用户名: 密码: 验证码:
环境污染物质检测技术研究及几种环境污染物质的内暴露分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染问题是全世界所面临的重大问题之一。一般而言,环境污染的趋势随着经济的发展而加深,特别是工业革命期间,“先污染、后治理”的理念使得环境质量急剧下降。近年来,虽然人们的环境保护意识在不断提高,但是在经济利益的驱使下,每天仍有各种有害物质在超负荷排放并且更有大量未知的新化合物在大量涌现,这些环境污染物会对人类的健康生活造成具大的威胁。据中国2012年发布的((2012中国肿瘤登记年报》中的数据显示,我国每年新发肿瘤病例约为312万例,平均每天8550人,每分钟就有6人确诊为癌症。全国肿瘤死亡率为180.54/10万,每年因癌症死亡病例达270万例。癌症已经成为一个主要的公共健康问题。
     虽然导致疾病和癌症的因素多种多样,但环境污染是不可忽视的重要的致病因素之一。目前我国对环境污染物的监测主要是针对外环境,这些监测的数据可以间接反应污染物质的暴露来源,为控制人和动物的过多暴露提供间接依据。而直接对人体内污染物质的含量进行检测能避免个体差异的影响,不仅能直接反映个体的污染物内暴露水平,为污染物的预警和减排处置提供直接依据,而且能为制订环境污染物质人体接触限值标准提供依据。但是,由于环境污染物种类多,人类暴露存在不确定性。利用常规仪器分析方法无疑是重成本的大海捞针,检测通量低以及灵敏度问题极大的限制了环境污染物质内暴露检测的发展。而各种突发的污染事件以及内暴露的未知性使得人们对环境污染的意识忽而过度敏感忽而麻木不仁,而且目前关于污染物质人体接触限值标准也没有明确规定。这些问题都是提高全民生活质量和健康水平的一大障碍。因此,为了解决环境污染物质内暴露检测的瓶颈问题,在本研究中,我们首先从提高检测通量以及灵敏度两方面入手,建立了多种环境污染物质的内暴露检测方法。其次,将建立的方法应用于人体样本,检测了多种环境污染物质在人体内的暴露水平,初步反映了中国人群在环境污染物质中的暴露程度及分布特征,建立了相应的基础数据库。最后,我们还以本研究中的人群为对象,初步对几种环境污染物质与人类健康状况进行了相关性分析。
     1.几种常见环境污染物质多克隆抗体的制备及ELISA检测方法的建立
     背景:目前针对环境污染物质的检测方法主要有气相色谱法(GC)、液相色谱法(LC)、高效液相色谱法(HPLC)和高效液相色谱-质谱联用法(LC-MS/MS),-方面这些仪器分析方法前处理复杂、耗时多,成本高且通量低,不适合大量样本的检测,另一方面对环境污染物质的检测主要是针对外环境的检测而很少涉及内暴露检测。目的:本研究的目的在于建立一些基于抗原抗体特异性结合原理的低成本、高通量的ELISA检测方法用于人体尿样中环境污染物质的检测。这几类环境污染物质包括:柠檬黄(TAR)、可替宁(COT)、双酚A (BPA)、铅(Pb)、镉(Cd)和铜(Cu)。方法:对于柠檬黄、可替宁和双酚A这三种物质,我们利用合成的完全人工抗原免疫新西兰大白兔,成功制备这三种物质的特异性多克隆抗体,并建立了相应的ELISA检测方法。针对铅、镉和铜等重金属污染物,我们购买了商品化的单克隆抗体,基于这些抗体建立了3种人体尿样中重金属含量的间接竞争ELISA检测方法。结果:柠檬黄间接竞争ELISA中,柠檬黄抗体ICs0为7.7ng/ml,柠檬黄的最低检测限为0.04ng/ml,方法回收率在99.8%到106.6%之间,变异系数在3.28%到14.9%之间,未见其与七种其他人工染料出现交叉反应。针对可替宁多克隆抗体,我们同时建立了间接竞争ELISA和直接竞争ELISA方法,在COT间接竞争ELISA中,抗体的ICso为15ng/ml, COT的最低检测限为0.1ng/ml.在COT直接竞争ELISA中,抗体的ICs0为7.1ng/ml, COT的最低检测限为0.04ng/ml,回收率在97.23%到111.26%之间,变异系数在4.63%到12.9%之间。针对双酚A多克隆抗体,我们同时建立了间接竞争ELISA和直接竞争ELISA方法,在BPA间接竞争ELISA中,抗体的IC50为7.0ng/ml, BPA的最低检测限为0.08ng/ml,回收率在100.99%-113.81%之间,变异异数在6.23%-14.58%之间。在BPA直接竞争ELISA中,抗体的IC50为5.5ng/ml, BPA的最低检测限为0.03ng/ml,97.34%-119.42%之间,变异异数在7.37%-15.46%之间。针对重金属间接竞争ELISA,铅的IC50和最低检测限分别为5.09ng/ml和0.01ng/ml,方法回收率在98.7%到108.3%之间,变异系数在2.83%到13.92%之间。镉的的IC50和最低检测限分别为10.1ng/ml和0.07ng/ml,方法回收率在95.6%到103.9%之间,变异系数在2.56%到12.99%之间。铜的IC50和最低检测限分别为7.3ng/ml和0.04ng/ml,方法回收率在93.2%到106.5%之间,变异系数在2.67%到14.23%之间。结论:结果显示,本研究建立的所有方法特异性好、灵敏度高、操作简单,与仪器分析方法相比极大的提高了检测的通量,可用于大量样本中环境污染物质的检测。
