用户名: 密码: 验证码:
血泵大间隙磁力传动系统磁力矩相位角及电磁体温升研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将大间隙磁力传动系统用于可植入式微型永磁轴流式血泵的驱动,能有效解决血泵传统驱动方式存在的磨损、导线穿体感染及人体排异性等难以克服的工程和医学上的问题。然而,系统主从磁极间隙的增大将使其驱动力矩迅速减小,而采用等磁力矩相位角进行磁极切换并不能保证系统各磁极状态驱动力矩得到充分利用;系统驱动电磁体在其工作过程中不可避免要产生温升,温升过高既不能使人体适应,又会影响系统的长时间运行。必须为系统找到进行磁极切换的最佳磁力矩相位角和保证电磁体温升在允许的范围内,因此,本文对系统的磁力矩相位角及电磁体温升进行了研究:
     设计单磁极切换和双磁极切换两种产生驱动磁场的磁极切换方案,通过比较系统的耦合机理、驱动力矩、能量传递效率及电磁体损耗情况,选择采用双磁极切换方式来产生系统所需驱动磁场。利用ANSYS软件对系统驱动力矩进行仿真,通过分析永磁转子所受磁力矩与电磁体四种磁极状态下系统磁力矩相位角之间的关系,提出了系统磁极切换最佳相位角的概念及其求解方法;通过研究不同磁极位置对系统磁极切换最佳相位角的影响规律,得到了最佳相位角的近似计算公式。基于对电磁体传热机制的分析及电磁体各组成材料热性能参数的计算,利用ANSYS软件对电磁体温升进行了数值计算,揭示了电磁体工作时温度过高的问题,并从减少电磁体损耗、改善导热条件及散热条件三个方面提出了保证电磁体最高温度不超过50℃的理论措施。
     研究结果表明:研究所得系统磁极切换最佳相位角可使电磁体具有最大驱动力矩;通过减少电磁体损耗和改善电磁体散热条件能够有效降低电磁体温升,当电磁体单个线圈通电电流小于0.56A、空气流速大于3.5m/s及空气温度小于10℃时,可以保证电磁体最高温度不超过50℃。研究结论对提高系统驱动力矩、降低电磁体温升、完善血泵大间隙磁力驱动系统的设计方法、保证系统长时间可靠运行等具有重要的理论指导意义。
Taking the large gap magnetic driving system as the way of energy supply for permanent magnet axial flow blood pump can conquer engineering and medical problems such as wear and infection and rejection brought by traditional driven approach effectively. However, the driving torque will decrease rapidly with the gap between poles increasing and can't be utilized fully with equal phase angle, the temperature rise will be very high with magnetic working and the human body may not adapt and the reliability of the system may be affected. So phase angle of magnetic torque of the system must be controlled reasonably and temperature rise must be ensured to be lower than the permission.
     Two switching modes of poles for generating driving magnetic field were presented, single pole and double pole switching. The coupling mechanism and driving torque and the energy transfer efficiency and loss of the electromagnets of the system were compared. Choose double pole switching mode as the generating method at last. The driving torque of the system was simulated based on ANSYS software. The concept and solution of the best phase angle for magnetic field was presented through analyzing the relationship between the driving torque and phase angle for four pole-states of the electromagnets. The approximate formula for the best phase angle was drawn through analyzing the influence of the position of magnetic poles on the best phase angle of the system. The temperature rise was calculated using ANSYS software based on the analysis of heat exchange mechanism and determining thermal properties. It shows that the maximum temperature of the electromagnets is very high and measures to reduce temperature rise were studied through reducing loss and improving thermal conductivity and cooling conditions.
     The results show that the obtained best phase angles can get the largest driving torque, temperature rise of electromagnets can be reduced by minimizing loss and improving cooling conditions, When the electric current of a single coil is less than 0.56A, the air velocity is more than 3.5 m/s and the air temperature is less than 10℃, the maximum temperature of the electromagnets will be less than 50℃. The study conclusions have important theoretical significance for improving driving torque of the system and reducing temperature rise of electromagnets and improving large gap magnetic driving system of blood pump to ensure reliability of the system.
引文
[1]武文芳,吴兵.人工心脏的历史及研究进展[J].中国医学装备,2008,5(3):55-58.
    [2]Norman A.Gray, Jr,MD, et al. Current status of the total artificial heart [J]. American Heart Journal,2006,152(1):4-10.
