用户名: 密码: 验证码:
烟台金城湾养殖区六六六、滴滴涕、有机锡生态风险评价模型的构建与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六六六(HCH)、滴滴涕(DDT)和有机锡(OT)是全球近海广泛分布的持久性有机污染物(POPs),在极微量的水平上就能够对多种海洋生物产生毒性效应,而且能通过海洋食品对人体健康造成损害。目前我国近海HCH、DDT、OT污染现象仍然较为普遍,对其开展生态风险评价可为环境决策提供依据。目前通用的评价方法是将水体或沉积物中污染物的浓度与体外暴露试验的毒性浓度值(或环境基准)进行比较表征风险水平。然而体外暴露没有考虑食物暴露以及污染物的毒物动力学过程对生物蓄积的影响,将低估多种途径联合暴露对海洋生物的风险。
     本研究监测了烟台金城湾养殖海域水体以及沉积物中HCH、DDT、OT的浓度,并据此构建了逸度食物网模型,估算了食物网不同功能群中生物体内的污染物浓度。采用了多种模型构建了HCH、DDT、OT的生物敏感度分布(SSD)曲线,并估算了安全浓度HC5。在构建逸度食物网模型和SSD模型的基础上评价了该海域HCH、DDT、OT污染对海洋生物的生态风险和水产品消费对人体健康的风险。研究结果表明:
     (1)表层海水中∑HCH和∑OT(TBT+DBT+MBT)的浓度(OT浓度以Sn计,下同)分别为2.98-14.87和23.88-44.82ng/L,DDT均未检出(<0.032ng/L);表层沉积物中∑HCH、∑DDT、∑OT的浓度分别为5.52-9.43、4.11-6.72和4.26-4.38ng/g。表层沉积物中γ-HCH、p,p'-DDE的浓度分别为0.64-3.13和1.36-4.02ng/g,高出Macdonald所建立的沉积物质量基准值TEL(γ-HCH,0.32ng/g, p,p'-DDE,2.07ng/g)的概率分别为100%和66.7%;表层海水中TBT的浓度为0.60-2.90ng Sn/L,接近或超过其导致雌性狗岩螺(Nucella lapillus)性畸变的浓度(1-2ng Sn/L)。监测结果初步显示,该海域HCH、DDT和OT残留对于水产品健康具有潜在风险。
     (2)不同SSD模型对于HCH、DDT、OT毒性数据的拟合效力是不同的,其中对数逻辑斯蒂模型是拟合效果较好的参数模型,但是对于大样本的数据(N>80)其拟合效力明显减弱。非参数的bootstrap以及修正的bootstrap方法均能够较好的吻合原始毒性数据,非常适合于大样本数据SSD曲线的构建,然而这两种方法对原始数据具有很强的依赖性,在采用小样本的数据(N<20)构建SSD曲线时将显著低估污染物对更敏感物种的毒性效应。Bootstrap回归方法能够将参数方法和非参数bootstrap方法的优点结合起来,从而获得较为可靠的HC5值,但对计算机运算性能有较高的要求。
     (3)构建了逸度食物网模型,模拟了金城湾养殖海域食物网中HCH、DDT、OT的迁移转化过程,并估算了其在13个功能群中生物体内的浓度,预测值与实测值吻合良好。模拟结果表明,部分高营养级的功能群中生物体内∑HCH的含量(2.54-3.24ng/g),均显著低于更低级的功能群中的平均含量(8.11-26.75ng/g,P<0.01),不呈现食物网生物放大效应;OT的模拟结果与HCH相似;而DDT随着食物网营养级的升高逐级生物放大,其中较高营养级功能群中∑DDT的平均浓度(22.89-69.45ng/g),比较低营养级的功能群(0.10-0.37ng/g)高2-3个数量级,该结果与实验室内暴露实验以及野外观测结果的文献报道情况非常吻合。
     (4)根据该海域食物网中生物体内污染物浓度的模型预测值以及利用生物体内毒性浓度构建的SSD曲线,采用概率方法估算了其对海洋生物的生态风险值。结果表明,按照非保守的估算方法和两种保守的估算方法,HCH的总体风险概率分别为0.029、0.070和0.082,DDT的总体风险概率分别为0.086、0.13和0.20,TBT和DBT的总体风险概率分别为0.09、0.21、0.22和0.06、0.17、0.17。可见HCH对海洋生物的生态风险保守估算值略高于5%的边界管理水平,而DDT、TBT和DBT的非保守估算值和保守估算值生均高于5%,因而对敏感的海洋生物均具有潜在风险。与目前通用(基于水体暴露浓度和水体暴露毒性浓度)的生态风险评价方法所获得结果(HCH为0.0087、0.021、0.020,DDT为0.0013、0.0037、0.0028,TBT为0.04、0.07、0.10,DBT为0.10、0.36、0.15)相比,本方法获得风险值普遍是偏高的,其中的HCH、OT风险值偏差均不超过3倍,而DDT的风险值则高出目前通用方法约30-70倍,表明目前通用方法由于没有考虑到食物暴露因素,低估了DDT这样具有典型食物网生物放大效应的POPs对高营养级海洋生物的生态风险。可见,综合多重暴露途径的、基于生物体内污染物浓度的生态风险评价方法更为可靠。
     (5)根据生物体内HCH、DDTs和OT浓度的模型预测值,按照EPA的方法分别计算了该海域水产品的消费限量。从OT暴露角度看,该海域水产品的最大允许消费量高于国内海洋食品高消费地区的人均消费量的统计值,不会危害消费者健康;从HCH和DDT暴露非致癌毒性效应的角度看,食用该海域水产品不会危害人体健康,但是从致癌效应的角度看,该海域水产品的最大允许消费量为国内水产品人均消费量的1/5,为海洋食品高消费地区的人均消费量的1/6。
     本论文首次以逸度食物网模型计算了养殖海域各营养级生物体内的HCH、DDT和OT的浓度,并进行了生态风险评价以及水产品消费对人体健康风险评价。该方法可对尚未有养殖活动的海域开展生态风险评价,并能在开展养殖生产前判断该海域是否适宜水产品养殖,为完善水产品生态和健康风险评价提供了新的技术方法,也为养殖海域水产品安全管理提供了科学依据。
Hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) andorganotins (OTs) are types of persistent organice pollutants (POPs) extensivelydistributed offshore all around the world, which could cause a series of adverse effectson various marine organisms at very low levels and cause harm to human health viamarine foodstuff. Due to the high levels of the HCH, DDT and organotin residuesoffshore in China, their potential risk to marine organisms and human health shoulddraw attention. Aquatic ecological risk assessment (ERA) is usually based on externalwater-borne exposure concentrations of the target pollutants, which could be definedas an external ERA (EERA). However, the exposure via diet and the toxicity kineticsof target toxicants are not taken into consideration in an EERA, which wouldunderestimate their true risk to organisms in the environment. Therefore, an ERAbased on biological tissue residue of target toxicants defined as an internal ERA(IERA), was addressed in the present study.
     The concentrations of HCHs, DDTs and OTs in the water and sediment of theJincheng Bay mariculture area (JBMA) were investigated in the present study, andaccordingly a fugacity-based foodweb bioaccumulation model was developed toestimate the tissue residue levels of these pollutants in various kinds of speciesbelonging to different function groups (FGs) of the JBMA foodweb. Besides, speciessensitivity distribution (SSD) curves were constructed for HCHs, DDTs and OTsemploying multiple models, and the safety levels (HC5) were derived based on thesecurves. By integrating the internal concentration (biological tissue residue levels)generated from the bioaccumulation model with the SSD curves based on internaltoxicity data, an ERA and human health risk assessment (HRA) were performed. Themain results are as follows:
     (1) The concentrations of the total HCHs (∑HCH),∑OT (ng Sn/L in sea waterand ng Sn/g in sediment), and DDTs (∑DDT) were2.98-14.87,23.88-44.82ng/L,and below the detection limit (<0.032ng/L), respectively, in the surface seawater and5.52-9.43,4.11-6.72, and4.11-6.72ng/g, respectively, in the surface sediment. Thesediment concentrations of γ-HCH and p,p'-DDE were0.64-3.13and1.36-4.02ng/g,respectively, which exceeded the TEL values (0.32ng/g for γ-HCH and2.07ng/g forp,p'-DDE) of the Sediment Quantity Guidelines by the frequency of100%and66.7%,respectively. And the aqueous concentrations of TBT were0.60-2.90ng Sn/L, whichwere comparable or above the critical levels (1-2ng Sn/L) that could deduce imposexfor female Nucella lapillus. The investigation primarily suggested that the HCH, DDTand OT residues were potentially detrimental to marine organisms and the safety ofaquatic products in the study area.