     2.沙丁胺醇免疫PCR检测方法的建立
     背景:随着人们对健康要求的不断提高,有必要建立一些更高灵敏度的检测方法用于环境污染物质的检测。目的:本研究的目的是建立一种新型的基于DNA标记的超灵敏免疫PCR方法检测低分子量环境污染物质的含量。方法:本研究以沙丁胺醇(SAL)为研究对象,针对传统免疫PCR进行改造,将待测小分子物质SAL与DNA片段进行偶联,首创性的建立了基于DNA免疫探针的直接免疫PCR法并首次用于SAL的检测,只需三步即可完成检测:即SAL抗体的包被——SAL与DNA标记SAL的竞争反应——PCR扩增。结果:在最佳条件下,方法的最低检测限为21fg/ml,线性范围达到7个数量级。此方法结合了免疫学的高特异性及PCR的高灵敏性,SAL在人尿样中的回收率在85.5%和98.3%之间,变异系数在5.76%和9.23%之间。结论:本研究制备的SAL免疫PCR检测结合了免疫反应的高特异性以及PCR反应的高灵敏度,大大提高了SAL的检测灵敏度,是目前所建立的SAL检测方法中灵敏度最高的方法,此方法经改造后能用于其它小分子化合物的检测,能领引小分子量化合物超高灵敏检测的趋势。
     3.几种常见环境污染物质人体内暴露水平测定及其与健康状况的相关性初步研究
     目的:了解几种常见环境污染物质(柠檬黄、可替宁、沙丁胺醇、铅和黄曲霉毒素M1)在人体内的含量,初步分析几种环境污染物质与检测人群健康状况的相关性。方法:用本研究中建立的ELISA检测方法检测柠檬黄、可替宁、沙丁胺醇、铅和黄曲霉毒素M1在研究人群尿样中的含量,得到结果后,采用SPSS软件对人群中污染物质的含量进行描述性及相关性分析。结果:柠檬黄在351例人体样本中的检测范围为0-109.4ng/ml;可替宁在951例人样本中的检测范围为0-6257ng/ml,几何平均值(GM)为10.32ng/ml;沙丁胺醇在951例人样本中的检测范围为0-16.06ng/ml, GM为0.61ng/ml;铅在951例人样本中的检测范围为0-139ng/ml, GM为0.23ng/ml。在沙丁胺醇、铅与健康状况的相关性分析中,我们没有发现明显相关性。结论:这几种环境污染物质在人体内均有不同程度的检出,环境污染问题应受到极大的重视,环境污染物质对人体的影响及其限值研究亟待加强。
     综上所述:
     本研究针对限制环境污染物质内暴露检测项目的两大问题进行了技术分析与攻关。对于检测通量的提高,我们以免疫学原理为基础,建立了6种不同环境污染物质的ELISA检测方法用于内暴露检测。这些方法不仅灵敏度高,特异性好,更重要的是在通量方面有了明显提升。对于灵敏度的提高,我们利用免疫学原理中的高特异性与PCR反应的高灵敏性,建立了针对于小分子量化合物的改良免疫PCR检测技术,该技术首次应用于小分子量化合物SAL的检测,在灵敏度方面有了极大的提升,是目前SAL检测方法中灵敏度最高的一种。此外,我们还初步检测了几种环境污染物质在人群中的暴露水平并分析了环境污染物质与人群健康状况的相关性。本研究首次系统的从技术研究到人群检测再到健康状况相关性分析三方面展开了对环境污染物质的内暴露研究,为环境污染物质内暴露检测项目在普通人群中的推广提供了技术支持和理论依据,调查了环境污染物质人体内暴露的人群分布特征,建立了相应的基础数据,为环境污染物质的人体内暴露限值标准的制订及其对疾病的相关性研究奠定基础。
Environmental pollution is one of the biggest problems worldwide. Generally speaking, the extent of environmental pollution is aggravated with the development of economy and industrialization. Especially, during the industrial revolution, the idea of "pollution first, treatment later" made a dramatic fall in the environmental quality. In recent years, although the consciousness of environmental protection is improving, but there are also different kinds of unknown new chemicals and hazardous substances that are excreted into the environment every day from different sources. These hazardous emissions pose a variety of potential threats to human health. According to the "2012Annual Report of Cancer Registration in China", China has about3.12million new cancer cases per year, an average of8550people per day,6people are diagnosed with cancer every minute. National cancer mortality was180.54/10million, which show that the annual deaths due to cancer reached2.7million peoples. Cancer has become a major public health problem.