    [3]Masuzawa T,Taenaka Y,Tatstnni E, et al.Set-up,improvement,and evaluation of an electrohydraulic total artificial heart with a separately placed energy converter [J]. ASAIO J,1996,42(5):M328-M 332.
    [4]Weiss WJ,Rosenberg G, Snyder AJ, et al. Resent improvements in a completely implanted total artificial heart [J]. ASAIO J,1996,42(5):M342-M346.
    [5]Akhter SA, Raman J. Technique for Left Ventricular Apical Cannulation for Short-Term Mechanical Circulatory Support [J]. The Annals of Thoracic Surgery.2010,89(3):994-995.
    [6]Emily A. Assisted Circulation for the Failing Heart:Experience with the Novacor Left Ventricular Assist System [J]. Hospital Chronicles.2010,84(1): 288-298.
    [7]Qian KX,Wang SS,Chu SH,et al. In vivo study of pulsatile implantable impeller assist and total heart [J]. Ariificial Organs,1995,19(4):328-333.
    [8]Yoshiyuki Taenaka. Development of a centrifugal pump with improved an tuath rom biogenicity and hemolytic property for chronic circulatory support [J]. Artifical Organs,1996,20(6):491-494.
    [9]Liao K, Shumway S. Intermediate Clinical Performance of the Levitronix CentriMag Ventricular Assist Device in Supporting Cardiogenic Shock Patients [J]. Circulation.2010,122(21):A296.
    [10]S. E. Sandner, D. Zimpfer, P. Zrunek,et al. Renal Function and Outcome After Continuous Flow Left Ventricular Assist Device Implantation [J]. Ann. Thorac. Surg.,2009,87(4):1072-1078.
    [11]Frazier O.H. Chronic left ventricular support with a vented electric assist device. Ann Thorac Surg,1993,55(1):273-275.
    [12]Parnis SM, Conger JL, Fuqua JM, et al. Progress in the development of a transcutaneously Powered axial flow blood pump ventricular assist system [J]. ASAIO J,1997,43(5):M567-M580.
    [13]Mitamura Y, Yozu R, Tanaka T, et al. The valvo-pump an axial nonpulsatile blood pump [J]. ASAIO Transactions 1991,37(3):M668.
    [14]Dixon SR, Henriques JPS. A Prospective Feasibility Trial Investigating the Use of the Impella 2.5 System in Patients Undergoing High-Risk Percutaneous Coronary Intervention (The PROTECT I Trial):Initial U.S. Experience [J]. J Am Coll Cardiol Intv.2009,2(2):91-96.
    [15]徐修萍.轴流式心室辅助装置的研究进展[J].中国医疗器械杂志.2009,33(2):4-8.
    [16]DENNIS R.TRUMBLE, DAVID B. MELVIN, DAVID A. DEAN et al. MAGOVERN. In Vivo Performance of a Muscle-Powered Drive System for Implantable Blood Pumps [J]. ASAIO J.2008,54(3):227~232.
    [17]Don B. Olsen, Paul E. Allaire, Houston G. Wood, et al. Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller [P]. United States Patent Application.US2005/0135948 A1,2005.06.23
    [18]Christoph H. Huber, Piergiorgio Tozzi, Michel Hurni, et al. No drive line, no seal, no bearing and no wear:magnetics for impeller suspension and flow assessment in a new VAD [J]. Interactive Cardiovascular and Thoracic Surgery. 2004,3(2):336-340.
    [19]Mitamura Y, Takahashi S. A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid [J]. Physics Procedia.2010,9:229-233.
    [20]Cheng S, Olles MW. Miniaturization of a Magnetically Levitated Axial Flow Blood Pump [J]. Artificial Organs.2010,34(10):807-815.
    [21]蔺嫦燕,李冰一,姜以岭,等.新型磁耦合式轴流血泵[J].北京生物医学工程,2001,20(1):69-72.
    [22]俞晓青,丁文祥,王伟,等.磁偶合驱动轴流式血泵的可行性研究[J].生物医学工程学杂志,2004,21(1):131-133.
    [23]崔建国,侯文生,郑小林,等.磁能驱动微型泵的性能研究[J].传感器与微系统.2010,29(1):33-35.
    [24]吕瑰丽,李国国,范瑜.无刷直流电动机在轴流式血泵系统中的应用[J].微电机,2007,40(11):70-73.
