用户名: 密码: 验证码:
新型生物传感器的构建及其在环境和生物检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器是一种由生物感应元件和信号处理元件组成,用于对各种生物、化学物质进行检测的分析系统,其基本原理是生物感应元件与检测目标物相互作用后产生响应信号,信号处理元件对响应信号进行接收、加工、转换、输出,以此实现对目标物的定性、定量检测。鉴于生物传感器具有传统分析方法不可比拟的优势,生物传感器已成为分析检测领域的重要技术,被广泛应用于环境检测、生物医学研究、食品检测、发酵工业生产等众多领域。
     近年来,对环境污染物的检测成为环境评估、环境治理的重要手段,对生物分子的检测成为生物学研究的重要内容,对环境污染物和生物分子进行快速、灵敏检测的生物传感器的研制开发具有重要的理论价值和广阔的应用前景。本论文成功构建了5种新颖的生物传感器分别用于检测环境污染物重金属二价铅离子、三硝基甲苯、苯并(а)芘及生物小分子含巯基氨基酸。
     1、基于谷胱甘肽能够保护银纳米颗粒抵抗盐诱导的聚集原理构建了检测重金属Pb(Ⅱ)离子的生物传感器。谷胱甘肽通过Ag-S键结合到银纳米颗粒表面能够增强银纳米颗粒稳定性,协助银纳米颗粒抵抗盐诱导的聚集;重金属Pb(Ⅱ)离子可竞争性与谷胱甘肽结合,以此削弱谷胱甘肽对银纳米颗粒的保护作用从而导致银纳米颗粒在盐诱导下发生聚集。银纳米颗粒分散、聚集的不同状态导致其紫外可见吸收值的不同即可定性、定量反映不同浓度的Pb(Ⅱ)离子。该生物传感器实现了对Pb(Ⅱ)离子的特异性检测,检测线性范围在0.5-4μM,检测下限为0.5μM。同时该生物传感器实现了对实际水样中Pb(Ⅱ)离子的检测,说明该生物传感器具有良好的实际应用前景。本论文首次发现谷胱甘肽能够保护银纳米颗粒抵抗盐诱导的聚集,增强银纳米颗粒的稳定性,并将这一原理应用于构建可视化、定量检测Pb(Ⅱ)离子的生物传感器。该生物传感器利用盐溶液放大检测信号,可以实现高灵敏度、特异性检测Pb(Ⅱ)离子。该研究方法为检测环境中的重金属离子提供了一条可能的思路:通过寻找与不同重金属特异性结合的配体,结合银纳米等纳米材料在分散、聚集条件下呈现不同颜色所带来的紫外可见吸收值的变化,实现对环境中重金属的特异性检测。
     2、利用TNT能够淬灭银纳米簇荧光的原理构建了检测TNT的生物传感器。银离子与单链DNA中胞嘧啶结合后,在硼氢化钠还原作用下生成高质量、稳定的荧光银纳米簇。三硝基甲苯(TNT)是一种较强电子受体,可以有效淬灭银纳米簇的荧光。TNT通过疏水作用结合到银纳米簇表面,淬灭其荧光,随着TNT浓度的增加,TNT荧光淬灭效率增加,银纳米簇荧光强度减小,以此可以实现TNT检测。该生物传感器检测TNT线性范围在0.5-6μg/mL,检测限为0.5μg/mL。通过对土壤和河水添加样中TNT的检测,证明该生物传感器能够实现对环境实际样品中TNT的检测。本论文首次发现三硝基甲苯可以淬灭ssDNA保护的银纳米簇荧光效应,并将其应用于构建检测TNT的生物传感器,为将荧光纳米材料应用于TNT检测生物传感器的构建提供可借鉴的经验。
     3、基于斑点杂交原理构建了可视化、半定量检测多环芳烃代表物苯并(а)芘的生物传感器。该生物传感器利用苯并(а)芘与苯并(а)芘抗体、吸附于硝酸纤维素膜上的苯并(а)芘抗原之间发生竞争性免疫反应特性,使用感光胶片对检测信号进行收集。通过对感光胶片的曝光、显影,该生物传感器可以对浓度低至5ng/mL的苯并(а)芘进行可视化检测。使用专业分析软件对检测信号强度进行分析,该生物传感器可以实现半定量检测苯并(а)芘。使用该生物传感器对固相萃取法富集的河水样品中的苯并(а)芘进行检测,检测结果说明该生物传感器能够应用于实际检测。本论文通过将斑点杂交原理应用于构建检测苯并(а)芘的生物传感器,在不使用任何检测仪器的条件下,可以实现对环境样品中苯并(а)芘的定性、半定量检测。该生物传感器操作简单、检测特异性强,为环境有毒污染物检测方法的研究提供了可行的思路。
     4、应用单链DNA能够通过碱基与银纳米颗粒之间形成的范德华力吸附到银纳米颗粒表面帮助银纳米颗粒抵抗盐诱导的聚集原理构建了检测含巯基氨基酸的生物传感器。含巯基氨基酸通过巯基结合到银纳米颗粒表面,阻碍了单链DNA的吸附,失去单链DNA保护的银纳米颗粒在盐的诱导下发生聚集,纳米颗粒的紫外可见吸收值发生改变,以此可以实现检测含巯基氨基酸。该生物传感器对同型半胱氨酸、半胱氨酸、谷胱甘肽的检测线性范围分别在在10-500nM、50-500nM、100-500nM,检测限分别为10nM、50nM、100nM。对模拟血清和尿液样品中同型半胱氨酸的成功检测证明该生物传感器具有良好的实际应用前景。本论文基于单链DNA保护银纳米颗粒抵抗盐诱导的聚集原理,根据含巯基氨基酸通过Ag-S键结合到银纳米颗粒表面替代单链DNA的实验现象,创新性的将两者有机结合构建了特异性检测含巯基氨基酸的生物传感器。通过盐溶液放大信号作用,该生物传感器能够实现高灵敏度检测含巯基氨基酸。通过分析银纳米颗粒分散、聚集状态下不同紫外可见吸收值,该生物传感器可以实现可视化、定量检测含巯基氨基酸。该生物传感器设计简单、新颖,检测快速、高效,为生物小分子物质检测提供了新颖的研究思路。
     5、基于单链DNA保护的金纳米颗粒的稳定性增强并能够有效抵抗盐诱导的聚集原理构建了检测半胱氨酸的生物传感器。单链DNA通过碱基与金纳米颗粒之间形成的范德华力吸附到金纳米颗粒表面,增强金纳米颗粒的稳定性。半胱氨酸通过巯基以Au-S键结合到金纳米颗粒表面将单链DNA从金纳米颗粒表面排开,失去单链DNA保护的金纳米颗粒在盐诱导条件下发生聚集,导致纳米颗粒的紫外可见吸收值发生改变,以此实现检测半胱氨酸。该生物传感器检测半胱氨酸线性范围在0.1-5μM,检测限为0.1μM。通过对模拟血清样品中半胱氨酸的检测,证明该生物传感器具有良好的实际应用前景。该生物传感器简单、高效,检测灵敏度高,为将纳米材料用于构建检测生物小分子物质的生物传感器提供了可借鉴的研究思路。
Biosensor is an analytic device composed of biological sensor and signalprocessing components for biological, chemical analysis detection. On binding ofanalyte to biological sensor, the consequent signal was received, processed, converedand output by signal processing components, and as a result, the qualitative,quantitative analysis to the analyte are achieved. In view of the incomparableadvantage compared with conventional analysis methods, biosensor has alreadyevolved as an important technology for analysis and detection, and it has been widelyused in environmental monitoring, medicine, biology research, food testing,fermentation industrial production etc.
     Recently, the detection for environmental pollutant has become the key indicatorfor environmental evaluation and protection. The detection for biological moleculehas also become the effective reference for biology research. The design of thebiosensor to detect environmental pollutant and biological molecule is of greatscientific significance and promising practical application. Here,5novel biosensorsfor the determination of heavy metal lead ions, benzene(а)pyrene, TNT or thiol aminoacids are described.