     (2) The goodness of fit of different SSD models for the toxicity data of HCHs,DDTs and OTs differed, among which the log-logistic models showed the bestgoodness. However, the log-logistic model did not fit well for toxicity with a largesample size as N>80. All the SSD models were well fitted with both the bootstrap andmodified bootstrap approaches for the toxicity data of these compounds, especially forthe toxicity data with a large data size. However, both the two methods depend muchon the original toxicity data, which would underestimate the toxicity to the potentialmore sensitive species not involved in the data assemblage with a small sample size(N<20). The bootstrap regression method could integrate the excellence of both thenon-parametric bootstrap and parametric approaches, with which a reliable HC5couldbe derived. However, this approach costs much more time and a computer with higherspeed is required.
     (3) A fugacity-based foodweb bioaccumulation model was constructed in thisstudy. Employing this model we stimulated the transportation and transformation ofHCHs, DDTs and OTs in the foodweb of the JMBA, estimated their tissue residuelevels in thirteen FGs. The estimated values were comparable with the observedvalues for validation. According to the simulations, the residue levels of∑HCH(2.54-3.24ng/g) in some FGs of higher level were significantly lower (P<0.01) than those (8.11-26.75ng/g) in FGs of lower level, suggesting no biomagnification in thefoodweb. And similar results were obtained from the simulations of OTs. In contrast,significant biomagnification in the foodweb for DDTs was predicted, with the meantissue residual level ranged from22.89to69.45ng/g in the FGs of higher level, whichwere significantly higher (P<0.01) than those (0.10-0.37ng/g) in the FGs of lowerlevel by2-3folds. These results were highly consistent with those experimented inboth the laboratory and the field, which had been reported in numerous references.
     (4) The potential ecological risk values of HCHs, DDTs and OTs to marineorganisms were estimated by integrating their biological tissue residue levels based onthe bioaccumulation model with the SSDs based on internal toxicity data. The overallrisk probabilities of∑HCH,∑DDT, TBT and DBT were0.029,0.086,0.09and0.06,respectively on non-conservative estimation basis, and0.070,0.13,0.21and0.017,respectively on one conservative estimation basis. And the results of anotherconservative estimation were similar to those of the former conservative estimation.These results showed that the risk level of∑HCH was higher than0.05based on theconservative estimations, a critical level for management control, whereas those of∑DDT, TBT and DBT were all higher than0.05based on both the conservative andnon-conservative estimations, suggesting potential detrimental effects on marineorganisms. Besides, based on external toxicity data, the overall risk was0.0087,0.0013,0.04, and0.01for∑HCH,∑DDT, TBT, and DBT, respectively evaluated bynon-conservative estimation, and0.021,0.0037,0.07, and0.36evaluated by the firstconservative estimation, similar to that evaluated by the second conservativeestimation. It is clear that slight differences of the risk values between the IERA andEERA were observed for both HCHs and OTs, with a factor of less than4, while therisk values based on IERA were much higher than those based on EERA byapproximately30to70folds. The comparison revealed that underestimate of trueecological risk would be performed for the POPs which presenting biomagnificationeffects such as DDTs, while an IERA based on an aggregate exposure viamultipahway including the food exposure was more reliable.
     (5) According to the EPA approaches, the consumption limits of the marine food in the JMBA were calculated based on the biological tissue residue levels of HCHs,DDTs and OTs. The maximum allowable consumption rate (CR) of marine food washigher than the domestic average consumption rate, suggesting little or no risk tohuman health from the exposure of OTs through marine food of this area. And similarresults were concluded for noncancer health effects from the exposure of HCHs andDDTs. However, considering the cancer health effects from the exposure of HCHsand DDTs, the CR was just1/5and1/6of the average consumption rate in China andthe average consumption rate in a typical coastal area with high consumption rate ofmarine food, respectively.
     In this study, the biological residue levels of HCHs, DDTs and OTs wereestimated via the fugacity-based foodweb bioaccumulation model, which wereemployed for ERA and HRA for the first time. This model could be applied toconduct an ERA in marine areas to determine whether the area was available foraquaculture anterior to the aquaculture performance, which could also serve as a basisfor the safety management in mariculture sea areas.
引文
[1] Abidli, S., Santos, M.M., Lahbib, Y., Castro, L.F.C., Reis-Henriques, M.A., Trigui El Menif,N.,2012. Tributyltin (TBT) effects on Hexaplex trunculus and Bolinus brandaris (Gastropoda:Muricidae): Imposex induction and sex hormone levels insights. Ecological Indicators13,13-21.
    [2] Aldenberg, T., Jaworska, J.S.,2000. Uncertainty of the hazardous concentration and fractionaffected for normal species sensitivity distributions. Ecotoxicol. Environ. Saf.46,1-18.
    [3] Aluoch, A.O., Odman-Ghazi, S.O., Whalen, M.M.,2006. Alteration of an essential NK cellsignaling pathway by low doses of tributyltin in human natural killer cells. Toxicology224,229-237.
    [4] Antizar-Ladislao, B.,2008. Environmental levels, toxicity and human exposure to tributyltin(TBT)-contaminated marine environment. A review. Environ. Int.34,292-308.
    [5] Ao, J., Chen, J., Tian, F., Cai, X.,2009. Application of a level IV fugacity model to simulatethe long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin,China. Chemosphere74,370-376.
    [6] Aono, A., Takeuchi, I.,2008. Effects of tributyltin at concentrations below ambient levels inseawater on Caprella danilevskii (Crustacea: Amphipoda: Caprellidae). Mar. Pollut. Bull.57,515-523.
    [7] Arai, T.,2009. Ecotoxicology of antifouling biocides. Springer, Tokyo; New York.
    [8] Arnold, C., Haderlein, S., Schwarzenbach, R., Weidenhaupt, A., David, M., Sedlak, M.,Muller, S.,1997. Aqueous Speciation and1-Octanol-Water Partitioning of Tributyl-andTriphenyltin: Effect of pH and Ion Composition. Environ. Sci. Technol.31,2596-2602.
    [9] Arnot, J.A., Gobas, F.A.,2004. A food web bioaccumulation model for organic chemicals inaquatic ecosystems. Environ. Toxicol. Chem.23,2343-2355.
    [10] ATSDR,2002. Toxicological Profile for DDT, DDE, and DDD. Agency for Toxic Substancesand Disease Registry Atlanta, Georgia, USA, pp.1-497.
    [11] ATSDR,2005. Toxicological Profile for Alpha-, Beta-, Gamma-, andDelta-Hexachlorocyclohexane. Agency for Toxic Substances and Disease Registry Atlanta,Georgia, USA, pp.1-377.
    [12] Axiak, V., Vella, A.J., Micallef, D., Chircop, R., Mintoff, B.,1995. Imposex in Hexaplextrunculus (Gastropoda: Muricidae): first results from biomonitoring of TBT contamination inthe Mediterranean. Mar. Biol.121,685-691.
    [13] Bao, V.W.W., Leung, K.M.Y., Qiu, J.-W., Lam, M.H.W.,2011. Acute toxicities of fivecommonly used antifouling booster biocides to selected subtropical and cosmopolitan marinespecies. Mar. Pollut. Bull.62,1147-1151.