    [25]曾培,茹伟民,袁海宇,等.人工心脏血泵驱动电机的控制研究[J].中国生物医学工程学报,2001,20(4):342-345.
    [26]Hsien-Tsung Chang, Chia-Yen Lee. Theoretical analysis and optimization of electromagnetic actuation in a valve less micro impedance pump [J]. Microelectronics Journal. May,2007,38(6-7):791-799.
    [27]杨清新,严珩志,付伟华.一种管内壁自动清淤器磁转子的特性[J].机械设计,2006,23(5):20-22.
    [28]D.M.Tsamakis, M.GIoannides, GK.Nicolaides. Torque transfer through plastic bonded Nd2Fe14B magnetic gear system [J]. Journal of Alloys and Compounds,1996,241(1-2):175-179.
    [29]王新华,肖峰,王思民,等.超磁致伸缩驱动器驱动磁场仿真分析[J].现代制造工程,2009,33(2):11-14.
    [30]J.H. Deng, H.P. Yu, C.F. Li. Numerical and experimental investigation of electromagnetic riveting [J]. Materials Science and Engineering,2009, 499(1-2):242-247.
    [31]赵镜红,张晓锋,张俊洪,等.圆筒永磁直线同步电机磁场和推力分析[J].电机与控制学报,2010,14(1):12-17.
    [32]Takahisa Ohji, Takashi Shinkai, Kenji Amei, et al. Application of Lorentz force to a magnetic levitation system for a non-magnetic thin plate [J]. Journal of Materials Processing Technology,2007,181(1-3) 40-43.
    [33]Karel Fra(?)na. A numerical study of flows driven by a rotating magnetic field in a square container [J]. European Journal of Mechanics B/Fluids,2008,27(4): 491-500.
    [34]Toshiyuki Ueno, Jinhao Qiu, Junji Tani. Magnetic Force Control Based on the Inverse Magnetostrictive Effect [J]. IEEE TRANSACTIONS ON MAGNETICS,2004,40(3):1601-1605.
    [35]Frank T. Jorgensen, Torben Ole Andersen, Peter Omand Rasmussen. The Cycloid Permanent Magnetic Gear [J]. IEEE TRANSACTIONS ON MAGNETICS,2008,44(6):1659-1665.
    [36]杜春洋,杨贵杰,李铁才.永磁感应子式无刷直流电动机的转矩特性研究[J].电机与控制学报,2006,10(1):35-39.
    [37]曲兵妮,宋建成.开关磁阻电动机互感特性及其对转矩的影响[J].电机与控制学报,2009,13(5):332-336.
    [38]David G. Craig, Mir Behrad Khamesee. Derivation of an Analytical Model for the Force Produced During the Motion of a Magnetically Suspended Object [C]. Proceedings of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada,2005, (2):970-974.
    [39]杨玉波,王秀和,丁婷婷.一种削弱永磁同步电动机齿槽转矩的方法[J].电 机与控制学报,2008,12(5):124-127.
    [40]李兵强,林辉.面装式永磁同步电机增磁增矩负载角恒定控制[J].电机与控制学报,2010,14(5):56-60.
    [41]李路路.电磁驱动气门的有限元分析[D].南京理工大学硕士学位论文,2009
    [42]M. Higuchi, R. Kawamura, Y. Tanigawa. Magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder [J]. International Journal of Solids and Structures,2007,44(16):5316-5335.
    [43]A. Shenkman, M. Cherktov. Heat conditions of a three-phase induction motor by a one-phase supply [J]. IEEE Proceedings Electrical Power Application, 1999.146(4):361-367.
    [44]王艳武,杨立,陈翾等.异步电机转子三维温度场及热应力场研究[J].电机与控制学报,2010,14(6):27-32.
    [45]Ying Huai, Roderick V.N. Melnik, Paul B. Thogersen. Computational analysis of temperature rise phenomena in electric induction motors [J]. Applied Thermal Engineering,2003,23(7):779-795.
    [46]Zlatko Kolondzovski, Anouar Belahcen, Antero Arkkio. Multiphysics thermal design of a high-speed permanent magnet machine [J]. Applied Thermal Engineering,2009,29(13):2693-2700.
    [47]丁树业,孙兆琼,苗立杰,等.大型发电机定子主绝缘温度场数值研究[J].电机与控制学报,2010,14(7):53-58.