     1. A type of Pb (Ⅱ) ion biosensor has been generated based on glutathioneprotection of the silver nanoparticles(AgNPs). Glutathione can be conjugated toAgNPs via Ag–S bond, helping AgNPs to resist against aggregation induced by salt.However, the interaction between glutathione and AgNPs can be compromised by Pb(Ⅱ) ion binding to glutathione. As a result, Pb (Ⅱ) mediated-aggregation of AgNPscan be reflected by the UV-Visible spectrum change, and the qualitative andquantitative detection for Pb (Ⅱ) ion is accomplished, with the detection range0.5-4μM and a detection limit of0.5μM. Pb (Ⅱ) ion in water sample has also beendetermined by this biosensor. The principle that glutathione is capable of enhancingthe stability of the AgNPs is first reported in this thesis. Furthermore, thevisualization and quantitative detection for Pb (Ⅱ) ion biosensor was constructedbased on this principle. This study implies that a ligand which combines heavy metalions and silver nanomaterials can be used to construct biosensors to achieve thespecific detection.
     2. A type of trinitrotoluene (TNT) biosensor using fluorescence silver nanocluster has been proposed. In the presence of interaction between Ag+and cytosine,fluorescence silver nanocluster can be generated under the reduction effect of sodiumborohydride. TNT is a strong electronic receptor and an effective fluorescent quencher.The interaction between TNT and silver nanocluster leads to fluorescence quenching,thus the detection of TNT is realized, with detection linear range of0.5-6μg/mL anddetection limit of0.5μg/mL. TNT in the soil sample can be detected using thebiosensor, indicating its practical application. Moreover, the successful application offluorescence silver nanocluster in TNT biosensor provides referential experience inthe construction of biosensor using fluorescence nanomaterial.
     3. A type of benzene(а)pyrene biosensor based on dot blot has been proposed.Competitive immune response occurs between benzene(а)pyrene, benzene(а)pyreneantibody and benzene(а)pyrene antigen absorbed on nitrocellulose membrane.Detection signal can be collected by film. The biosensor can analyzed as low as5ng/mL of benzene(а)pyrene through a visualization detection. A semi-quantitativebenzene(а)pyrene detection can be achieved by using a professional analysis software.The water sample containing benzene(а)pyrene can be analyzed, imply the potentialpractical application. The principle of dot blot was firstly employed to designbiosensors, and provided qualitative and semi-quantitative detection without any useof instrument. The simplicity and high specificity of benzene(а)pyrene biosensorsheds new light on the development of environmental pollutant biosensor.
     4. A type of biological thiols biosensor for using ssDNA/sliver nanoparticlessystem has been proposed. The adsorbing ssDNA provides AgNPs high density chargeto prevent nanoparticles from aggregation induced by salt. However, homocysteine(cysteine or glutathione) can conjugate to AgNPs via Ag-S bond more powerfully thanssDNA, which restrain ssDNA from binding to AgNPs surface. In the presense ofhomocysteine, the salt induced AgNPs aggregation and the corresponding UV-Visiblespectrum change. Homocysteine,cysteine and glutathione can be determined in therange of10-500nM、50-500nM、100-500nM, respectively, with the detection limitof10nM、50nM、100nM, respectively. The method was successfully applied todetermine stimulant serum samples or urine sample containing homocysteine.Through the AgNPs color change, biological thiols biosensor provide simple, rapid,efficient, specific and visual detection for thiol amino acids, which may be instructiveto the biological molecule biosensor development.
     5. A type of cysteine biosensor based on ssDNA-stabilized gold nanoparticles(AuNPs) has been proposed. The adsorbing ssDNA provides AuNPs high density charge to prevent nanoparticles from aggregation induced by salt. In the presence ofcysteine, ssDNA is moved away by cysteine, resulting in the AuNPs aggregation viathe introduction of salt. Therefore, cysteine can be detected based on UV-Visiblespectrum change. A favorable linear correlation in the range of0.1-5μM is obtainedwith a detection limit of0.1μM. The biosensor is successfully applied to determinestimulant serum samples containing cysteine, suggesting the promising practicalapplication. The cysteine biosensor is simple, efficient, highly sensitive, which willpromote the biological molecule biosensor designed with nanomaterial.
引文
[1]吕怡兵,孙晓慧,付强.便携式气相色谱-质谱仪测定空气中挥发性有机污染物的准确性.色谱,2010,28(5):470-475
    [2]杨晓,陈梅玲,温博海等.实时荧光定量PCR检测普氏立克次体.中华流行病学杂志,2006,27(11):963-967
    [3]王新民.87例肝硬化结节的核磁共振成像研究,北方药学,2011,8(6):59
    [4]李爱军,王明泰,吴连鹏等.高通量全自动仪器法测定植物源性食品中甲基托布津残留量.食品科学,2011,32(10):133-135
    [5]赵珍义,陈华.原子吸收分光光度计新应用的探讨.光谱学与光谱分析,1998,18(1):124-127
    [6]何星月,刘之景.生物传感器的应用.物理学和高新技术,2003,32(4):249-252
    [7]马莉萍,毛斌,刘斌等.生物传感器的应用现状与发展趋势.传感器与微系统,2009,28(4):1-4
    [8]冯德荣.生物传感器的研究现状和发展方向.山东科学,1999,12(4):1-6
    [9] Updike S J, Hicks G P. The enzyme electrode. Nature,1967,214(5092):986-988
    [10]朱建中,周衍.电化学生物传感器的进展.传感器世界,1997,4:1-8
    [11]刘艳.我国电化学生物传感器的研究进展.重庆科技学院学报(自然科学版),2010,12(6):153-155
    [12] Tel-Vered R, Yehezkeli O, Willner I. Biomolecule/nanomaterial hybrid systemsfor nanobiotechnology. Advances in Experimental Medicine and Biology,2012,733:1-16
    [13] Petryayeva E, Krull U J. Localized surface plasmon resonance: nanostructures,bioassays and biosensing--a review. Analytica Chimica Acta,2011,706(1):8-24
    [14]张广丰.高通量测序技术日渐成熟.http://www.bitebo.com/a/gb2312/info/2010/1226/4049.html,2010-12-26
    [15]卢昕.生物传感器-国内研究现状及发展动向.广西师范大学学报(自然科学版),1995,13(3):61-65
    [16] Becker B, Cooper M A. A survey of the2006-2009quartz crystal microbalancebiosensor literature. Journal of Molecular Recognition,2011,24(5):754-787
    [17] Parker C O, Lanyon Y H, Manning M, et al. Electrochemical immunochipsensor for aflatoxin M1detection. Analytical Chemistry,2009,81(13):5291-2598
    [18] Xing B, Ashot K, Rao J H. Cell-permeable Near-Infrared fluorogenic substratesfor imaging β-lactamase activity. Journal of the American Chemical Society,2005,127(12):4158-4159
    [19] Liu C H, Li Z P, Du B A, et al. Silver nanoparticle-based ultrasensitivechemiluminescent detection of DNA hybridization and single-nucleotidepolymorphisms. Analytical Chemistry,2006,78(11):3738-3744
    [20] Rong F, Ophir V, Alok S, et al. Integrated barcode chips for rapid, multiplexedanalysis of proteins in microliter quantities of blood. Nature Biotechnology,200826(12):1373-1378
    [21] Yegor G T, Jeffrey J R, Susan M. Piezoelectric quartz crystal microbalancesensor for trace aqueous cyanide ion determination. Analytical Chemistry,2007,79(1):251-255