     Although there are various factors that can cause cancer, environmental pollution is one of the most important pathogenic factors that cannot be ignored. Nowadays, the monitoring of environmental pollutants is mainly focused on the external environment, which can indirectly reflect the sources of pollutants and provide basis for controlling the exposure level of environmental pollutants in human and animals. Detecting the concentration of environmental pollutants in human can avoid the influence of individual differences, directly reflect the exposure level of individual to pollutants. The data not only provide direct basis for early warning of pollutants and disposal but also provide the basis for the standard of human exposure limit. However, there are various types of environmental pollutants in environment and exposure of human to individual pollutant is undefined, so it's very difficult to detect all pollutants in human using conventional detection methods. The problem of low through-put and sensitivity is placing a big limit on the development of research about human exposure to environmental pollutants. All kinds of environmental pollution emergencies and unascertainty in human exposure to pollutants make people either supersensitive or insensible to environmental pollutants. It's a great barrier for developing high-quality health level for all people. Therefore, we dedicated to solve the bottleneck problem in the detection of human exposure to environmental pollutants. First of all, we established several methods to detect different environment pollutants, focusing on the high sensitivity and high throughput. Secondly, we used these methods to assess the exposure of human to these different environmental pollutants. The data reflect the exposure of the Chinese population to environmental pollutants and the distribution of exposure. This work can be used as a primary database about Chinese exposure to the environment pollutants. Finally, we also investigate the relationship about the pollutants exposure with human health status.