    [48]S. Schonhardt, J.G. Korvink, J. Mohr, U. Hollenbach, U.Wallrabe. Optimization of an electromagnetic comb drive actuator [J]. Sensors and Actuators A,2009,154(2):212-217.
    [49]K.Ishiyama, M.Sendoh, A.Yamazaki, et al. Swimming micro-machine driven by magnetic torque [J]. Sensors and Actuators A,2001, A91 (1-2):141-144.
    [50]Mochimitsu Komori, Takehiro Hirakawa. A Magnetically Driven Linear Microactuator With New Driving Method [J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2005,10(3):335-338.
    [51]穆参军,张飞岭,吴亚明.新型大尺寸电磁驱动MEMS光学扫描镜的研制[J].半导体学报,2008,29(3):584-588.
    [52]刘雪洪,刘梁,常思勤.基于磁力传动的永磁离合器设计与试验[J].农业机械学报,2008,39(5):15-17.
    [53]Subrata Banerjee, Dinkar Prasad, Jayanta Pal. Large gap control in electromagnetic levitation [J]. ISA Transactions,2006,45(2):215-224.
    [54]郝晓红,梅雪松,张东升.一种新型磁悬浮纳米定位工作台的研究[J].机械科学与技术,2009,28(5):643-647.
    [55]张永顺,岳明等.肠道内变径胶囊微机器人空间磁力矩特性[J].中国科学,2009,39(7):1284-1290.
    [56]Chao Hu,Dongmei Chen,LeiWang. Control Strategy of Active Actuation System of Wireless Capsule Endoscope [C]. Proceedings of the 2007 IEEE International Conference on Integration Technology, Shenzhen,2007:1-6.
    [57]李国丽,李剑平,王群京.外磁场驱动的无线内窥镜磁场线圈的设计方法研究[J].中国科学技术大学学报,2008,38(3):272-276.
    [58]Federico Carp i, Stefano Galbiati, Angelo Carp i. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion [J]. Biomedicine & Pharmacotherapy.2006,60(8):370-374.
    [59]李弋可,王文兴,颜国正.消化道胶囊内窥镜的磁引导驱动[J].北京生物医学工程,2008,27(4):416-420,435.
    [60]Hoshi.Hideo, Katakoa.Kiroyuki, Ohuchi.Katsuhiro. Magnetically suspended centrifugal blood pump with a radial magnetic driver [J]. ASAIO Journal.2005, 51(1):60-64.
    [61]雷永锋,汪希平,常宇,等.磁悬浮人工心脏泵驱动电动机及控制研究[J].微电机,2008,41(3):72-74.
    [62]俞晓青,丁文祥,王伟,等.磁耦合驱动轴流式血泵的可行性研究[J].生物医学工程学杂志,2004,21(1):131-133.
    [63]Roland Hetzer, Yuguo Weng, Evgenij V. Potapov, et al. First experiences with a novel magnetically suspended axial flow left ventricular assist device [J]. Journal of Cardio-thoracic Surgery 2004,25(6):964-970.
    [64]徐先懂,龚中良,谭建平.基于外磁场耦合的血泵驱动系统[J].中南大学学报(自然科学版),2007,38(4):711-714.
    [65]崔建国,侯文生,郑小林,等.磁能驱动微型泵的性能实验研究[J].传感器与微系统,2009,28(2):8-12.
    [66]JUNICHI ASAMA, TADAHIKO SHINSHI, HIDEO HOSHI, et al. A New Design for a Compact Centrifugal Blood Pump with a Magnetically Levitated Rotor [J]. ASAIO Journal.2004,50(6),550-556.
    [67]Tau Meng Lim, Dongsheng Zhang. Development of Lorentz Force-Type Self-bearing Motor for an Alternative Axial Flow Blood Pump Design [J]. Artificial Organs,2006,30(5):347-353.
    [68]Glendal R.Dow, Bedford, TX(US). HEART BOOSTER PUMP WITH MAGNETIC DRIVE [P].United States Patent Application.US2009/0254178 A1,2009.
    [69]高殿荣,张前,徐云辉,等.外磁场驱动磁悬浮可植入式锥形螺旋叶轮转子血泵[P].中国发明专利,CN101417155A,2009.04.29
    [70]殷桂梁,王冀,吴闻婧.外磁驱动血泵电机模糊控制系统研究[J].计算机与信息技术.2009,(5):25-27.
