),817.
    26. Ryser P, Shen W C. Conjugated of Methotrexate to Poly(L-lysine) as a Potential Way to Overcome Drug Resistance, Cancer, 1980, 45: 1207.
    27. Colin W P, Paul L, Beverley J T, et al. Polycation DNA Complexes for Gene Delivery: a Comparison of the Biopharmaceutical Properties of Cationic
    
    Polypeptides and Cationic Lipids, Journal of Controlled Release, 1998, 53(13): 289.
    28. Youung H C, Feng L J, Seok K, et al. Polyethyleneglycol Grafted Poly(L-Lysine) as Polymeric Gene Carder, Journal of Controllred Release, 1998, 54: 39.
    29. Yasuyoshi M, Kazuyuki J, Masahito O, et al. Biodegradable of Copoly (N-hydroxyethyl-D, L-glutamine) in Vitro, European Polymer Journal, 1999, 35: 607.
    30. Rokicki G, et al. Prog Polym Sci, 2000, 25: 259.
    31. James K, Kohn J. MRS Bull, 1996, 21: 22.
    32.胡斌,武汉大学博士学位论文,1997.
    45. Inoue Y, Kamei S. J Micromol Sci Pure Appl Chem, 1995, A322: 787.
    45.胡佩战,吴兰亭,杨士林,生物医学工程学杂志,1993,10:183.
    34. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. The Basic Properties of Poly(lactic Acid) Produced by the Direct Condensation Polymerization, Bull Chem Soc Jpn, 1995, 68: 2125.
    35. Li N H, Richandt M, et al. Poly(phosphate esters) as Drug-carders, Polym Prept, 1989, 30(1): 454.
    36. Penczek S, Lapienis G, Klosinski P. Synthetic analogues of Phosphates Containing Biopolymers, Pure Appl Chem, 1984, 56(10): 1300.
    37. Richards M, Dihiyat B I, Arm D M, et al. Evaluation of Phosphates and Polyphospaonates as Biodegradable Biomaterials, J Biomed Mater Res, 1991, 25: 1151.
    38. Bucher JE, Slade WC. The anhydrides of isophthatic and terephthalic acids. J Am Chem Soc, 1990; 32: 1319.
    39. Hill J., Carothers W. H. Studies of Polymerization and Ring Formation ⅩⅣ: a Linear Superpolyanhydride and a Cyclic Dimeric Anhydride From Sedacic Acid. J Am Chem Soc, 1932; 54: 1969.
    40. Conix A. New High-melting fibre-forming Polymers. Makromol Chem, 1957; 24: 74
    41. Yoda N., Miyake A. Synthesis of Polyanhydride, 1. Mixed Anhydride of Aromatic
    
    and Aliphatic Dibasic Acids. Makromol Chem, 1957; 24: 74.
    42. Yoda, N. Makromol Chem, 1962, 56: 10.
    43. Yoda, N. Makromol Chem, 1959, 32: 1.
    44. Yoda, N. Makromol Chem, 1962, 56: 10.
    45. Yoda, N. Makromol Chem, 1962, 56: 32.
    46. Yoda, N. Syntheses of Polyanhydrides. Ⅻ. Crystalline and High Melting Polyamide Polyanhydride of Methylene Bis(p-carboxylphenyl)amide, J Polym Sci, 1963, 1: 1323.
    47. Langer R. Biomaterials in Drug Delivery and Tissue Engineering: One Laboratory's Experience, Acc Chem Res, 2000, 33(2): 94.
    48. Leong K W, Brott B C, Langer R. BiodegradablePolyanhydrides as Drug Carrier Matrices. Ⅰ: Characterization, Degradation and Release Characteristics, J Biomed Mater Res, 1985, 19: 941.
    49. Lcong K W, Amore P D, Marletta M, et al. Bioerodible Polyanhydrides as Drug Carder Matrics. Ⅱ: Biocompatibal and Chemical Reactivity, J Biomed Mater Res, 1986, 20: 51.
    50. Sampath P, Brem H. Implantable Slow-releaseChemotherapeutic Polymers for the Treatment of Malignant Brain Tumors, Cancer Control, 1998, 5(2): 130.
    51. Walte K A, Tamargo R J, Olivi A, et al. Intratumoral Chcmotheropy, Neurosurgery, 1995, 37(6): 1128.
    52. Domb A J, Israel Z H, Elmalak O, et al. Preparation and Characterization of Carmustine Loadd Polyanhydride Wafers for Treating Brain Tumors, Pharm Res, 1999, 16(5): 762.
    53. Rosen H B, Chang J, Wnek G E, et al. Bioerodible Polyanhydrides for Controlled Drug Delivery, Biomaterials, 1983, 4: 131.
    54. Domb A J, Maniar M. Absorbable Biopolymers Derived from Dimer Fatty Acid, J Polym Sci, Part A: Polym Chem, 1993, 31(5): 1275.
    55. Domb A J, Nudelman R. Biodegradable PolymersDerived from Natural Fatty Acids, J Polym Sci, Part A.Polym Chem, 1995, 33(4): 717.
    