    [14] Barnthouse, L.W., Munns, W.R., Sorensen, M.T.,2008. Population-level ecological riskassessment. CRC; London: Taylor&Francis [distributor], Boca Raton, Fla.
    [15] Bauer, B., Fioronil, P., Liebe, I.I., Oehlmann, J., Stroben, E., Watermann, B.,1995. TBTeffects on the female genital system of Littorina littorea: a possible indicator of tributyltinpollution. Hydrobiologia309,15-27.
    [16] Bauer, B., Fioronil, P., Schulte-Oehlmann, U., Oehlmann, J., Kalbfus, W.,1997. The use oflittorina littorea for tributyltin (tbt) effect monitoring-results from the german tbt survey1994/1995and laboratory experiments. Hydrobiologia96,299-309.
    [17] Berg, M., Arnold, C.G., Muller, S.R., Muhlemann, J., Schwarzenbach, R.P.,2001. Sorptionand desorption behavior of organotin compounds in sediment-pore water systems. Environ.Sci. Technol.35,3151-3157.
    [18] Bernard, L., Martinat, N., Lécureuil, C., Crépieux, P., Reiter, E., Tilloy-Ellul, A., Chevalier,S., Guillou, F.,2007. Dichlorodiphenyltrichloroethane impairs follicle-stimulating hormonereceptor-mediated signaling in rat Sertoli cells. Reprod. Toxicol.23,158-164.
    [19] Binelli, A., Sarkar, S., Chatterjee, M., Riva, C., Parolini, M., Bhattacharya, B., Bhattacharya,A., Satpathy, K.,2008. A comparison of sediment quality guidelines for toxicity assessment inthe Sunderban wetlands (Bay of Bengal, India). Chemosphere73,1129-1137.
    [20] Blair, A., Cantor, K., Hoar, S.Z.,1998. Non-Hodgkin's lymphoma and agricultural use ofthe insecticide lindane. Am. J. Ind. Med.33,82-87.
    [21] Blair, A., Cantor, K.P., Zahm, S.H.,1998. Non-hodgkin's lymphoma and agricultural use ofthe insecticide lindane. Am. J. Ind. Med.33,82-87.
    [22] Bryan, G.W., Gibbs, P.E., Burt, G.R.,1988. A Comparison of the Effectiveness ofTri-N-Butyltin Chloride and Five other Organotin Compounds in Promoting the Developmentof Imposex in the Dog-Whelk, Nucella Lapillus J. Mar. Biol. Assoc. UK.68,733-744.
    [23] Buchman, M.F.,1999. NOAA Screening Quick Reference Tables, NOAA OR&R Report99-1.Office of Response and Restoriation Division, National Oceanic and AtmosphericAdministration, Seattle WA.
    [24] Buckler, D.R., Mayer, F.L., Ellersieck, M.R., Asfaw, A.,2005. Acute toxicity valueextrapolation with fish and aquatic invertebrates. Arch. Environ. Contam. Toxicol.49,546-558.
    [25] Campfens, J., Mackay, D.,1997. Fugacity-based model of PCB bioaccumulation in complexaquatic food webs. Environ. Sci. Technol.31,577-583.
    [26] Cao, D., Jiang, G., Zhou, Q., Yang, R.,2009. Organotin pollution in China: An overview ofthe current state and potential health risk. J. of Environ. Manage.90, S16-S24.
    [27] Carriger, J.F., Rand, G.M.,2008. Aquatic risk assessment of pesticides in surface waters inand adjacent to the Everglades and Biscayne National Parks: II. Probabilistic analyses.Ecotoxicology17,680-696.
    [28] Catlin, R., Shah, H., Bankhurst, A.D., Whalen, M.M.,2005. Dibutyltin exposure decreasesgranzyme B and perforin in human natural killer cells. Environ. Toxicol. Pharmacol.20,395-403.
    [29] CCME,1996. A Framework for Ecological Risk Assessment: General Guidance,08-4/10-1996e. Canadian Council of Ministers of the Environment. National ContaminatedSites Remediation Program, Winnipeg, MB.
    [30] CENR,1999. Ecological risk assessment in the federal government, CENR/5-99/001.Committee on Environment and Natural Resources, National Science and TechnologyCouncil, Washington, DC, USA.
    [31] Chen, C.S.,2005. Ecological risk assessment for aquatic species exposed to contaminants inKeelung River, Taiwan. Chemosphere61,1142-1158.
    [32] Cincinelli, A., Martellini, T., Del Bubba, M., Lepri, L., Corsolini, S., Borghesi, N., King,M.D., Dickhut, R.M.,2009. Organochlorine pesticide air–water exchange andbioconcentration in krill in the Ross Sea. Environ. Pollut.157,2153-2158.
    [33] Cipro, C.V.Z., Taniguchi, S., Montone, R.C.,2010. Occurrence of organochlorine compoundsin Euphausia superba and unhatched eggs of Pygoscelis genus penguins from Admiralty Bay(King George Island, Antarctica) and estimation of biomagnification factors. Chemosphere78,767-771.
    [34] Clark, B., Henry, J.G., Mackay, D.,1995. Fugacity analysis and model of organic chemicalfate in a sewage treatment plant. Environ. Sci. Technol29,1488–1494.
    [35] Coelho, M.R., Bebianno, M.J., Langston, W.J.,2002. Routes of TBT uptake in the clamRuditapes decussatus. II. Food as vector of TBT uptake. Mar. Environ. Res.54,193-207.
    [36] Connella, D.W., Funga, C.N., Minhb, T.B., Tanabeb, S., Lama, P.K.S., Wonga, B.S.F., Lama,M.H.W., Wongc, L.C., Wua, R.S.S., Richardsona, B.J.,2003. Risk to breeding success offish-eating Ardeids due to persistent organic contaminants in Hong Kong: evidence fromorganochlorine compounds in eggs. Water Research3737,459–467.
    [37] Cronin, M.T.D., Walker, J.D., Jaworska, J.S., Comber, M.H.I., Watts, C.D., Worth, A.P.,2003. Use of quantitative structure-activity relationships in international decision-makingframeworks to predict ecologic effects and environmental fate of chemical substances.Environ. Health Perspect.111,1376-1390.
    [38] Davis, L.K., Visitacion, N., Riley, L.G., Hiramatsu, N., Sullivan, C.V., Hirano, T., Grau, E.G.,2009. Effects of o,p'-DDE, heptachlor, and17β-estradiol on vitellogenin gene expression andthe growth hormone/insulin-like growth factor-I axis in the tilapia, Oreochromis mossambicus.Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology149,507-514.
    [39] Deng, J., Meng, T., Ren, S.,1988. The fish species composition, abundance and distributionin the Bohai Sea. Marine Fish Reaseach9,11-90.
    [40] Deng, J., Zhu, J., Chen, J.,1988. Main invertebrates and their fishery biology in the Bohai Sea.Marine Fish Reaseach9,91-120.
    [41] Dom, N., Knapen, D., Blust, R.,2012. Assessment of aquatic experimental versus predictedand extrapolated chronic toxicity data of four structural analogues. Chemosphere86,56-64.
    [42] Dong, Z., Hu, J.,2012. Development of lead source-specific exposure standards based onaggregate exposure assessment: Bayesian inversion from biomonitoring information tomultipathway exposure. Environ. Sci. Technol.46,1144-1152.
    [43] Donkin, P., Widdows, J., Evans, S.V., Staff, F.J., Yan, T.,1997. Effect of NeurotoxicPesticides on the Feeding Rate of Marine Mussels (Mytilus edulis). Pestic. Sci.49,196-209.
    [44] Duboudin, C., Ciffroy, P., Magaud, H.,2004. Effects of data manipulation and statisticalmethods on species sensitivity distributions. Environ. Toxicol. Chem.23,489-499.
    [45] Dwivedi, J., Trombetta, L.D.,2006. Acute Toxicity And Bioaccumulation Of Tributyltin InTissues OfUrolophus jamaicensis(Yellow Stingray). J. Toxicol. Environ. Health, Part A69,1311-1323.