     1. Preparation of antibodies against different environmental pollutants and development of enzyme-linked immuno sorbent assay (ELISA) for detection of these pollutants
     Background:Various analytical techniques and methods have been developed for the detection of environmental pollutants including gas chromatography (GC), liquid chromatography (LC), high-performance liquid chromatography (HPLC) and HPLC combined with tandem mass spectrometry (LC-MS/MS). On one hand, these instrumental analyses require complex pretreatment, high cost and relatively time-consuming; on the other hand, most methods are focused on the detection of pollutants in external environment.
     Objectives:Therefore, we aimed to develop some low cost and high throughput methods based on specific immunoreactions to assess the exposure of human to different environmental pollutants, including tartrazine (TAR), cotinine (COT), bisphenol A (BPA), lead (Pb), cadmium (Cd) and copper (Cu).
     Methods:For TAR, COT and BPA, we synthesized artificial antigens and prepared three specific polyclonal antibodies using synthesized artificial antigens. For Pb, Cd and Cu, we purchased commercial monoclonal antibodies, and developed three indirect competitive ELIS As for detection of urinary concentration of Pb, Cd and Cu based on three monoclonal antibodies.
     Results:For TAR, we developed an indirect competitive ELISA for detection of TAR in human urinary samples. The IC50value of TAR-antibody was7.7ng/ml; the limit of detection (LOD) was set at0.04ng/ml; the recoveries of TAR were from99.8%to106.6%and coefficients of variation were from3.28%to14.9%; no cross-reactivity of the antibody was observed with seven other artificial dyes based on this assay.
     For COT, we developed and compared direct and indirect competitive ELISAs for detection of COT in human urine. The IC50value and LOD for indirect competitive ELISA were15ng/ml and0.1ng/ml respectively, whereas for the direct competitive, the IC50value and LOD were7.1ng/ml and0.04ng/ml respectively, the recoveries of COT were from97.23%to111.266%and coefficients of variation were from4.63%to12.9%.
     For BPA, we developed and compared direct and indirect competitive ELISAs for the detection of BPA in human urine. The IC50value and LOD for the indirect competitive ELISA were7.0ng/ml and0.08ng/ml respectively, the recoveries of BPA were from100.99%to113.81%and coefficients of variation were from6.23%to14.58%, whereas for the direct competitive, the The IC50value and LOD for the indirect competitive ELISA were5.5ng/ml and0.03ng/ml respectively; the recoveries of BPA were from97.34%to119.42%and coefficients of variation were from7.37%to 15.46%.
     The IC50value and LOD of Pb for indirect competitive ELISA were5.09ng/ml and0.01ng/ml respectively, the recoveries of Pb were from98.7%to108.3%and coefficients of variation were from2.83%to13.92%. The IC50value and LOD of Cd for indirect competitive ELISA were10.1ng/ml and0.07ng/ml respectively, the recoveries of Cd were from95.6%to103.9%and coefficients of variation were from2.56%to12.99%. The IC50value and LOD for the indirect competitive ELISA about Cu were7.3ng/ml and0.04ng/ml respectively, the recoveries of Cu were from93.2%to106.5%and coefficients of variation were from2.67%to14.23%.
     Conclusions'. The results indicated that all the methods developed in this research were highly specific, highly sensitive and easy-to-use, and could be used for the detection of environmental pollutants in a large number of human samples.
     2. Development of Immuno-PCR assay for detection of SAL
     Background:It's necessary to develop a more sensitive method to detect the environmental pollutants with the constant improvement of human health needs.
     Objectives:The aim of our study was to develop a novel pre-assembled DNA immunoprobe based direct competitive immuno-PCR for the determination of SAL level in human urine.
     Methods:In this study, we focused on SAL, modified the traditional immuno-PCR, conjugated the analyte SAL to reporter DNA and for the first time we have developed a novel pre-assembled DNA immunoprobe based direct competitive immuno-PCR to investigate the level of small molecule SAL in human urine. There were only three steps in this assay, namely SAL antibody coating-competition between free SAL and DNA conjugated SAL-PCR amplification.