    [22] Igor L M, Aaron R, Mattoussi H J, et al. Self-assembled nanoscale biosensorsbased on quantum dot FRET donors. Nature Materials,2003,2(9):630-638
    [23] Bo T, Ning Z, Chen Z, et al. Probing hydroxyl radicals and their imaging inliving cells by use of FAM-DNA-Au nanoparticles. Chemistry European Journal,2008,14(2):522-528
    [24] Arora P, Sindhu A, Dilbaghi N, et al. Biosensors as innovative tools for thedetection of food borne pathogens. Biosensors and Bioelectronics,2011,28(1):1-12
    [25] D'Orazio P. Biosensors in clinical chemistry-2011update. Clinica Chimica Acta,2011,412(19-20):1749-61
    [26] Claire L S, Alan H H, Robert A. F, et al. Silver and gold glyconanoparticles forcolorimetric bioassays. Langmuir,2006,22(15):6707-6711
    [27] Fabien L F, Hoang-Anh H, Patricia H-L, et al. Ferrocene-functionalized cationicpolythiophene for the label-free electrochemical detection of DNA. AdvancedMaterials,2005,17(7):1251-1254
    [28] Samuel J C, Annette H C, Zhang Z J, et al. Photophysics of dopamine-modifiedquantum dots and effects on biological systems. Nature Materials,2006,5(5):409-417
    [29] Song C, Wang Z, Cui Y, et al. Highly sensitive immunoassay based on Ramanreporter-labeled immuno-Au aggregates and SERS-active immune substrate.Biosensors and Bioelectronics,2009,25(4):826-831
    [30] Han D, Kim Y-R, Oh J-W, et al. A regenerative electrochemical sensor based onoligonucleotide for the selective determination of mercury(II). Analyst,2009,134(9):1857-1862
    [31] Fan C H, Plaxco K W, Heeger A J. Biosensors based on binding-modulateddonor–acceptor distances. Trends in Biotechnology,2005,23(4):186-192
    [32] Jeffrey N A, Paige H, Olga L, et al. Biosensing with plasmonic nanosensors.Nature Materials,2008,7(6):442-453
    [33] Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009,109(5):1948-98
    [34] Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing.Analytical Biochemistry,2011,417(1):1-16
    [35] Caygill R L, Blair G E, Millner P A. A review on viral biosensors to detecthuman pathogens. Analytica Chimica Acta,2010,681(1-2):8-15
    [36] Gehring A G, Tu S I. High-throughput biosensors for multiplexed food-bornepathogen detection. Annual Review of Anlytical Chemistry,2011,4:151-172
    [37] Zhang F, Keasling J. Biosensors and their applications in microbial metabolicengineering. Trends Microbiology,2011,19(7):323-329
    [38] Steiner M S, Duerkop A, Wolfbeis O S. Optical methods for sensing glucose.Chemical Society Reviews,2011,40(9):4805-4839
    [39] Sampietro M, Bottani C E, Carminati M, et al. Biosensors and molecularimaging. IEEE Pulse,2011,2(3):35-40
    [40] Brayner R, Couté A, Livage J, et al. Micro-algal biosensors. Analytical andBioanalytical Chemistry,2011,401(2):581-597
    [41] Okamoto A. ECHO probes: a concept of fluorescence control for practicalnucleic acid sensing. Chemical Society Reviews,2011,40(12):5815-5828
    [42]王立中,杰库里斯.生物传感器及展望.传感技术学报,1993,1:52-55
    [43] Olivier C, Feng G, Nicolas M. Deglycosylation of glucose oxidase for direct andefficient glucose electrooxidation on a glassy carbon electrode. AngewandteChemie International Edition,2009,48(32):5897-5899
    [44] Ilina B, Ran T-V, Willner I, et al. Electrical contacting of redox enzymes bymeans of oligoaniline-cross-Linked enzyme/carbon nanotube composites.Langmuir,2009,25(24):13978-13983
    [45]王红,肖藏岩,何姗.酶生物传感器对农药的测定.化学工程,2008,9:33-34
    [46] Herrera-López E J. Lipase and phospholipase biosensors: a review. Methods inMolecular Biology,2012,861:525-543
    [47] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis, NatureNanotechnology.2011,18;6(10):615-624
    [48] Krishnan Y, Simmel F C. Nucleic acid based molecular devices. AngewandteChemie International Edition,2011,50(14):3124-3156
    [49] Bonanni A, Pumera M, Miyahara Y. Rapid, sensitive, and label-freeimpedimetric detection of a single-nucleotide polymorphism correlated to kidneydisease. Analytical Chemistry,2010,82(9):3772-3779
    [50] An Y W. Nicholas A M. Directed hybridization and melting of DNA linkers usingcounterion-screened electric fields. Nano Letters,2009,9(10):3521-3526
    [51] Monica M, Simona V, Giorgio G, et al. Qualitative PCR–ELISA protocol for thedetection and typing of viral genomes. Nature Protocols,2007,2(10):2502-2510
    [52] Li T, Shi Li, Wang Erk, et al. Multifunctional G-quadruplex aptamers and theirapplication to protein detection. Chemistry European Journal,2009,15(4):1036-1042
    [53] Tang Z, Wang K, Tan W, Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research,2005,33(11):e97
    [54] Scott M K, Lee J, Ellington A D, Ribozyme-mediated signal augmentation on amass-sensitive biosensor. Journal of the American Chemical Society,2006,128(50):15936-15937
    [55] Wang J, Liu G, Jan M R. Ultrasensitive electrical biosensing of proteins andDNA: carbon-nanotube derived amplification of the recognition and transductionevents. Journal of the American Chemical Society,2004,126(10):3010-3011
    [56] Zhu X, Han K, Li G. Magnetic nanoparticles applied in electrochemical detectionof controllable DNA hybridization. Analytical Chemistry,2006,78(7):2447-2449
    [57] Sheila R. Nicewarner P, Surabhi R, et al. Hybridization and enzymatic extensionof Au nanoparticle-bound oligonucleotides. Journal of the American ChemicalSociety,2002,124(25):7314-7323
    [58] Audrey S, Beatrice D. L, Loic J B. DNA biosensors and microarrays. ChemicalReviews,2008,108(1):109-139
    [59] David H J B, Peter G S. Aptamers come of age-at last. Nature ReviewMicrobiology,2006,4(8):590-596
    [60] Alon A G, Ali E, Jacqueline K. B. Electrical detection of TATA binding protein atDNA-modified microelectrodes. Journal of the American Chemical Society,2008,130(10):2924-2925
    [61] Abigail K R L, Min S H, Chad A M. Microarray detection of duplex and triplexDNA binders with DNA-modified gold nanoparticles. Analytical Chemistry,2007,79(15):6037-6041
    [62] Jae-Seung L, Min S H, and Chad A. M. Colorimetric detection of mercuric ion(Hg2+) in aqueous media using DNA-functionalized gold nanoparticles.Angewandte Chemie International Edition,2007,46(22):4093-4096
    [63] Huang C-C and Chang H-T. Aptamer-based fluorescence sensor for rapiddetection of potassium ions in urine. Chemical Communications,2008,28(12)1461-1463
    [64] Valeri P, Yi X, Bella S, et al. Aptamer-functionalized Au nanoparticles for theamplified optical detection of thrombin. Journal of the American ChemicalSociety,2004,126(38):11768-11769
    [65] Steven M S, Judith M H, Sharon T C. Complex target SELEX. Accounts ofChemical Research,2008,41(1):130-138