    [46] Dyer, S.D., Versteeg, D.J., Belanger, S.E., Chaney, J.G., Mayer, F.L.,2006. Interspeciescorrelation estimates predict protective environmental concentrations. Environmental Science&Technology40,3102-3111.
    [47] EC,2003. Technical-grade guidance document on risk assessment, EUR20418EN/2.European Communities, pp.149-150.
    [48] EC,2003. Technical-grade guidance document on risk assessment, EUR20418EN/3.European Communities, pp.149-150.
    [49] ECOFRAM,1999. ECOFRAM aquatic draft report1999.
    [50] EPA,1980. Ambient water quality criteria for DDT. National Center for EnvironmentalAssessment, Washington, DC, pp.1-175.
    [51] EPA,1980. Ambient water quality criteria for hexachlorocyclohexane. National Center forEnvironmental Assessment, Washington, DC, pp.1-109.
    [52] EPA,1998. Technical basis for deriving sediment quality criteria for nonionic organiccontaminants for the protection of benthic organisms by using equilibrium partitioning,EPA/630/R-95/002F. National Center for Environmental Assessment, United StatesEnvironmental Protection Agency, Washington DC.
    [53] EPA,2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories,3ed. Risk Assessment and Fish Consumption Limits.
    [54] Escher, B., Hermens, J.,2004. Internal exposure linking bioavaibality to effect. Environ. Sci.Technol.1,455-462.
    [55] Escher, B.I., Hermens, J.L.M.,2002. Modes of action in ecotoxicology: Their role in bodyburdens, species sensitivity, QSARs, and mixture effects. Environ. Sci. Technol.,4201-4217.
    [56] ESFA,2004. Opinion of the scientific panel on contaminants in the food chain on a requestfrom the commission to assess the health risks to consumers associated with exposure toorganotins in foodstuffs. The EFSA Journal102,1-119.
    [57] Fairchild, J.F., Feltz, K.P., Allert, A.L., Sappington, L.C., Nelson, K.J., Valle, J.A.,2009. AnEcological Risk Assessment of the Acute and Chronic Effects of the Herbicide Clopyralid toRainbow Trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol.57.
    [58] Fairchild, J.F., Feltz, K.P., Allert, A.L., Sappington, L.C., Nelson, K.J., Valle, J.A.,2009. AnEcological Risk Assessment of the Exposure and Effects of2,4-D Acid to Rainbow Trout(Onchorhyncus mykiss). Arch. Environ. Contam. Toxicol.56.
    [59] FAO,2012. Fishery and aquaculture statistics, in: Organization, F.a.A.(Ed.), Rome.
    [60] Fisher, W.S., Oliver, L.M., Walker, W.W., Manning, C.S., Lytle, T.F.,1999. Decreasedresistance of eastern oysters (Crassostrea virginica) to a protozoan pathogen (Perkinsusmarinus) after sublethal exposure to tributyltin oxide. Mar. Environ. Res.47,185-201.
    [61] Flores-Alsina, X., Corominas, L., Neumann, M.B., Vanrolleghem, P.A.,2012. Assessing theuse of activated sludge process design guidelines in wastewater treatment plant projects: Amethodology based on global sensitivity analysis. Environ. Modell. Softw.38,50-58.
    [62] Fox, D.R.,1999. Setting water quality guidelines-A statistician's perspective. SETAC News19,17-18.
    [63] Fox, J.,2008. Bootstrapping regression models, Applied regression analysis and generalizedlinear models,2nd ed. ed. SAGE, London, pp.587-606.
    [64] Galanopoulou, S., Vgenopoulos, A., Conispoliatis, N.,2005. DDTs and other chlorinatedorganic pesticides and polychlorinated biphenyls pollution in the surface sediments ofKeratsini harbour, Saronikos gulf, Greece. Mar. Pollut. Bull.50,520-525.
    [65] Gennari, A.,2000. Organotins Induce Apoptosis by Disturbance of [Ca2+]i andMitochondrial Activity, Causing Oxidative Stress and Activation of Caspases in RatThymocytes. Toxicol. Appl. Pharmacol.169,185-190.
    [66] Gibbs, P., Bryan, G., Pascoe, P., Burt, G.,1987. The use of the dogwhelk, Nucella lapillus, asan indicator of tributyltin (TBT) contamination. J. Mar. Biol. Assoc. UK.67,507-523.
    [67] Gibbs, P.E., Pascoe, P.L., Burt, G.R.,1988. Sex Change in the Female DogWhelk, NucellaLapillus, Induced by Tributyltin from Antifouling Paints. J. Mar. Biol. Assoc. UK.68,715-731.
    [68] Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N.,Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.P., Wolock, D.M.,2007. The quality ofour nation's waters pesticides in the nation's streams and ground water,1992-2001.US.Geological Survey, Reston, Virginia, pp.1-184.
    [69] Gómez-Gutiérrez, A., Garnacho, E., Bayona, J.M., Albaigés, J.,2007. Screening ecologicalrisk assessment of persistent organic pollutants in Mediterranean sea sediments. Environ. Int.33,867-876.
    [70] Gong, X., Qi, S., Wang, Y., Julia, E.B., Lv, C.,2007. Historical contamination and sources oforganochlorine pesticides in sediment cores from Quanzhou Bay, Southeast China. Mar.Pollut. Bull.54,1434-1440.
    [71] Grist, E.P., Leung, K.M., Wheeler, J.R., Crane, M.,2002. Better bootstrap estimation ofhazardous concentration thresholds for aquatic assemblages. Environ. Toxicol. Chem.21,1515-1524.
    [72] Guérin, T., Sirot, V., Volatier, J.L., Leblanc, J.C.,2007. Organotin levels in seafood and itsimplications for health risk in high-seafood consumers. Sci. Total Environ.388,66-77.
    [73] Guglielmo, F., Lammel, G., Maier-Reimer, E.,2009. Global environmental cycling of γ-HCHand DDT in the1980s–A study using a coupled atmosphere and ocean general circulationmodel. Chemosphere76,1509-1517.
    [74] Gumy, C., Chandsawangbhuwana, C., Dzyakanchuk, A.A., Kratschmar, D.V., Baker, M.E.,Odermatt, A.,2008. Dibutyltin disrupts glucocorticoid receptor function and impairsglucocorticoid-induced suppression of cytokine production. PLoS One3, e3545.
    [75] Hall, L., Scott, M., Killen, W., Unger, M.,2000. A probabilistic ecological risk assessment oftributyltin in surface waters of the chesapeake bay watershed. Hum. Ecol. Risk. Assess.6,141-179.
    [76] Han, E.H., Kim, H.G., Hwang, Y.P., Choi, J.H., Im, J.H., Park, B., Yang, J.H., Jeong, T.C.,Jeong, H.G.,2010. The role of cyclooxygenase-2-dependent signaling via cyclic AMPresponse element activation on aromatase up-regulation by o,p'-DDT in human breast cancercells. Toxicol. Lett.198,331-341.
    [77] Harner, T., Mackay, D.,1995. Measurement of Octanol-Air Partition Coefficients forChlorobenzenes, PCBs, and DDT. Environ. Sci. Technol.29,1599-1606.
    [78] Harner, T., Mackay, D.,1995. Model of the long-term exchange of pcbs betweetl soil and theatmosphere in the Southern U.K. Environ. Sci. Technol.29,1200-1209.
    [79] Hart,2001. Probabilistic risk assessment for pesticides in Europe: implementation andresearch needs.European Workshop on probabilistic risk assessment for the environmentalimpacts of plant protection products. Central Science Library, Sand Hutton, York, UnitedKingdom.
    [80] Hart, A.,2002. The use of species sensitivity distributions in avian risk assessments forpesticide registration, in: Posthuma, L., Suter II, G.W., Traas, T.P.(Eds.), Species sensitivitydistributions in ecotoxicology. Lewis Publisher, Boca Raton, pp.516-517.