     Results:Under the optimized conditions, the assay showed a linear range over seven orders of magnitude, and the limit of detection of SAL in human urine was found to be21fg/ml, the recoveries of SAL were from85.5%to98.3%and coefficients of variation were from5.76%to9.23%.
     Conclusions:This method combines the specificity of immunoassays with PCR signal amplification and provides a huge improvement of sensitivity of SAL. To the best of our knowledge, the sensitivity in this study is one of the highest sensitivity observed for detecting SAL. Moreover, this method can be modified and used for detecting other small molecule chemicals in environment and could lead the trend to the ultrasensitive detection of small molecules chemicals.
     3. Determination of internal exposure of human to different environmental pollutants and preliminary correlation analysis between environmental pollutants and human disease
     Objective:To understand the exposure to several common environmental pollutants in general population and preliminary study correlation between environmental pollutants and human disease.
     Methods:Using the methods developed in this research, we measured the urinary concentrations of TAR, COT, SAL, Pb and AFM1in the selected participants. After detection, descriptive and correlation analysis were conducted by SPSS.
     Results:The detection range for TAR in351participants was0-109.4ng/ml; the GM for COT in951participants was10.32ng/ml, the detection range was0-6257ng/ml; the GM for SAL in951participants was0.61ng/ml, the detection range was0-16.06ng/ml; the GM for Pb in951participants was0.23ng/ml, the detection range was0-139ng/ml. In the correlation analysis between environmental pollutants and human disease, we found higher urinary COT concentrations were associated with lung cancer.
     Conclusions:All environmental pollutants in our research can be detected in the selected participants, and further studies are needed to reveal the effects of chronic exposure on human.
     To sum up:
     In our study, we explored two problems that limited the development of research about human exposure to environmental pollutants. To improve the detection throughput, we have established six different methods to detect human exposure to environmental pollutants based on ELISA. These methods have high sensitivity and specificity, more importantly, the throughput of detection has improved significantly. For the improvement of the sensitivity, we combined the high specificity of immunological and high sensitivity of the PCR reaction, and developed the modified immuno-PCR which is used specific to the detection of low molecular weight compound. The modified immuno-pcr was first applied to the detection of a low molecular weight compound (SAL) in our study. The method shows a super highly improvement to sensitivity and is found to be the most sensitive method to SAL detection. In addition, we also preliminary detected human exposure to several different environmental pollutants and analyzed the relationship between environmental pollutants and population health. This is a first systematic study about human exposure to environmental pollutants which from technical research to detection on human exposure to correlation analysis between the health and human exposure to pollutants. This study provided technical supports and theoretical basis for the generalization of detection about internal exposure, investigated the population distribution to environmental pollutants, established the corresponding primary database of human exposure level to environmental pollutants, and laid the foundation to the fomulation of limit value standard and correlation analysis between the human diseases and environmental pollutants.
引文
[1]顾春林.体制转型期的我国经济增长与环境污染水平关系研究.复旦大学,2003.
    [2]何艳明,聂永丰.我国危险废物管理现状及发展趋势.环境污染治理技术与设备2002;3:90-3.
    [3]Yang X, Qin H, Gao M, Zhang H. Simultaneous detection of Ponceat 4R and tartrazine in food using adsorptive stripping voltammetry on an acetylene black nanoparticle-modified electrode. Journal of the Science of Food and Agriculture 2011;91:2821-5.
    [4]王竹天,蒋定国,杨大进,王茂起,常迪.2003年-2004年中国食品添加剂监测结果与分析.中国食品卫生杂志2006;18:99-103.
    [5]Wang H, Zhang Y, Li H, Du B, Ma H, Wu D, et al. A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosensors and Bioelectronics 2013;49:14-9.