    [66] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers.Biosensors and Bioelectronics,2005,20(12):2424-2434
    [67] Shons A, Doman F, Najarian I. An immunospecific microbalance. BiomedicalMaterials Research,1972,6(6):565-570
    [68] David C, Josep S, Joan Bausells, et al. Direct patterning of anti-human serumalbumin antibodies on aldehyde-terminated silicon nitride surfaces for HSAprotein detection. Small,2009,5(13):1531-1534
    [69] Muriel C, Andrew D M, David L D, et al. An ELISA method to measureinhibition of the COX enzymes. Nature Protocols,2006,1(4):1915-1921
    [70] Suo Z, Yang X, Recep A, et al. Antibody selection for immobilizing livingbacteria. Analytical Chemistry,2009,81(18):7571-7578
    [71] McGrath T F, Elliott C T, Fodey T L. Biosensors for the analysis ofmicrobiological and chemical contaminants in food. Analytical and BioanalyticalChemistry,2012,403(1):75-92
    [72] Salvador J P, Kreuzer M P, Quidant R, et al. Nanobiosensors for in vitro and invivo analysis of biomolecules, Methods in Molecular Biology,2012,811:207-221
    [73] Karube I, Mitsuda S, Suzuki S. Glucose sensor using Immobilized whole cell ofpseudomonas fluorescens. Apply Microbiology Biotechnology,1979,7(4):343-350
    [74] Matsunaga T, Karube I, Suzuki S. A specific microbial sensor for fomic acid.European Journal Apply Microbiology Biotechnology.1980,10(3):235-243
    [75] Kobos R K, Rice D J, Flournayn D S. Bacteria membrane electrode fordetermination of nitrate. Analytical Chemistry,1979,51(8):1122-1125
    [76] Byoung C K, Kyeong S P, Sang D K, et al. Evaluation of a high throughputtoxicity biosensor and comparison with a Daphnia magna bioassay. Biosensorsand Bioelectronics,2003,18(5-6):821-826
    [77] Jin H L, Robert J M, Byoung C K, et al. A cell array biosensor for environmentaltoxicity analysis. Biosensors and Bioelectronics,21(3):500-507
    [78] Thouand G, Horry H, Durand M J, et al. Development of a biosensor for on-linedetection of tributyltin with a recombinant bioluminescent Escherichia colistrain. Applied Microbiology and Biotechnology,2003,62(2-3):218-225
    [79] Jae-Min C, Byung-Woo K. Bioassay of environmental endocrine disruptors TBTand DMSO using recombinant Escherichia coli. Bioprocess and BiosystemsEngineering,2002,24(6):405-410
    [80]许霞,吴一聪,李蓉等.细胞传感器的研究进展.科学通报,2002,47(15):1126-1132
    [81]郭鼎力,王立中,尹光华.基于动物组织的生物传感器.生物医学工程学杂志,1988,5(3):185-190
    [82] Doria G, Conde J, Veigas B, et al. Noble metal nanoparticlesfor biosensing applications. Sensors (Basel),2012,12(2):1657-1687
    [83]蔡新霞,李华清,饶能高等.电化学生物传感器.微纳电子技术,2003,7(8):359-362
    [84] Nasse H M, Civit L, Fragoso A, et al. Amperometric immunosensor fordetection of celiac disease toxic gliadin based on Fab fragments. AnalyticalChemistry,2009,81(13):5299-5307
    [85] Mir M, Alvarez M, Azzaroni O, et al. Molecular architectures for electrocatalyticamplification of oligonucleotide hybridization. Analytical Chemistry,2008,80(17):6554-6559
    [86] Turner A P. Biosensors. Current Opinion in Biotechnology,1994,5(1):49-53
    [87] Kolhe S, Parikh K. Application of nanotechnology in cancer: a review.International Journal of Bioinformatics Research and Apply,2012,8(1):112-125
    [88] Ding C, Zhang Q, Zhang S. An electrochemical immunoassay for protein basedon bio bar code Method. Biosensors and Bioelectronics.2009,24(8):2434-2440
    [89] Kang X, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modifiedelectrode for direct electrochemistry and glucose sensing. Biosensors andBioelectronics,2009,25(4):901-905
    [90]王锋,樊先平,王民权.光学生物传感器的研究进展.材料导报,200418(7):1-4
    [91] Lee Y M, Jeong Y, Kang H J, et al. Cascade enzyme-linked immunosorbentassay (CELISA). Biosensors and Bioelectronics,2009,25(2):332-337
    [92] Li H, Huang J, Lv J, et al. Nanoparticle PCR: nanogold-assisted PCR withenhanced specificity. Angewandte Chemie International Edition,2005,44(32):5100-5103
    [93] Ogawa A, Maeda M. Simple and rapid colorimetric detection of cofactors ofaptazymes using noncrosslinking gold nanoparticle aggregation. Bioorganic&Medicinal Chemistry Letters,2008,18(24):6517-6520
    [94] Niemeyer CM, Ceyhan B. DNA-Directed Functionalization of Colloidal Goldwith Proteins. Angewandte Chemie International Edition,2001,40(19):3685-3688
    [95] Kyoko T, Toyokazu Y, Shinya K, et al. A FRET-based analysis of SNPs withoutfluorescent probes. Nucleic Acids Research,2004,32(19):e156
    [96] Ho H A, Doré K, Boissinot M, et al. Direct molecular detection of nucleic acidsby fluorescence signal amplification. Journal of the American Chemical Society,2005,127(36):12673-12676
    [97] Kevin D G P, Ruth M S, Karin A E.Bioluminescence resonance energy transfer(BRET) for the real-time detection of protein-protein interactions. NatureProtocols,2006,1(1):337-345
    [98] Xiang X, Amy L V Gerard, Betty C B H, et al. Detection of programmed celldeath using fluorescence energy transfer. Nucleic Acids Research,1998,26(8):2034-2035
    [99] David C, Guillot N, Shen H, et al. SERS detection of biomolecules usinglithographed nanoparticles towards a reproducible SERS biosensor.Nanotechnology.2010,21(47):475501
    [100]高晓康,万德安,章阳宁.压电石英晶体生物传感器及其应用.上海应用技术学院学报,2003,3(4):245-250
    [101]夏建弘.压电晶体生物传感器.仪器仪表与分析监测,1991,4:1-6
    [102] Müller L, Sinn S, Drechsel H, et al. Investigation of prothrombin time inhuman whole-blood samples with a quartz crystal biosensor. AnalyticalChemistry,2010,82(2):658-663
    [103] Fung Y S, Wong Y Y. Self-assembled monolayers as the coating in a quartzpiezoelectric crystal immunosensor to detect Salmonella in aqueous solution.Analytical Chemistry,2001,73(21):5302-5309
    [104] Lin H C, Tsai W C. Piezoelectric crystal immunosensor for the detection ofstaphylococcal enterotoxin B. Biosensors and Bioelectronics,2003,18(12):1479-1483
    [105] Shen Z, Huang M, Xiao C, et al. Nonlabeled quartz crystal microbalancebiosensor for bacterial detection using carbohydrate and lectin recognitions.Analytical Chemistry,2007,79(6):2312-2319.
    [106] Yao C, Qi Y, Zhao Y, et al. Aptamer-based piezoelectric quartz crystalmicrobalance biosensor array for the quantification of IgE. Biosensors andBioelectronics,2009,24(8):2499-2503
    [107]张宏绪.半导体生物传感器及其应用.传感器技术,1989,1:53-56
    [108]熊礼威,汪建华,满卫东等.金刚石半导体研究进展.材料导报,2010,24(4):117-122
    [109]罗细亮,徐静娟,陈洪渊.场效应晶体管生物传感器.分析化学,2004,32(10):1395-1400
    [110] Janata J, Moss S D. Chemically sensitive field-effect transistors. BiomedicalEngineering,1976,11(7):241-245
    [111] Gu B, Park T J, Ahn J H, et al. Nanogap field-effect transistor biosensors forelectrical detection of avian influenza. Small,2009,5(21):2407-2412
    [112] Ahn J H, Choi S J, Han J W, et al. Double-gate nanowire field effect transistorfor a biosensor. Nano Letters,2010,10(8):2934-2938.