    [81] Hattum, V., Baart, B.A., Boon, J.,2006. Emission estimation and chemical fate modeling ofantifoulants, in: Konstantinou, I.K.(Ed.), Antifouling Paint Biocides. Handbook ofEnvironmental Chemistry Vol.5/O. Springer Verlag, Berlin, Germany, pp.101-120.
    [82] Hites, R.A., Foran, J.A., Carpenter, D.O., Hamilton, M.C., Knuth, B.A., Schwager, S.J.,2004.Global assessment of organic contaminants in farmed salmon. Science303,226-229.
    [83] Hong, S.H., Yim, U.H., Shim, W.J., Oh, J.R., Viet, P.H., Park, P.S.,2008. Persistentorganochlorine residues in estuarine and marine sediments from Ha Long Bay, Hai PhongBay, and Ba Lat Estuary, Vietnam. Chemosphere72,1193-1202.
    [84] Horiguchi, T., Li, Z., Uno, S., Shimizu, M., Shiraishi, H., Morita, M., Thompson, J.A.J.,Levings, C.D.,2004. Contamination of organotin compounds and imposex in molluscs fromVancouver, Canada. Mar. Environ. Res.57,75-88.
    [85] Hu, J., Zhang, Z., Wei, Q., Zhen, H., Zhao, Y., Peng, H., Wan, Y., Giesy, J.P., Li, L., Zhang,B.,2009. Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and itscausal agent. Proc. Natl. Acad. Sci. U. S. A.106,9339-9344.
    [86] Hu, J., Zhen, H., Wan, Y., Gao, J., An, W., An, L., Jin, F., Jin, X.,2006. Trophicmagnification of triphenyltin in a marine food web of Bohai Bay, North China: comparison totributyltin. Environ. Sci. Technol.40,3142-3147.
    [87] Hu, L., Zhang, G., Zheng, B., Qin, Y., Lin, T., Guo, Z.,2009. Occurrence and distribution oforganochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere77,663-672.
    [88] Huang, G., Wang, Y.,1995. Effects of tributyltin chloride on marine bivalve mussels. WaterRes.29,1877-1884.
    [89] Ito, N., Hananouchi, M., Sugihara, S., Shirai, T., Tsuda, H.,1976. Reversibility andirreversibility of liver tumors in mice induced by the alpha isomer of1,2,3,4,5,6-hexachlorocyclohexane. Cancer Res.36,2227-2234.
    [90] Janer, G., Navarro, J.C., Porte, C.,2007. Exposure to TBT increases accumulation of lipidsand alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis. ComparativeBiochemistry and Physiology Part C: Toxicology&Pharmacology146,368-374.
    [91] Jantunen, L.M., Bidleman, T.,1996. Air-water gas exchange of hexachlorocyclohexanes(HCHs) and the enantiomers of α-HCH in arctic regions. J. Geophys. Res.101,28837–28246.
    [92] Jiang, Q.T., Lee, T.K., Chen, K., Wong, H.L., Zheng, J.S., Giesy, J.P., Lo, K.K., Yamashita,N., Lam, P.K.,2005. Human health risk assessment of organochlorines associated with fishconsumption in a coastal city in China. Environ. Pollut.136,155-165.
    [93] Jung, D., Becher, H., Edler, L.,1997. Elimination of β-hexachlorocyclohexane inoccupationally exposed persons. J. Toxicol. Environ. Health51,23-34.
    [94] Kashyap, S.,1986. Health surveillance and biological monitoring of pesticide formulators inIndia. Toxicol. Lett.33,107-114.
    [95] Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E., Gobas, F.A.P.C.,2007. FoodWeb–Specific Biomagnification of Persistent Organic Pollutants. Science317,236-238.
    [96] Kim, Y.S., Eun, H., Katase, T., Fujiwara, H.,2007. Vertical distributions of persistent organicpollutants (POPs) caused from organochlorine pesticides in a sediment core taken fromAriake bay, Japan. Chemosphere67,456-463.
    [97] Kwok, K.W.H., Leung, K.M.Y.,2005. Toxicity of antifouling biocides to the intertidalharpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature andsalinity. Mar. Pollut. Bull.51,830-837.
    [98] Landrum, P.F., Lotufo, G.R., Gossiaux, D.C., Gedeon, M.L., Lee, J.-H.,2003.Bioaccumulation and critical body residue of PAHs in the amphipod, Diporeia spp.:additional evidence to support toxicity additivity for PAH mixtures. Chemosphere51,481-489.
    [99] Lee, C.C., Hsieh, C.Y., Tien, C.J.,2006. Factors influencing organotin distribution in differentmarine environmental compartments, and their potential health risk. Chemosphere65,547-559.
    [100] Leeuwen, C.J.v., Vermeire, T.,2007. Risk assessment of chemicals: an introduction,2nd ed.ed. Springer, Dordrecht, The Netherlands.
    [101] Leung, K.M., Bjorgesaeter, A., Gray, J.S., Li, W.K., Lui, G.C., Wang, Y., Lam, P.K.,2005.Deriving sediment quality guidelines from field-based species sensitivity distributions.Environ. Sci. Technol.39,5148-5156.
    [102] Leung, K.M.Y., Grist, E.P.M., Morley, N.J., Morritt, D., Crane, M.,2007. Chronic toxicity oftributyltin to development and reproduction of the European freshwater snail Lymnaeastagnalis (L.). Chemosphere66,1358-1366.
    [103] Leung, K.M.Y., Kwong, R.P.Y., Ng, W.C., Horiguchi, T., Qiu, J.W., Yang, R., Song, M.,Jiang, G., Zheng, G.J., Lam, P.K.S.,2006. Ecological risk assessments of endocrine disruptingorganotin compounds using marine neogastropods in Hong Kong. Chemosphere65,922-938.
    [104] Li, Y.,1999. Global gridded technical-grade hexachlorocyclohexane usage inventory using aglobal cropland as a surrogate. Journal of Geophysical Research104,23785-23797.
    [105] Li, Y., Macdonald, R.W.,2005. Sources and pathways of selected organochlorine pesticidesto the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Sci.Total Environ.342,87-106.
    [106] Li, Y.F., Cai, D.J., Singh, A.,1998. Historical DDT use trend in China and usage datagridding with1/4°by1/6°longitude/latitude resolution. Advances in Environmental Research2,497-506.
    [107] Lima, D., Reis-Henriques, M.A., Silva, R., Santos, A.I., Filipe C. Castro, L., Santos, M.M.,2011. Tributyltin-induced imposex in marine gastropods involves tissue-specific modulationof the retinoid X receptor. Aquat. Toxicol.101,221-227.
    [108] Lin, T., Hu, Z., Zhang, G., Li, X., Xu, W., Tang, J., Li, J.,2009. Levels and mass burden ofDDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paintto the coastal environment of China. Environ. Sci. Technol.43,8033-8038.
    [109] Liu, L.-L., Wang, J.-T., Chung, K.-N., Leu, M.-Y., Meng, P.-J.,2011. Distribution andaccumulation of organotin species in seawater, sediments and organisms collected from aTaiwan mariculture area. Mar. Pollut. Bull.63,535-540.
    [110] Luo, Y., Gao, Q., Yang, X.,2007. Dynamic modeling of chemical fate and transport inmultimedia environments at watershed scale I: Theoretical considerations and modelimplementation. J. of Environ. Manage.83,44-45.
    [111] Luo, Y., Gao, Q., Yang, X.,2007. Dynamic modeling of chemical fate and transport inmultimedia environments at watershed scale II: Trichloroethylene test case. J. of Environ.Manage.83,56-65.
    [112] Luo, Y., Gao, Q., Yang, X.,2007. Dynamic modeling of chemical fate and transport inmultimedia environments at watershed scale-I: theoretical considerations and modelimplementation. J. of Environ. Manage.83,44-55.
    [113] Luo, Y., Gao, Q., Yang, X.,2007. Dynamic modeling of chemical fate and transport inmultimedia environments at watershed scale-II: trichloroethylene test case. J. of Environ.Manage.83,56-65.