    [6]姚彤炜.体内药物分析.杭州:浙江大学出版社,2001.
    [7]陈枢青.环境污染物内暴露剂量测量的应用研究现状及其前景.浙江大学学报:医学版2009;38:225-8.
    [8]Sano T, Smith CL, Cantor CR. Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992;258:120-2.
    [9]Chen H-Y, Zhuang H-S. Real-time immuno-PCR assay for detecting PCBs in soil samples. Analytical and bioanalytical chemistry 2009;394:1205-11.
    [10]Yamini Y, Reimann CT, Vatanara A, Jonsson JA. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier. Journal of Chromatography A 2006;1124:57-67.
    [11]Khamta Y, Pattarawarapan M, Nangola S, Tayapiwatana C. Development of immunochromatographic assay for the on-site detection of salbutamol. Journal of Immunoassay and Immunochemistry 2009;30:441-56.
    [12]Sheu S-Y, Lei Y-C, Tai Y-T, Chang T-H, Kuo T-F. Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in Taiwan. Analytica chimica acta 2009;654:148-53.
    [13]Wang JP, Shen JZ. Immunoaffinity chromatography for purification of Salbutamol and Clenbuterol followed screening and confirmation by ELISA and GC-MS. Food and agricultural immunology 2007;18:107-15.
    [14]Martinez-Navarro J. Food poisoning related to consumption of illicit 3-agonist in liver. The lancet 1990;336:1311.
    [15]Mitchell G, Dunnavan G. Illegal use of beta-adrenergic agonists in the United States. Journal of animal science 1998;76:208-11.
    [16]Xie C-h, Chen F-j, Yang T-b. A high-affinity anti-salbutamol monoclonal antibody:Key to a robust lateral-flow immunochromatographic assay. Analytical biochemistry 2012;426:118-25.
    [17]Dodson LG, Vogt RA, Marks J, Reichardt C, Crespo-Hernandez CE. Photophysical and photochemical properties of the pharmaceutical compound salbutamol in aqueous solutions. Chemosphere 2011;83:1513-23.
    [18]Stuart M, Lapworth D, Crane E, Hart A. Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment 2012;416:1-21.
    [19]Lee H-B, Sarafin K, Peart TE. Determination of β-blockers and β< sub> 2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2007;1148:158-67.
    [20]Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S. Multi-residue analytical method for human Pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2010;1217:6791-806.
    [21]Huerta-Fontela M, Galceran MT, Ventura F. Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of Pharmaceuticals and hormones in water resources. Journal of Chromatography A 2010;1217:4212-22.
    [22]MacLeod SL, Sudhir P, Wong CS. Stereoisomer analysis of wastewater-derived p-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2007;1170:23-33.
    [23]Lopez-Serna R, Perez S, Ginebreda A, Petrovic M, Barcelo D. Fully automated determination of 74 Pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta 2010;83:410-24.
    [24]Zhang D, Teng Y, Chen K, Liu S, Wei C, Wang B, et al. Determination of salbutamol in human plasma and urine using liquid chromatography coupled to tandem mass spectrometry and its pharmacokinetic study. Biomedical Chromatography 2012;26:1176-82.
    [25]Garrido BC, Silva MLC, Borges RM, Padilha MC, Aquino Neto FR. Salbutamol extraction from urine and its stability in different solutions:identification of methylation products and validation of a quantitative analytical method. Biomedical Chromatography 2013;27:1630-8.
    [26]Rosales-Conrado N, Dell'Aica M, Leon-Gonzalez ME, P e rez-Arribas LV, Polo-D f ez LM. Determination of salbutamol by direct chiral reversed-phase HPLC using teicoplanin as stationary phase and its application to natural water analysis. Biomedical Chromatography 2013;27:1413-22.
    [27]Traynor I, Crooks S, Bowers J, Elliott C. Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor. Analytica chimica acta 2003;483:187-91.