    [113] Jae-Hyuk A, Sung-Jin C, Jin-Woo H, et al.Investigation of size dependence onsensitivity for nanowire FET biosensors. IEEE Transactions onNanotechnology,2011,10(6):1405-1412
    [114] Yang D, Wang L, Chen Z, et al. Application of field-effect transistor based oncarbon nanotube in biosensors. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2011,28(6):1242-1245
    [115]张小水,王丽娟,张海锋等.生物传感器的研究现状、应用及前景张计测技术200626:92-96
    [116]刘传银,胡继明.亲和型生物传感器在生物医学上的应用进展.应用化学,2011,28(6):611-623
    [117]齐颖,陈晓慧,关茵.脂酶非均相催化反应生物传感器的研究.中国粮油学报,2011,26(11):102-105
    [118] Zhou Y, Zhang Y, Pan F, et al. A competitive immunochromatographic assaybased on a novel probe for the detection of mercury (II) ions in water samples.Biosensors and Bioelectronics,2010,25(11):2534-2538
    [119] Ghosh S, Priyam A, Bhattacharya S C, et al. Mechanistic aspects of quantumdot based probing of Cu (II) ions: role of dendrimer in sensor efficiency.Journal of Fluorescence,2009,19(4):723-731
    [120] Swearingen C B, Wernette D P, Cropek D M, et al. Immobilization of acatalytic DNA molecular beacon on Au for Pb(II) detection. AnalyticalChemistry,2005,77(2):442-448
    [121] Akiyama Y, Ma Q, Edgar E, et al. Identification of strong DNA binding motifsfor bleomycin. Journal of the American Chemical Society,2008,130(30):9650-9651
    [122] Rebe R S, Bremer M G, Giesbers M, et al. Development of a biosensormicroarray towards food screening, using imaging surface plasmon resonance.Biosensors and Bioelectronics,2008,24(4):552-557
    [123] Soh N, Ueda T. Perylene bisimide as a versatile fluorescent tool forenvironmental and biological analysis: a review. Talanta,2011,85(3):1233-1237
    [124] Sassolas A, Blum L J, Leca-Bouvier B D. Immobilization strategies to developenzymatic biosensors. Biotechnology Advanced.2012,30(3):489-511
    [125] Ceylan K H, Külah H, zgen C, et al. MEMS biosensors for detection ofmethicillin resistant Staphylococcus aureus. Biosensors and Bioelectronics,2011,29(1):1-12
    [126] Chobtang J, de Boer I J, Hoogenboom R L, et al. The need and potential ofbiosensors to detect dioxins and dioxin-like polychlorinated biphenyls alongthe milk, eggs and meat food chain. Sensors (Basel).2011,11(12):11692-11716
    [127] Alvarez M, Calle A, Tamayo J, et al. Development of nanomechanicalbiosensors for detection of the pesticide DDT. Biosensors and Bioelectronics,2003,18(5-6):649-653.
    [128] Anderson G P, Moreira S C, Charles P T, et al. TNT detection usingmultiplexed liquid array displacement immunoassays. Analytical Chemistry,2006,78(7):2279-2285
    [129] Wu D, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor formercury (II) based on target-induced structure-switching DNA. Biosensors andBioelectronics,2010,25(5):1025-1031
    [130] Zhang J, Lei J, Xu C, et al. Carbon nanohorn sensitized electrochemicalimmunosensor for rapid detection of microcystin-LR. Analytical Chemistry,2010,82(3):1117-1122
    [131] Kerman K, Mahmoud KA, Kraatz H B. An electrochemical approach for thedetection of HIV-1protease. Chemical Communication (Camb),2007,(37):3829-3831.
    [132] Darbha G K, Rai U S, Singh A K, et al. Gold-nanorod-based sensing ofsequence specific HIV-1virus DNA by using hyper-Rayleigh scatteringspectroscopy. Chemistry,2008,14(13):3896-3903
    [133] Cheng A K, Su H, Wang Y A, et al. Aptamer-based detection of epithelialtumor marker mucin1with quantum dot-based fluorescence readout.Analytical Chemistry,2009,81(15):6130-6139
    [134] Immunoassays with rolling circle DNA amplification: a versatile platform forultrasensitive antigen detection. Schweitzer B, Wiltshire S, Lambert J, et al.Proceedings of the National Academy of Sciences of the United States ofAmerica,2000,97(18):10113-10119
    [135] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2and other cellular targets with semiconductor quantum dots. NatureBiotechnology.2003,21(1):41-46
    [136] Yang Y, Ren X, Schluesener H J, et al. Aptamers: selection, modification andapplication to nervous system diseases. Current Medicinal Chemistry,2011,18(27):4159-4168
    [137] Ray D, Kazan H, Chan E T, et al. Rapid and systematic analysis of the RNArecognition specificities of RNA-binding proteins. Nature Biotechnology.2009,27(7):667-670
    [138] Chen Z, Li Y, Liu W, et al. Patterning mammalian cells for modeling threetypes of naturally occurring cell-cell interactions. Angewandte ChemieInternational Edition,2009,48(44):8303-8305
    [139] Yamada K, Saito M, Matsuoka H, et al. A real-time method of imaging glucoseuptake in single, living mammalian cells. Nature Protocols,2007,2(3):753-762
    [140] Ravindranath S P, Mauer L J, Deb-Roy C, et al. Biofunctionalized magneticnanoparticle integrated mid-infrared pathogen sensor for foodmatrixes.Analytical Chemistry,2009,81(8):2840-2846
    [141] Sapsford K E, Rasooly A, Taitt C R, et al. Detection of campylobacter andShigella species in food samples using an array biosensor. AnalyticalChemistry,2004,76(2):433-440
    [142] Alonso-Lomillo M A, Domínguez-Renedo O, Ferreira-Gon alves L, et al.Sensitive enzyme-biosensor based on screen-printed electrodes for OchratoxinA. Biosensors and Bioelectronics,2010,25(6):1333-7
    [143] Okuyama M, Kobayashi N, Takeda W, et al. Enzyme-linked immunosorbentassay for monitoring toxic dioxin congeners in milk based on a newlygenerated monoclonal anti-dioxin antibody. Analytical Chemistry,2004,76(7):1948-1956
    [144] Tan Y, Chu X, Shen G L, et al. A signal-amplified electrochemicalimmunosensor for aflatoxin B(1) determination in rice. AnalyticalBiochemistry,2009,387(1):82-86
    [145]牛喜平,付军,慈云祥.细胞分析仪在味精发酵生产中的应用.食品与发酵工业,2002,28(11):37-39
    [146] Tkac J, Vostiar I, Gemeiner P, et al. Indirect evidence of direct electroncommunication between the active site of galactose oxidase and a graphiteelectrode. Bioelectrochemistry,2002,56(1-2):23-25
    [147]孙裕生,韩树波,宋学英.微生物传感器测定啤酒发酵液发酵度.分析仪器,1996,2:12-16
    [148] Tsouti V, Boutopoulos C, Zergioti I, et al. Capacitive microsystems forbiological sensing. Biosensors and Bioelectronics,2011,27(1):1-11
    [149]邓沱,宁志强,周玉祥.生物芯片技术在药物研究与开发中的应用.中国新药杂志,2002,11(1):23-32
    [150] Petrik J, Coste J, Fournier-Wirth C. Advances in transfusion medicine in thefirst decade of the21st century: Advances in miniaturized technologies.Transfusion and Apheresis Science,2011,45(1):45-51
    [151]张瑞凌,魏云波,刘书花等.我国重金属污染现状及其微生物处理方法研究进展.现代农业科技,2011,20:272-277
    [152]高应梅.纳米探针在痕量铅检测中的应用研究:[重庆大学,硕士学位论文].重庆:重庆大学,2010,2-4
    [153]胡耐根.重金属铅、汞污染对人的影响.科技信息,2006,35:1186-1187
    [154]李玮.新型化学修饰电极体系的研究及其在痕量铅检测中的应用:[复旦大学,博士学位论文].上海:复旦大学,2008,2-4
    [155]余若祯,王红梅,方征等.重金属离子快速检测技术研究与应用进展.环境工程技术学报,2011,1(5):438-493
    [156] Joseph M S, Jeffrey S Z, David M. P, et al.Colorimetric response ofpeptide-functionalized gold nanoparticles to metal ions. Small,2008,4(5):548-851
    [157] Fang C, Chun W, Ting W, et al. Colorimetric detection of Pb2+usingglutathione functionalized gold nanoparticles, ACS Applied Materials&Interfaces,2010,2(5):1466-1470
    [158] Lule Beqa, Anant Kumar Singh, Sadia Afrin Khan, et al. Goldnanoparticle-based simple colorimetric and ultrasensitive dynamic lightscattering assay for the selective detection of Pb(II) from paints, plastics, andwater samples. ACS Applied Materials&Interfaces,2011,3(3):668-673
    [159] Yong G, Zhuo W, Wei Q, et al. Colorimetric detection of mercury, lead andcopper ions simultaneously using protein-functionalized gold nanoparticles.Biosensors and Bioelectronics,2011,26(10):4064-4069