    [114] MacDonald, D.D.,1994. Approach to the Assessment of Sediment Quality in Florida CoastalWaters: Volume1-Development and Evaluation of the Sediment Quality AssessmentGuidelines, Tallahassee, FL, pp.1-140.
    [115] MacDonald, D.D., Carr, R.S., Calder, F.D., Long, E.R., Ingersoll, C.G.,1996. Developmentand evaluation of sediment quality guidelines for Florida coastal water. Ecotoxicology5,253-278.
    [116] Mackay, D.,1979. Finding fugacity feasible. Environ. Sci. Technol13,1218.
    [117] Mackay, D.,2001. Multimedia environmental models: the fugacity approach,2nd ed. ed.Lewis Publishers, Boca Raton; London.
    [118] Mackay, D., Arnot, J.A.,2011. The Application of Fugacity and Activity to Simulating theEnvironmental Fate of Organic Contaminants. J. Chem. Eng. Data56,1348-1355.
    [119] Mackay, D., Mackay, D.I.h.o.p.-c.p., environmental fate for organic, c.,2006. Handbook ofphysical-chemical properties and environmental fate for organic chemicals,2nd ed./DonaldMackay...[et al.]. ed. CRC Taylor&Francis, Boca Raton, Fla.; London.
    [120] Mackay, D., Paterson, S., DiGuardo, A., Cowan, C.E.,1996. Evaluating the environmentalfate of a variety of types of chemicals using the EQC model. Environ. Toxicol. Chem.15,1627-1637.
    [121] Mackay, D., Wania, F.,1995. Transport of contaminants to the Arctic: partitioning, processesand models. Sci. Total Environ.160–161,25-38.
    [122] Malkiewicz, K., Hansson, S.O., Ruden, C.,2009. Assessment factors for extrapolation fromshort-time to chronic exposure--are the REACH guidelines adequate? Toxicol. Lett.190,16-22.
    [123] Matoba, Y., Ohnishi, J., Matsuo, M.,1995. Indoor simulation of insecticides in broadcastspraying. Chemosphere30,345–365.
    [124] Mohammed, A., Peterman, P., Echols, K., Feltz, K., Tegerdine, G., Manoo, A., Maraj, D.,Agard, J., Orazio, C.,2011. Polychlorinated biphenyls (PCBs) and organochlorine pesticides(OCPs) in harbor sediments from Sea Lots, Port-of-Spain, Trinidad and Tobago. Mar. Pollut.Bull.62,1324-1332.
    [125] Monirith, I., Ueno, D., Takahashi, S., Nakata, H., Sudaryanto, A., Subramanian, A.,Karuppiah, S., Ismail, A., Muchtar, M., Zheng, J., Richardson, B.J., Prudente, M., Hue, N.D.,Tana, T.S., Tkalin, A.V., Tanabe, S.,2003. Asia-Pacific mussel watch: monitoringcontamination of persistent organochlorine compounds in coastal waters of Asian countries.Mar. Pollut. Bull.46,281-300.
    [126] Muncke, J.,2011. Endocrine disrupting chemicals and other substances of concern in foodcontact materials: An updated review of exposure, effect and risk assessment. The Journal ofSteroid Biochemistry and Molecular Biology127,118-127.
    [127] Munir, K.M., Soman, C.S., Bhide, S.V.,1983. Hexachlorocyclohexane-inducedtumorigenicity in mice under different experimental conditions. Tumori69,383-386.
    [128] Nahla, S., El-Shenawy, Richard, G., Ismail, M., Abdel-Nabi,2007.紫贻贝长期暴露于亚致死剂量的林丹和阿特拉津下的组织学反应.动物学报53,899-909.
    [129] Nakanishi, T., Hiromori, Y., Yokoyama, H., Koyanagi, M., Itoh, N., Nishikawa, J.-I., Tanaka,K.,2006. Organotin compounds enhance17β-hydroxysteroid dehydrogenase type I activity inhuman choriocarcinoma JAr cells: Potential promotion of17β-estradiol biosynthesis in humanplacenta. Biochem. Pharmacol.71,1349-1357.
    [130] Newman, M.C., Ownby, D.R., Mézin, L.C.A., Powell, D.C., Christensen, T.R.L., Lerberg,S.B., Anderson, B.A.,2000. Applying species-sensitivity distributions in ecological riskassessment: Assumptions of distribution type and sufficient numbers of species. Environ.Toxicol. Chem.19,508-515.
    [131] Nfon, E., Cousins, I.T.,2007. Modelling PCB bioaccumulation in a Baltic food web. Environ.Pollut.148,73-82.
    [132] Nielsen, J.,2002. Butyltin Compounds in Human Liver. Environ. Res.88,129-133.
    [133] Nishikawa, J., Mamiya, S., Kanayama, T., Nishikawa, T., Shiraishi, F., Horiguchi, T.,2004.Involvement of the retinoid X receptor in the development of imposex caused by organotins ingastropods. Environmental Science&Technology38,6271-6276.
    [134] Noda, T., Yarnano, T., Shimizu, M., Saitoh, M., Nakamura, T., Yamada, A., Morita, S.,1992.Comparative teratogenicity of di-n-butyltin diacetate with n-butyltin trichloride in rats. Arch.Environ. Contam. Toxicol.23,216-222.
    [135] OECD,2004. OECD series on testing and assessment number49the report from the expertgroup on (quantitative) structure-activity relationships [(Q)SARs] on the principles for thevalidation of (Q)SARs, ENV/JM/MONO(2004), Paris.
    [136] Oehlmann, J., Fioronib, P., Strobenb, E., Markert, B.,1996. Tributyltin (TBT) effects onOcinebrina aciculata (Gastropoda Muricidae) imposex development, sterilization, sex changeand population decline. The Science of the Total Environment188,205-223.
    [137] Oliveira-Filho, E.C., Paumgartten, F.J.,1997. Comparative study on the acute toxicities ofalpha, beta, gamma, and delta isomers of hexachlorocyclohexane to freshwater fishes. Bull.Environ. Contam. Toxicol.59,984-988.
    [138] Pavoni, B., Centanni, E., Valcanover, S., Fasolato, M., Ceccato, S., Tagliapietra, D.,2007.Imposex levels and concentrations of organotin compounds (TBT and its metabolites) inNassarius nitidus from the Lagoon of Venice. Mar. Pollut. Bull.55,505-511.
    [139] Pikkarainen, A.,2007. Polychlorinated biphenyls and organochlorine pesticides in Baltic Seasediments and bivalves. Chemosphere68,17-24.
    [140] Pikkarainen, A.L.,2007. Polychlorinated biphenyls and organochlorine pesticides in BalticSea sediments and bivalves. Chemosphere68,17-24.
    [141] Pomés, A., Frandsen, A., Suňol, C.,1994. Lindane cytotoxicity in cultured neocorticalneurons is ameliorated by GABA and flunitrazepam. J. Neurosci. Res.39,663-668.
    [142] Posthuma, L., Suter, G.W., Traas, T.,2002. Species sensitivity distributions in ecotoxicology.Lewis Publishers, Boca Raton, FL.
    [143] Qiu, X., Zhu, T.,2010. Using the o,p′-DDT/p,p′-DDT ratio to identify DDT sources in China.Chemosphere81,1033-1038.
    [144] Qiu, X., Zhu, T., Yao, B., Hu, J., Hu, S.,2005. Contribution of dicofol to the current DDTpollution in China. Environ. Sci. Technol.39,4385-4390.
    [145] Qiu, Y., Zhang, G., Guo, L., Cheng, H., Wang, W., Li, X., Wai, O.W.H.,2009. Current statusand historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China.Estuarine, Coastal and Shelf Science85,265-272.
    [146] Raimondo, S., Montague, B.J., Barron, M.G.,2007. Determinants of variability in acute tochronic toxicity ratios for aquatic invertebrates and fish. Environ. Toxicol. Chem.26,2019-2023.
    [147] Rand, G.M., Carriger, J.F., Gardinali, P.R., Castro, J.,2010. Endosulfan and its metabolite,endosulfan sulfate, in freshwater ecosystems of South Florida: a probabilistic aquaticecological risk assessment. Ecotoxicology19,879-900.