    [71]Pan Zheng, Yousef Haik. Force and torque characteristics for magnetically driven blood pump [J].Journal of Magnetism and Magnetic Materials,2002, 241(2):292-302.
    [72]夏东.一种用于人工心脏的永磁磁体体外磁场驱动系统[P].中国发明专利,CN101618240A,2010.01.06.
    [73]Hilton ATansley G. Magnetic Drive System for a New Centrifugal Rotary Blood Pump [J]. Artificial Organs.2008,32(10):772-777.
    [74]P.Klein MS.Brown J.Mehtod for Forming a corrosion-resistant impeller for a magnetic-drive centrifugal pump [P].US7707720 B2,2010.
    [75]龚中良,陈建伟,云忠,等.微型轴流式血泵外磁场驱动方法的探讨[J].机电一体化,2005,11(2):37-39.
    [76]谭建平,许焰,刘云龙,等.一种非接触式大间隙磁力驱动方法[P].中国发明专利,200810030545.1,2008.10.01.
    [77]Jianping TAN, Yan XU, Tanxi LI, et al. The scheme design and application of large gap magnetic drive system which is driven by traveling wave magnetic field[C]. IEEE International Conference on Measuring Technology and Mechatronics Automation (ICMTMA2009), Zhangjiajie, April,2009:160-163.
    [78]许焰,谭建平,李谭喜,等.行波磁场驱动的磁力传动系统空间磁场数学模型[J].中南大学学报(自然科学版),2009,40(6):1573-1579.
    [79]Yan XU, Jianping TAN, Yunlong LIU. et al. Research on Torque-Angle Characteristic of Large Gap Magnetic Drive System[J]. J. Electromagnetic Analysis & Applications,2010,2(1):25-30.
    [80]TAN Jian-ping, LIU Yun-long, XU Yan. Study on Energy Loss Model of Large Gap Magnetic Drive system [C]. International Conference on Energy and Environment Technology, Guilin, October,2009:344-347.
    [81]赵镇南.传热学[M].北京:高等教育出版社,2008:464-470
    [82]Ryosuke Shiraishi, Kazuyuki Demachi, Mitsuru Uesaka. Numerical simulation of coupled problem of electromagnetic field and heat conduction in superconducting magnetic bearing [J]. R. Shiraishi et al./Physica,2003, 392(1):734-738.
    [83]Yuan Chun, Wei Keyin, Wang Xiaonian. Coupled-field thermal analysis of high-speed permanent magnetic generator applied in micro-turbine generator [J]. Electrical Machines and Systems,2005(3):2458-2461.
    [84]黄允凯,胡虔生,朱建国.顾及旋转铁耗的高速爪极电机三维磁热耦合分析[J].电工技术学报,2010,25(5):54-60.
    [85]李伟力,丁树业,靳慧勇.基于耦合场的大型同步发电机定子温度场的数值计算[J].中国电机工程学报,2005,25(13):129-134.
    [86]刘隆波,金家善,赵元松,等.电机定子蒸发冷却温度场研究[J].航海工程,2009,58(2):79-82.
    [87]孙建宏,丁文,鱼振民.扁平型直线异步电机温度场的计算与分析[J].电机与控制应用,2006,33(1):20-24.
    [88]魏永田,孟大伟,文嘉斌.电机内热交换[M].北京:机械工业出版社,1998:1-7.
    [89]电子工业部第二十一研究所.微特电机设计手册[M].上海:上海科学技术出版社,1997:319-320.
    [90]陈世坤.电机设计[M].第二版.北京:机械工业出版社,1990:125-127.
    [91][苏]鲍里先科,丹科,亚科夫列夫.电机中的空气动力学与热传递[M].北京:机械工业出版社,1985:74
    [92]朱英杰.最新变压器常用材料、器件与质量检验标准规范实务全书[M].中国科学技术文献出版社,2007:867-868.
    [93]邓建国.单相串励电动机电枢瞬态温度场的分析和计算[J].湖南大学学报,1998,25(6):60-65.
    [94]刘志坚.大间隙磁力驱动血泵动力学特性研究[D].中南大学硕士学位论文,2010:28-32.
    [95]刘恒拓.大间隙磁力驱动血泵调速控制及在线检测系统研究[D].中南大学硕士学位论文,2011:43-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700