    [160] Zhu D, Xiao L, Xia L, et al. Designing bifunctionalized gold nanoparticle forcolorimetric detection of Pb2+under physiological condition. Biosensors andBioelectronics,2011,31(1):505-509
    [161] Emril M, Yuan Z, Yu H, et al. Ultrasensitive Pb2+detection byglutathione-capped quantum dots. Analytical Chemistry,2007,79(24):9452-9458
    [162]向清样,余孝其,游劲松等.化学核酸酶研究新进展.化学研究与应用,1999,11(1):1-7
    [163]戢太云,徐鲁荣,周培.核酸荧光探针检测铅离子的研究.分析测试学报,2010,29(1):51-54
    [164] Liu J, Lu Y. A colorimetric lead biosensorusing DNAzyme-directed assemblyof gold nanoparticles. Journal of the American Chemical Society,2003,125(22):6642-6643
    [165] Carla B S, Daryl P W, Donald M C, et al. Immobilization of a catalytic DNAmolecular beacon on Au for Pb(II) detection. Analytic Chemistry,2005,77(2):442-448
    [166] David M, Peng Y, Laurent L, et al. A metal-mediated conformational switchcontrols G-quadruplex binding affinity. Angewandte Chemie InternationalEdition,2008,47(26):4858-4864
    [167] Tao Li Erkang Wang, Shaojun Dong. Lead(II)-induced allosteric G-quadruplexDNAzyme as a colorimetric and chemiluminescence sensor for highly sensitiveand selective Pb2+detection. Analytic Chemistry,2010,82(4):1515-1520
    [168] Yu Z, Xiang T, Yan L, et al. A versatile and highly sensitive probe for Hg(II),Pb(II) and Cd(II) detection individually and totally in water samples.Biosensors and Bioelectronics,2011,30(1):310-314
    [169]牛涛.重金属Pb2+单克隆抗体的制备及Hg2+的DTC螯合ELISA检测方法研究:[暨南大学,硕士学位论文].广州:暨南大学,2006,13-35
    [170] Christopher D, Robert T, Mathias B, et al. Extremely stable water-soluble Agnanoparticles. Chemistry of Materials,2005,17(18):4630-4635
    [171] Catherine J M, Anand M G, Simona E H, et al. One-dimensional colloidal goldand silver nanostructures. Inorganic Chemistry,2006,45(19):7544-7554
    [172] Seung H K, Ji-Soo L, Gun-Hee Ki, et al. Preparation, characteristics, andstability of glutathione-loaded nanoparticles. Journal of Agricultural and FoodChemistry,2011,59(20):11264-11269
    [173]杨荟,祝佳玮,赵宸龙等.HPLC法同时检测血浆中半胱氨酸/胱氨酸和还原型谷胱甘肽/氧化型谷胱甘肽的氧化还原电势.首都医科大学学报,2012,33(1):83-89
    [174]李茂国,许发功,方宾.银微盘电极上谷胱甘肽降解产物的伏安行为.分析测试学报,2002,21(1):55-58
    [175] Osman M B, Vincenzo A, Christine M A, et al. Silver nanoparticles with broadmultiband linear optical absorption. Angewandte Chemie International Edition,2009,43(32):5921-5926
    [176] Robert C M, James J S, Mirkin C A, et al. DNA-directed synthesis of binarynanoparticle network materials. Journal of the American Chemical Society,1998,120(48),12674-12675
    [177] Robert E, James J S, Robert C M, et al Selective Colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles. Science,1997,277(22):1087-1082
    [178] Marco B, Thomas B. L-glutathione chemisorption on gold and acid/baseinduced structural changes: A PM-IRRAS and time-resolved in situ ATR-IRspectroscopic study.2005, Langmuir,21(4):1354-1363
    [179] Tajc S G, Tolbert B S, Basavappa R, et al. Direct determination of thiol pKa byisothermal titration microcalorimetry. Journal of the American ChemicalSociety,2004,126(34):10508-10509
    [180] Rabenstein D L. Nuclear magnetic resonance studies of the acid-base chemistryof amino acids and peptides. I. Microscopic ionization constants of glutathioneand methylmercury-complexed glutathione. Journal of the American ChemicalSociety,1973,95(8)2707-2803
    [181] Lim I-I S, Derrick M, Wui I, et al. Interparticle interactions in glutathionemediated assembly of gold nanoparticles. Langmuir,2008,24(16),8857-8863
    [182]贾贞,王丹,游松.谷胱甘肽的研究进展.沈阳药科大学学报,2009,26(3):238-293
    [183] Jhansi R K, Tahir A, Sadia A K, et al. Use of gold nanoparticles in a simplecolorimetric and ultrasensitive dynamic light scattering assay: selectivedetection of arsenic in groundwater. Angewandte Chemie International Edition,2009,48(51):9668-9671
    [184] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of“spectroscopically silent” heavy metal ions. Nano Letters,2001,1(4),165-167
    [185] Cheng F, Xing Z. Voltammetry and EQCM investigation of glutathionemonolayer and its complexation with Cu2+.Electroanalysis2003,15(20):1632-1639
    [186] Aviva L, Peter A L. Solution structures of chromium(VI) complexes withglutathione and model thiols. Inorganic Chemistry,200443(1):324-335
    [187] Marin R, Ahuja Y, Bose R N. Potentially deadly carcinogenic chromium redoxcycle involving peroxochromium(IV) and glutathione. Journal of the AmericanChemical Society,2010,132(31):10617-10619
    [188]刘王瑛.方家龙.姚明等.三硝基甲苯(TNT)生物标志物的研究.医学研究通讯,24(6):27-29
    [189]刘文献,徐平生,李春香.三硝基甲苯及其光化物致红细胞氧化性损害的研究.职业医学,1998,25(4):17-19
    [190]李文娟,郝文涛,杨文. TNT爆炸物传感/检测器件的研究进展.化工时刊,2011,25(2):44-48
    [191]傅胜,陈桂贻,朱晓超等.工作场所空气中TNT的气相色谱测定.职业与健康,2004,20(9):6-7
    [192] Jiang Y, Zhao H, Zhu N, et al. A simple assay for direct colorimetricvisualization of trinitrotoluene at picomolar levels using gold nanoparticles.Angewandte Chemie International Edition,2008,47(45):8601-8604
    [193] Dasary S S, Singh A K, Senapati D, et al. Gold nanoparticle based label-freeSERS probe for ultrasensitive and selective detection oftrinitrotoluene. Journalof the American Chemical Society,2009,131(38):13806-13812.
    [194] Tu R, Liu B, Wang Z, et al. Amine-capped ZnS-Mn2+nanocrystals forfluorescence detection of trace TNT explosive. Analytical Chemistry,2008,80(9):3458-3465
    [195] Chen Y, Chen Z, He Y, et al. L-cysteine-capped CdTe QD-based sensor forsimple and selective detection of trinitrotoluene. Nanotechnology,2010,21(12):125502
    [196] Rose A, Zhu Z, Madigan C F, et al. Sensitivity gains in chemosensing by lasingaction in organic polymers. Nature,2005,434(7035):876-879
    [197] Shi G H, Shang Z B, Wang Y, et al. Fluorescence quenching of CdSe quantumdots by nitroaromatic explosives and their relativecompounds. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy,2008,70(2):247-52
    [198] Chen C, Song G, Ren J, et al. A simple and sensitive colorimetric pH meterbased on DNA conformational switch and gold nanoparticle aggregation.Chemical Communication (Camb),2008,(46):6149-6151
    [199] Trammell S A, Zeinali M, Melde B J, et al. Nanoporous organosilicas aspreconcentration materials for the electrochemical detection oftrinitrotoluene.Analytical Chemistry,2008,80(12):4627-4633
    [200] Díaz A A, Forzani E S, Leright M, et al. A hybrid nanosensor for TNT vapordetection. Nano Letters,2010,10(2):380-384
    [201] Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibodyfragment fluorescence resonance energy transfer-based TNT sensor. Journal ofthe American Chemical Society,2005,127(18):6744-6751
    [202] Altstein M, Bronshtein A, Glattstein B, et al. Immunochemical approaches forpurification and detection of TNT traces by antibodies entrappedin a sol-gelmatrix. Analytical Chemistry,2001,73(11):2461-2467
    [203] Goldman E R, Cohill T J, Patterson C H J, et al. Detection of2,4,6-trinitrotoluene in environmental samples using a homogeneousfluoroimmunoassay. Environmental Science&Technology,2003,37(20):4733-4736
    [204] Cheng-An L, Chih-Hsien L, Jyun-Tai H, et al. Synthesis of Fluorescentmetallic nanoclusters toward biomedical application: recent progress andpresent challenges. Journal of Medical and Biological Engineering,29(6):276-283
    [205] Wen F, Dong Y, Feng L, et al. Horseradish peroxidase functionalizedfluorescent gold nanoclusters for hydrogen peroxide sensing. AnalyticalChemistry,2011,83(4):1193-1196
    [206] Junhua Y, Sungmoon C, Chris R, et al. Live cell surface kabeling withfluorescent Ag nanocluster conjugates. Photochemistry and Photobiology,2008,84(6):1435-1439.