    [148] Reish, D.J.,1993. Effects of Metals and Organic Compounds on Survival andBioaccumulation in Two Species of Marine Gammaridean Amphipod, Together with aSummary of Toxicological Research on this Group. J. Nat. Hist.27,781-794.
    [149] Reyes, J.G.G., Jasso, A.M., Lizarraga, C.V.,1996. Toxic effects of organochlorine pesticideson Penaeus vannamei shrimps in Sinaloa, Mexico.Chemosphere.333.
    [150] Roepke, T.A., Snyder, M.J., Cherr, G.N.,2005. Estradiol and endocrine disruptingcompounds adversely affect development of sea urchin embryos at environmentally relevantconcentrations. Aquat. Toxicol.71,155-173.
    [151] Rosa, R., Sanfeliu, C., Suňol, C.,1997. The mechanism for hexachlorocyclohexane-inducedcytotoxicity and changes in intracellular Ca2+homeostasis in cultured cerebellar granuleneurons is different for the γ-and δ-isomers. Toxicol. Appl. Pharmacol.142,31-39.
    [152] Rossi, L., Barbieri, O., Sanguineti, M., Cabral, J.R., Bruzzi, P., Santi, L.,1983.Carcinogenicity study with technical-grade dichlorodiphenyltrichloroethane and1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene in hamsters. Cancer Res.43,776-781.
    [153] rstera, E.O., McClellan-Greenb, P.,2002. Mechanisms of imposex induction in the mud snail,Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Mar. Environ. Res.54,715–718.
    [154] Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.,2005. Sensitivity analysis for chemicalmodels. Chem. Rev.105,2811-2828.
    [155] Sappington, K.G., Bridges, T.S., Bradbury, S.P., Erickson, R.J., Hendriks, A.J., Lanno, R.P.,Meador, J.P., Mount, D.R., Salazar, M.H., Spry, D.J.,2010. Application of the Tissue ResidueApproach in Ecological Risk Assessment. Environ. Assess. Manage.7,116–140.
    [156] Sappington, K.G., Bridges, T.S., Bradbury, S.P., Erickson, R.J., Hendriks, A.J., Lanno, R.P.,Meador, J.P., Mount, D.R., Salazar, M.H., Spry, D.J.,2011. Application of the tissue residueapproach in ecological risk assessment. Integr. Environ. Assess. Manag.7,116-140.
    [157] Sauviat, M.-P., Pages, N.,2002. Cardiotoxicity of lindane: A gamma isomer ofhexachlorohexane.] J Soc Biol196,339-348.
    [158] Schultz, T.W., Cronin, M.T.D., Walker, J.D.,2003. Quantitative structure-activityrelationships (QSARs) in toxicology:a historical perspective. J. Mol. Struct.622,1-22.
    [159] Serrano, R., Blanes, M.A., López, F.J.,2008. Biomagnification of organochlorine pollutantsin farmed and wild gilthead sea bream (Sparus aurata) and stable isotope characterization ofthe trophic chains. Sci. Total Environ.389,340-349.
    [160] Seth, R., Munke, J., Mackay, D.,1999. Estimating the Organic Carbon Partition Coefficientand Its Variability for Hydrophobic Chemicals. Environ. Sci. Technol.33,2390-2394.
    [161] Singh, P.B., Canario, A.V.M.,2004. Reproductive endocrine disruption in the freshwatercatfish, Heteropneustes fossilis, in response to the pesticide γ-hexachlorocyclohexane.Ecotoxicol. Environ. Saf.58,77-83.
    [162] Snoeij, N.J., Penninks, A.H., Seinen, W.,1988. Dibutyltin and tributyltin compounds inducethymus atrophy in rats due to a selective action on thymic lymphoblasts. Int. J.Immunopharmacol.10,891-899.
    [163] Solomon, K.R., Giesy, J., Jones, P.,2000. Probabilistic risk assessment of agrochemicals inthe environment. Crop Prot.19,649-655
    [164] Sousa, A., Laranjeiro, F., Takahashi, S., Tanabe, S., Barroso, C.M.,2009. Imposex andorganotin prevalence in a European post-legislative scenario: Temporal trends from2003to2008. Chemosphere77,566-573.
    [165] Ssebugere, P., Wasswa, J., Mbabazi, J., Nyanzi, S.A., Kiremire, B.T., Marco, J.A.M.,2010.Organochlorine pesticides in soils from south-western Uganda. Chemosphere78,1250-1255.
    [166] Su, J., Tang, Q.,2002. Study on Chinese marine ecosystem dynamics II: process of ecosystemdynamics in Bohai Sea. Science Press, Beijing, p.445.
    [167] Sun, J., Feng, J., Liu, Q., Li, Q.l.,2010. Distribution and sources of organochlorine pesticides(OCPs) in sediments from upper reach of Huaihe River, East China. J. Hazard. Mater.184,141-146.
    [168] Suter, G.W.,2007. Ecological risk assessment,2nd ed. Lewis Publishers, Boca Raton, FL.
    [169] Tan, L., He, M., Men, B., Lin, C.,2009. Distribution and sources of organochlorine pesticidesin water and sediments from Daliao River estuary of Liaodong Bay, Bohai Sea (China).Estuarine, Coastal and Shelf Science84,119-127.
    [170] Thomas, L.D., Shah, H., Green, S.A., Bankhurst, A.D., Whalen, M.M.,2004. Tributyltinexposure causes decreased granzyme B and perforin levels in human natural killer cells.Toxicology200,221-233.
    [171] Tong, L., Tang, Q., Pauly, D.,2000. A preliminary approach on mass-balance ecopath modelof the Bohai Sea. Chinese Journal of Applied Ecology11,435-440.
    [172] Traas, T.P., Meent, D.v.d., Posthuma, L., Hamers, T., Kater, B.J., Zwart, D.d., Aldenberg, T.,2002. The Potentially Affected Fraction as a Measure of Ecological Risk, in: Posthuma, L.,Suter II, G.W., Traas, T.P.(Eds.), Species sensitivity distributions in ecotoxicology. LewisPublisher, Boca Raton, pp.315-343.
    [173] UNEP,2007. The People’s Republic of China: National Implementation Plan for theStockholm Convention on Persistent Organic Pollutants.
    [174] van Wijngaarden, R.P., Arts, G.H., Belgers, J.D., Boonstra, H., Roessink, I., Schroer, A.F.,Brock, T.C.,2010. The species sensitivity distribution approach compared to a microcosmstudy: a case study with the fungicide fluazinam. Ecotoxicol. Environ. Saf.73,109-122.
    [175] Van Wijngaarden, R.P.A., Arts, G.H.P., Belgers, J.D.M., Boonstra, H., Roessink, I., Schroer,A.F.W., Brock, T.C.M.,2010. The species sensitivity distribution approach compared to amicrocosm study: A case study with the fungicide fluazinam. Ecotoxicol. Environ. Saf.73,109-122.
    [176] Verhaar, H.J.M., van Leeuwen, C.J., Hermens, J.L.M.,1992. Classifying environmentalpollutants: structure activity relationships for prediction of aquatic toxicity. Chemosphere25,471-491.
    [177] Versteeg, D.J., Belanger, S.E., Carr, G.J.,1999. Understanding single species and modelecosystem sensitivity_a database comparison. Environ. Toxicol. Chem.18,1329–1346.
    [178] Vos, J.G., Dybing, E., Greim, H.A., Ladefoged, O., Lambre, C., Tarazona, J.V., Brandt, I.,Vethaak, A.D.,2000. Health effects of endocrine-disrupting chemicals on wildlife, withspecial reference to the European situation. Crit. Rev. Toxicol.30,71-133.
    [179] Wang, B., Yu, G., Huang, J., Hu, H.,2008. Development of species sensitivity distributionsand estimation of HC(5) of organochlorine pesticides with five statistical approaches.Ecotoxicology17,716-724.