    
    56. Domb A J, Gauardo C F, Langer R. Poly(anhydrides). 3. Poly(anhydrides) Based on Aliphatic and Aromatic Diacids, Macromolecules, 1989, 22(8): 3200.
    58. Domb A J, Langer R. Polyanhydrides. I. Preparation of High Molecular Weight Polyanhydrides, J Polym Sci, PartA: Polym Chem, 1987, 25: 3373.
    59. Albertsson A C, Lundmark S. Synthesis of Poly(Adipic Anhydride) by Use of Ketene, J Macromol Sci, Chem, 1988, A25(3): 247.
    60. Domb A J, Ron E, Langer R. Poly(anhydrides). 2. One-Step Polymerization Using Phosgene or Diphosgene as Coupling Agents, Macromolecules, 1988, 2(7): 1925.
    61. Puleo D A, Holleran LA, Doremus R H, etal. Osteoblast Response to Orthopechic Implant Materials in vitro, J Biomed Mater Res, 1991, 25: 711.
    62. Windholz R. Polyanhydrides, U.S.P. 3200097(May 25, 1959).
    63. Albertsson A C, Lundmark S. Synthesis of Poly(Adipic Anhydride) by Use of Ketene, J Macromol Sci, Chem, 1988, A25(3): 247.
    64. Alibertsson A C, Lundmark S. MeltPolymerization of Adipic Anhydride(Oxepane-2, 7-dione), J Macromol Sci, Chem, 1990, A27(4): 397.
    65. Lundmark S, Stoling M. Polymerizationf Oxepane-2, 7-dione in Solution and Synthesis of Block Copolymers of Oxepane-2, 7-dione and 2-Oxepanone, J Macromol Sci, Chem, 1991, A28(1): 15.
    66. Ropson N, Dubois Ph, Jerome R, et al. Living (Co)polymerization of Adipic Anhydride and Selective End Functionalization of the Parent Polymer, Macromolecules, 1992, 25: 3820.
    67. Domb A J, Langer R. High Molecular Weight Polyanhydride and Preparation Thereof, U.S.Patent 4, 757, 128(Jul. 12, 1988).
    68. Domb A J, Israel ZH, Elmalak O, et al. Preparation and Characterization of Carmustine Loaded Polyanhydride Wafers for Treating Brain Tumors, Pharm Res, 1999, 16(5): 762.
    69. Leong KW, Brott BC, Langer R. J Biomed Mater Res, 1985, 19: 941.
    70. Shieh L, Tamada J, Chen I, et al. Erosion of a New Family of Biodegradable Polyanhydrides, J Biomed Mater Res, 1994, 28(12): 1465.
    
    
    71. Domb A J, Rock M, Perkin C, et al. Excretion of a Radiobelled anticancer Biodegradable Polymeric Implant from the Rabbit Brain, Biomaterials, 1995, 16(14): 1069.
    72. Tamargo RJ, Epsein JI, Reinhard CS, et al. Brain Biocompatibility of a Biodegradable, Controlled-release Polymer in Rats, dBiomed Mater Res, 1989, 23(2): 253.
    73. Brem H, Ewend M, Sills A, et al. Biocompatibility of a Biodegradable, Controlled-release Polymer in the Rabbit Brain, Sel Cancer Ther, 1989, 5(2): 55
    74. Domb AJ, Maniar M. Absorb Biopolymers Derived From Dimer Fatty Acids, J Polym Sci, Part A-Ⅰ, 1993, 31: 1275.
    75. Brem H, Mahalty MS, Nicholas AV, et al. Interstitial Chemotherapy with Drug Polymer Implants for the Treatment of Recurrent Gliomas, d Neurosurg, 1991, 74: 441.
    76. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled Trial of Safety and Efficacy of Intraoperative Controlled Delivery by Biodegradable Polymers of Chemotherapy for Recurrent Glomas, The Lancet, 1995, 345: 1008.
    77. Langer R. Drug Delivery and Targeting, Nature, 1998, 392: 5.
    78. Walter KA, Mitchell AC, Geu A, et al. Intersitial Taxol Delivered From a Biodegradable Polymer Implant against Experimental Malignant Gliomas, Cancer Res, 1994, 54(8): 2207.
    79. Judy KD, Bekchetz H, Murriy TM, et al. Effectiveness of Controlled Release of a Cyclophosphamide Derivative with Polymers against Rat Gliomas, J Neurosurg, 1995, 82: 481.
    80. Laurecin CT, Gerhart T, Witschger P, et al. Bioerodible Polyanhydrides for Antiiotic Drug Delivery: in vitro Osteomylitis Treatment in a rat Model System, J Orthop Res, 1993, 11(2): 256.
    81. Mathiowitz E, Jacob JS, Jong YS, et al. Biologically Erodible Potential Microspheres as Oral Drug DeliverySystems, Nature, 1997, 386: 410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700