    [207] Jin L, Shang L, Guo S, et al.Biomolecule-stabilized Au nanoclusters as afluorescence probe for sensitive detection of glucose. Biosensors andBioelectronics,2011,26(5):1965-1969
    [208] Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent goldnanoclusters. Journal of the American Chemical Society,2009,131(3):888-889
    [209] Patel S A, Richards C I, Hsiang J C, et al. Water-soluble Ag nanoclustersexhibit strong two-photon-induced fluorescence. Journal of the AmericanChemical Society,2008,130(35):11602-11603
    [210] Goodpaster J V, McGuffin V L. Fluorescence quenching as an indirectdetection method for nitrated explosives. Analytical Chemistry,2001,73(9):2004-2011
    [211] Liu D, Wang Z, Jiang X. Gold nanoparticles for the colorimetric andfluorescent detection of ions and small organic molecules. Nanoscale,2011,3(4):1421-1433
    [212]张华斌,张朝晖,胡宇芳等.多壁碳纳米管表面对硝基苯酚印迹复合材料的制备与吸附性能.高等学校化学学报,2010,31(11):2141-2147
    [213] Richards C I, Choi S, Hsiang J C, et al. Oligonucleotide-stabilized Agnanocluster fluorophores. Journal of the American Chemical Society,2008,130(15):5038-5039
    [214] Elisabeth G Gwinn, Patrick O, Anthony J G, et al. Sequence-dependentfluorescence of DNA-hosted silver. Advanced Materials,2008,20(2):279-283
    [215] Petty J T, Zheng J, Hud N V, et al. DNA-templated Ag nanocluster formation.Journal of the American Chemical Society,2004,126(16):5207-5212
    [216] Caroline M R, Kenneth R J, John R K, et al. Ag Nanocluster Formation Using aCytosine Oligonucleotide Template. The Journal of Physical Chemistry B,2007,111(1):175-181
    [217] Guo W, Yuan J, Wang E. Oligonucleotide-stabilized Ag nanoclusters as novelfluorescence probes for the highly selectiveand sensitive detection of the Hg2+ion. Chemical Communication (Camb),2009,(23):3395-3397
    [218] Zheng J, Nicovich P R, Dickson R M. Highly fluorescent noble-metal quantumdots. Annual Review of Physical Chemistry,2007,58:409-431
    [219]苏丽敏,袁星,赵建伟等.持久性有机污染物(POPs)及其归趋研究.环境科学与技术,2003,26(5):61-65
    [220]王宝金,张天民,严冬等.持久性有机污染物对环境的影响及对策.地质与资源,2007,16(4):294-299
    [221] Marinella F, Lina K, Damia`B, et al. Advances in immunochemicaltechnologies for analysis of organic pollutants in the environment. Trends inAnalytical Chemistry,26(11):1101-1114
    [222] Sabrina M, Lanfranco C, Daniela D, et al. Assessment of polycyclic aromatichydrocarbon content of smoked fish by means of a fast HPLC/HPLC method.Journal of Agricultural and Food Chemistry,1999,47(4):1367-1371
    [223]宫智勇,江琦,王耀峰等.苯并(a)芘对细胞DNA修复基因XPA XPC表达水平的影响.食品科学,2008,29(8):418-422
    [224]段小丽,魏复盛,张军锋等.多环芳烃暴露评价的生物标志物研究.工业卫生与职业病,2008,34(3):129-134
    [225]戴惠玲.持久性有机污染物及其对人体健康的危害.预防医学,2008,5(17):101-102
    [226]吕运开,边超,赵宁等.固相萃取/高效液相色谱法快速测定水中痕量苯并(a)芘.中国给水排水,2008,24(16):88-91
    [227] Sean J H, Gregory J H, Jonathan E K, et al. A laser-induced fluorescencedual-fiber optic array detector applied to the rapid HPLC separation ofpolycyclic aromatic hydrocarbons. Analytical Bioanalytical Chemistry,2002,372(1):205-215
    [228] Stanley S, Percival C J, Auer M, et al. Detection of polycyclic aromatichydrocarbons using quartz crystal microbalances. Analytical Chemistry,2003,75(7):1573-1577
    [229] Stephen B, John H T L, Oliver H J S, et al. Cyclodextrin-modified capillaryelectrophoresis: determination of polycyclic aromatic hydrocarbons incontaminated soils. Analytical Chemistry,1996,68(2):287-292
    [230] Olivier P, Emmanuel R, Michel Le, et al. Detection of polycyclic aromatichydrocarbon (PAH) compounds in artificial sea-water using surface-enhancedRaman scattering (SERS). Talanta,2009,79(2):199-204
    [231] Hai L, Chen Z, Lu Q, et al. Wireless and sensitive sensing detection ofpolycyclic aromatic hydrocarbons using humic acid-coated magnetic Fe3O4nanoparticles as signal-amplifying tags. Sensors and Actuators B,2010,146:154-159
    [232] Li J, Yang L, Luo S, et al. Polycyclic aromatic hydrocarbon detection byelectrochemiluminescence generating Ag/TiO2nanotubes. AnalyticalChemistry,2010,82(17):7357-7361
    [233] Nathalie G, Cyril F, Ceacile C, et al. Detection of polycyclic aromatichydrocarbon levels in milk collected near potential contamination sources.Journal of Agricultural and Food Chemistry,50(16):4640-4642
    [234] Kai L, Chen R, Zhao B, et al. Monoclonal antibody-based ELISAs forpart-per-billion determination of polycyclic aromatic hydrocarbons: effects ofhaptens and formats on sensitivity and specificity. Analytical Chemistry,1999,71(2):302-309
    [235] Norio M, Makoto S, Vengatajalabathy G, et al. Highly sensitive and selectivesurface plasmon resonance sensor for detection of sub-ppb levels ofbenzo[a]pyrene by indirect competitive immunoreaction method. Biosensorsand Bioelectronics,2003,18(7):953-959
    [236] Irina Y G, Natalia V B, Sergei A E, et al. Gel-based immunoassay fornon-instrumental detection of pyrene in water samples. Talanta,2008,75(2):517-522
    [237] Mei L, Qing X L, Garry A R, et al. Flow injection immunosensing ofpolycyclic aromatic hydrocarbons with a quartz crystal microbalance.Analytica Chimica Acta,1999,387:29-38
    [238]顾炜炜,潘家荣. Bt蛋白免疫检测技术研究进展.食品工业科技,2007,28(1):237-240
    [239]周福元,汪能平,赖福才等. DNA斑点杂交技术在分析细菌质粒同源性中的应用.中华医院感染学杂志,1998,8(1):60-62
    [240] Polycyclic aromatic hydrocarbons (4D5) Antibody: sc-69886.http://www.scbt.com/datasheet-69886-polycyclic-aromatic-hydrocarbons-4d5-antibody.html
    [241] Sujatha K, Lily T, Kelvin L, et al. A rapid two dot fi lter assay for the detectionof E. coli O:157in water samples. Journal of Immunological Methods,2008,336(2):159-165
    [242] William R R, Rola B, Robert C B, et al. Evaluation of methods for predictingthe toxicity of polycyclic aromatic hydrocarbon mixtures. EnvironmentalScience&Technology,2001,35(8):1630-1636
    [243]程振球,章谷生.链霉亲和素的特性及其应用.上海免疫学杂志1992,21(2):56-60
    [244] Vered G, Ron B-A, Chaim G P, et al. Long-term neurobehavioral andhistological damage in brain of mice induced by l-cysteine. Pharmacology,Biochemistry and Behavior,2003,75(4)795-799
    [245] Saeed S. Lead phthalocyanine as a selective carrier for preparation of acysteine-selective electrode. Analytic Chemistry,2001,73(24):5972-5978
    [246] Zachary A W, Ewald S, Robin H, et al. Structure, mechanism and regulation ofperoxiredoxins. TRENDS in Biochemical Sciences,2003,28(1):32-40
    [247] Sudha S, Alexa B, Jacob S. et al. Plasma homocysteine as a risk factor fordementia and Alzheimer's disease. The New England Journal of Medicine,2002,346(7):476-483
    [248] Joyce B J, Rosalie A M, Dhonukshe R, et al. Homocysteine levels and the riskof osteoporotic fracture. The New England Journal of Medicine,2004,350(20):2033-2041
    [249] The changing faces of glutathione, a cellular protagonist. Pompella A, VisvikisA, Paolicchi A, et al. Biochemical Pharmacology,2003,66(8):1499-1503.