    [180] Wang, B., Yu, G., Huang, J., Wang, T., Hu, H.,2011. Probabilistic ecological risk assessmentof DDTs in the Bohai Bay based on a food web bioaccumulation model. Sci. Total Environ.409,495-502.
    [181] Wang, B., Yu, G., Huang, J., Yu, Y., Hu, H., Wang, L.,2008. Tiered aquatic ecological riskassessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River,China. Environ. Monit. Assess.157,29-42.
    [182] Wang, D.-Q., Yu, Y.-X., Zhang, X.-Y., Zhang, S.-H., Pang, Y.-P., Zhang, X.-L., Yu, Z.-Q.,Wu, M.-H., Fu, J.-M.,2012. Polycyclic aromatic hydrocarbons and organochlorine pesticidesin fish from Taihu Lake: Their levels, sources, and biomagnification. Ecotoxicol. Environ. Saf.82,63-70.
    [183] Wang, X., Fang, C., Hong, H., Wang, W.-X.,2010. Gender differences in TBT accumulationand transformation in Thais clavigera after aqueous and dietary exposure. Aquat. Toxicol.99,413-422.
    [184] Wang, Z., Yan, W., Chi, J., Zhang, G.,2008. Spatial and vertical distribution oforganochlorine pesticides in sediments from Daya Bay, South China. Mar. Pollut. Bull.56,1578-1585.
    [185] Wentsel, R., Beyer, N., Forbes, V., Maund, S., Pastorok, R.,2008. A Framework forPopulation-Level Ecological Risk Assessment, in: Barnthouse, L.W., Munns, W.R., Sorensen,M.T.(Eds.), Population-level ecological risk assessment. CRC; London: Taylor&Francis
    [distributor], Boca Raton, Fla., pp.211-237.
    [186] Wheeler, J.R., Grist, E.P., Leung, K.M., Morritt, D., Crane, M.,2002. Species sensitivitydistributions: data and model choice. Mar. Pollut. Bull.45,192-202.
    [187] WHO,1990. Environmental Health Criteria116tributyltin compounds. World HealthOrganization, Genev, p.273.
    [188] WHO,2001. Report on integrated risk assessment, WHO/IPCS/IRA/01/12. World HealthOrganization, Geneva, Switzerland.
    [189] WHO,2006. Mono-and disubstituted methyltin, butyltin, and octyltin compounds, Conciseinternational chemical assessment document. World Health Organization, Norfolk, pp.1-73.
    [190] Willett, K.L., Ulrich, E.M., Hites, R.A.,1998. Differential toxicity and environmental fates ofhexachlorocyclohexane isomers. Environmental Science&Technology32,2197-2207.
    [191] Wilson, S.K., Burns, K., Codi, S.,2001. Sources of dietary lipids in the coral reef blennySalarias patzneri. Mar. Ecol. Prog. Ser.222,291-296.
    [192] Wurl, O., Obbard, J.P.,2005. Chlorinated pesticides and PCBs in the sea-surface microlayerand seawater samples of Singapore. Mar. Pollut. Bull.50,1233-1243.
    [193] Xin, J., Liu, X., Liu, W., Jiang, L., Wang, J., Niu, J.,2011. Production and use of DDTcontaining antifouling paint resulted in high DDTs residue in three paint factory sites and twoshipyard sites, China. Chemosphere84,342-347.
    [194] Xu, X., Yang, H., Li, Q., Yang, B., Wang, X., Lee, F.,2007. Residues of organochlorinepesticides in near shore waters of LaiZhou Bay and JiaoZhou Bay, Shandong Peninsula,China. Chemosphere68,126-139.
    [195] Yang, H., Xue, B., Yu, P., Zhou, S., Liu, W.,2010. Residues and enantiomeric profiling oforganochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea.Chemosphere80,652-659.
    [196] Yao, Z.W., Jiang, G.B., Xu, H.Z.,2002. Distribution of organochlorine pesticides in seawaterof the Bering and Chukchi Sea. Environ. Pollut.116,49-56.
    [197] Yu, M., Luo, X., Chen, S., Mai, B., Zeng, E.Y.,2008. Organochlorine pesticides in thesurface water and sediments of the Pearl River Estuary, South China. Environ. Toxicol. Chem.27,10-17.
    [198] Zhang, J., Qi, S., Xing, X., Tan, L., Gong, X., Zhang, Y., Zhang, J.,2011. Organochlorinepesticides (OCPs) in soils and sediments, southeast China: A case study in Xinghua Bay. Mar.Pollut. Bull.62,1270-1275.
    [199] Zhang, J., Zuo, Z., Chen, Y., Zhao, Y., Hu, S., Wang, C.,2007. Effect of tributyltin on thedevelopment of ovary in female cuvier (Sebastiscus marmoratus). Aquat. Toxicol.83,174-179.
    [200] Zhao, L., Hou, H., Zhou, Y., Xue, N., Li, H., Li, F.,2010. Distribution and ecological risk ofpolychlorinated biphenyls and organochlorine pesticides in surficial sediments from HaiheRiver and Haihe Estuary Area, China. Chemosphere78,1285-1293.
    [201] Zhao, Z., Zhang, L., Wu, J., Fan, C.,2009. Distribution and bioaccumulation oforganochlorine pesticides in surface sediments and benthic organisms from Taihu Lake, China.Chemosphere77,1191-1198.
    [202] Zolezzi, M., Cattaneo, C., Tarazona, J.V.,2005. Probabilistic ecological risk assessment of1,2,4-trichlorobenzene at a former industrial contaminated site. Environ. Sci. Technol.39,2920-2926.
    [203] Zwart, D.d.,2002. Observed Regularities in Species Sensitivity Distributions for AquaticSpecies, in: II, L.P.W.S., Traas, T.P.(Eds.), Species Sensitivity Distributions inEcotoxicology. Lewis Publishers, Boca Raton, FL, pp.133-154.
    [204]胡建英,安伟,曹洪斌等,2010.化学物质的风险评价.科学出版社,北京.
    [205]敖江婷,于晓菲,陈景文,田福林,2008. Ⅳ级逸度模型在评估温度对污染物环境行为影响中的应用-以松花江硝基苯污染事故为例.安全与环境学报2,1009-6094.
    [206]陈波宇,郑斯瑞,牛希成,赵劲松,2010.物种敏感度分布及其在生态毒理学中的应用.生态毒理学报4,1673-5897.
    [207]蒋丹烈,胡霞林,尹大强,2011.应用物种敏感性分布法对太湖沉积物中多环芳烃的生态风险分析.生态毒理学报1,1673-5897.
    [208]李会仙,张瑞卿,吴丰昌,郭广慧,冯承莲,2012.中美淡水生物区系中汞物种敏感度分布比较.环境科学学报5,0253-2468.
    [209]盛骤,谢式千,潘承毅,2008.概率论与数理统计,4ed.高等教育出版社,北京.
    [210]王小庆,韦东普,黄占斌,马义兵,2012.物种敏感性分布在土壤中镍生态阈值建立中的应用研究.农业环境科学学报1,1672-2043.
    [211]王斌,余刚,黄进,胡洪营,2007.(Q)SARsPQSPR在POPs归趋与风险评价中的应用.化学进展19,1612-1619.
    [212]王印,王军军,秦宁,吴文婧,朱樱,徐福留,2009.应用物种敏感性分布评估ddt和林丹对淡水生物的生态风险.环境科学学报11,0253-2468.
    [213]许鸥泳,1987a.逸度模型(上).环境污染与防治4,1001-3865.
    [214]许鸥泳,1987b.逸度模型(下).环境污染与防治5,1001-3865.
    [215]张瑞卿,吴丰昌,李会仙,冯承莲,郭广慧,.应用物种敏感度分布法研究中国无机汞的水生生物水质基准.环境科学学报.2012,(2,0253-2468.
    [216]中国海事局,2007.关于实施《控制船舶有害防污底系统国际公约》的通知,海船舶
    [2011277号]. http://www.moc.gov.cn/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700