    [250]陶蓓蓓,李鹏飞,张绪得等.液相色谱-串联质谱在全谱氨基酸检测中的应用.分子诊断与治疗杂志,2012,4(1):59-62
    [251] Murilo S, Iolanda C V. L-cysteine determination in pharmaceuticalformulations using a biosensor based on laccase from Aspergillus oryzae.Sensors and Actuators B,2007,128:279-285
    [252] Hassan S S, el-Baz A F, Abd-Rabboh H S. A novel potentiometric biosensorfor selective L-cysteine determination using L-cysteine-desulfhydraseproducing Trichosporon jirovecii yeast cells coupled with sulfide electrode.Analytica Chimica Acta,2007,602(1):108-113
    [253] Li B, Lan D, Zhang Z. A homocysteine biosensor with eggshell membrane asan enzyme immobilization platform. Analytical Biochemistry.2008,374(1):64-70
    [254] Pitchaimani D, Seenivasan R, Sarkkarai R, et al. Electrochemical cysteinebiosensor based on the selective oxidase–peroxidase activities of copper, zincsuperoxide dismutase.2010, Sensors and Actuators B148:17-22
    [255] Liu Y, Wei W, Xia J, et al. Capacitive biosensor for glutathione detectionbased on electropolymerized molecularly imprinted polymer and kineticinvestigation of the recognition process. Electroanalysis,2005,17(11):969-978
    [256] Han B, Wang E. Oligonucleotide-stabilized fluorescent silver nanoclusters forsensitive detection of biothiols in biological fluids. Biosensors andBioelectronics,2011,26(5):2585-2589
    [257] Lin Y, Tao Y, Ren J, et al. Highly sensitive and selective detection ofthiol-containing biomolecules using DNA-templatedsilver deposition.Biosensors and Bioelectronics,2011,28(1):339-343
    [258] Ge S, Yan M, Lu J, et al. Electrochemical biosensor based on grapheneoxide-Au nanoclusters composites for L-cysteine analysis. Biosensors andBioelectronics,2012,31(1):49-54
    [259] Huang Z, Pu F, Lin Y, et al. Modulating DNA-templated silver nanoclusters forfluorescence turn-on detection of thiolcompounds. Chemical Communication(Camb),2011,47(12):3487-3489
    [260] Zhao C, Qu K, Song Y, et al. A reusable DNA single-walledcarbon-nanotube-based fluorescent sensor for highly sensitive andselectivedetection of Ag+and cysteine in aqueous solutions. Chemistry,2010,16(27):8147-8154
    [261] Xu X, Wang J, Yang F, et al. Label-free colorimetric detection of smallmolecules utilizing DNA oligonucleotides and silvernanoparticles. Small,2009,5(23):2669-2672
    [262] Zi Z, Sergiy P, Pierre B, et al. The surface chemistry of Au colloids and theirinteractions with functional amino acids. The Journal of Physical Chemistry B,2004,108(13):4046-4052
    [263] Zhang F, Han L, Israel L B, et al. Colorimetric detection of thiol-containingamino acids using gold nanoparticles. Analyst,2002,127(4):462-465
    [264] Li H, Rothberg L. Colorimetric detection of DNA sequences based onelectrostatic interactions with unmodified gold nanoparticles. Proceedings ofthe National Academy of Sciences of the United States of America.2004,101(39):14036-14039
    [265] Li Shang, Chuanjiang Qin, Tie Wang, et al. Fluorescent conjugatedpolymer-stabilized gold nanoparticles for sensitive and selective detection ofcysteine. The Journal of Physical Chemistry C,111(36):13414-13417
    [266] Lu C, Zu Y. Specific detection of cysteine and homocysteine: recognizingone-methylene difference using fluorosurfactant-capped gold nanoparticles.Chemical Communication (Camb),2007(37):3871-3873
    [267]张宝红,张为宇,韩忠燕等.牛血清中蛋白组分初步分析及其对细胞培养的影响.动物医学进展,2009,30(1):33-37
    [268] Yong J, Jang J, Han C-H, et al. Development of ELISA andimmunochromatographic assay for the detection of gentamicin Journal ofAgricultural and Food Chemistry,2005,53(20):7639-7643
    [269]黄士杰,曹欣.四种类型尿结石与尿液成分的关系.中国现代医学杂志,2004,14(4):91-94
    [270] Chen X, Zhou Y, Peng X, et al. Fluorescent and colorimetric probesfor detection of thiols. Chemical Society Reviews,2010,39(6):2120-2135
    [271] Chao L, Yan Z, a Vivian W-W Y. Specific ostcolumn detection method forHPLC assay of homocysteine based on aggregation of fluorosurfactant-cappedgold nanoparticles. Analytical Chemistry,2007,79(2):666-672
    [272] Saikat M, Anand G, Neeta L, et al. Studies on the reversible aggregation ofcysteine-capped colloidal silver particles interconnected via hydrogen bonds.Langmuir,2001,17(20):6262-6268
    [273] Sudeep P K, Shibu J, Thomas G. Selective detection of cysteine andglutathione using gold nanorods. Journal of the American Chemical Society,2005,127(18):6516-6517
    [274] Kouki O, Takeshi S, Tokuo S, et al. Simple and selective sensing of cysteineusing gold nanoparticles conjugated with a thermoresponsive copolymerhaving carboxyl groups. Analytical Sciences,2007,23(1):85-91
    [275] Shang L, Yin J, Li J, et al. Gold nanoparticle-based near-infrared fluorescentdetection of biological thiols in human plasma. Biosensors and Bioelectronics,2009,25(2):269-274
    [276] Genin G H, Xiao X H, Mohammad K H, et al. Development of a heat-inducedsurface-enhanced raman scattering sensing method for rapid detection ofglutathione in aqueous solutions. Analytical Chemistry,2009,81(14):5881-5888
    [277] Marie-Christine D, Didier A. Gold nanoparticles: assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346
    [278] Jing W, Li W, X L, et al. A gold nanoparticle-based aptamer target bindingreadout for ATP assay. Advanced Materials2007,19(22):3943-3946
    [279] Chun L, Yang H-H, Zhu C-L, et al. A graphene platform for sensingbiomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [280] Xin A, Dong Q, Xiong C, et al. Colorimetric recognition of DNA intercalatorswith unmodified gold nanoparticles. Chemical Communications,2009,(13):1658-1660
    [281] Ying J, Hong Z, Yu L,et al. Colorimetric detection of glucose in rat brain usinggold nanoparticles. Angewandte Chemie International Edition,2010,49(28):4800-4804
    [282] Vasilios M M, Philip H B. Determinants of DNA quadruplex structural type:sequence and potassium binding. Biochemistry,1999,389(14):4355-4364
    [283] Natarajan V, Young J S, Byeang H K. Quencher-free molecular beacons: anew strategy in fluorescence based nucleic acid analysis. Chemical SocietyReviews,2008,37(4):648-663
    [284] J萨姆布鲁克, D W拉塞尔.分子克隆实验指南.黄培堂.第三版.北京:科学出版社,2002,363-500
    [285] Jenny A, Paul N, Robert W. Improving the sensitivity of immunoassays bytuning gold nanoparticles to the tipping point. Analytical Chemistry,2008,80(15):6001-6005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700