    [28]Zhang J, Xu Y, Di X, Wu M. Quantitation of salbutamol in human urine by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography B 2006;831:328-32.
    [29]Zuo P, Zhang Y, Liu J, Ye B-C. Determination of β-adrenergic agonists by hapten microarray. Talanta 2010;82:61-6.
    [30]Zhao M-P, Li Y-Z, Guo Z-Q, Zhang X-X, Chang W-B. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta 2002)57:1205-10.
    [31]Tsang VC, Greene RM, Pilcher JB. Optimization of the covalent conjugating procedure (NalO4) of horseradish peroxidase to antibodies for use in enzyme-linked immunosorbent assay. Journal of Immunoassay and Immunochemistry 1995;16:395-418.
    [32]Cooper KM, Caddell A, Elliott CT, Kennedy DG. Production and characterisation of polyclonal antibodies to a derivative of 3-amino-2-oxazolidinone, a metabolite of the nitrofuran furazolidone. Analytica chimica acta 2004;520:79-86.
    [33]Meyer H, Rinke L, Dursch I. Residue screening for the β-agonists clenbuterol, salbutamol and cimaterol in urine using enzyme immunoassay and high-performance liquid chromatography. Journal of Chromatography B:Biomedical Sciences and Applications 1991;564:551-6.
    [34]张书杰,雷雅静,徐晓倩,施卫星,陈枢青.沙丁胺醇多克隆抗体的制备及间接ELISA方法的建立.浙江大学学报(医学版)2013;1:005.
    [35]Lei Y, Fang L, Akash MSH, Liu Z, Shi W, Chen S. Development and comparison of two competitive ELISAs for the detection of bisphenol A in human urine. Analytical Methods 2013;5:6106-13.
    [36]Akash MS. A sensitive and specific enzyme immunoassay for detecting tartrazine in human urinary samples. Analytical Methods 2013;5:925-30.
    [37]Lei Y, Zhang Q, Fang L, Akash MSH, Rehman K, Liu Z, et al. Development and comparison of two competitive ELISAs for estimation of cotinine in human exposed to environmental tobacco smoke. Drug testing and analysis 2014.
    [38]吴鸳鸯,施卫星,陈枢青GC/MS同时检测人体尿液中β-雌二醇,双酚A,已烯雌酚和沙丁胺醇的含量.浙江大学学报:医学版2009;38:235-41.
    [39]He Y, Li X, Tong P, Lu M, Zhang L, Chen G. An online field-amplification sample stacking method for the determination of< i> β< sub> 2-agonists in human urine by CE-ESI/MS. Talanta 2013;104:97-102.
    [40]Althanyan M, Clark B, Hanaee J, Assi K. Development of a microemulsion high performance liquid chromatography (MELC) method for determination of salbutamol in metered-dose inhalers (MDIS). Biolmpacts:B1 2013;3:37.
    [41]G.食品安全国家标准食品添加剂使用标准[S].2011.
    [42]Tanaka T, Takahashi O, Oishi S, Ogata A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reproductive Toxicology 2008;26:156-63.
    [43]Al-Degs YS. Determination of three dyes in commercial soft drinks using HLA/GO and liquid chromatography. Food chemistry 2009;117:485-90.
    [44]Ngah WSW, Ariff NFM, Hanafiah MAKM. Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, air, and soil pollution 2010;206:225-36.
    [45]Rowe KS, Rowe KJ. Synthetic food coloring and behavior:a dose response effect in a double-blind, placebo-controlled, repeated-measures study. The journal of pediatrics 1994;125:691-8.
    [46]Amin K, Abdel Hameid Ⅱ H, Abd Elsttar A. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology 2010;48:2994-9.
    [47]Poul M, Jarry G, Elhkim MO, Poul J-M. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice. Food and Chemical Toxicology 2009;47:443-8.
    [48]Dinc E, Baydan E, Kanbur M, Onur F. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods. Talanta 2002;58:579-94.
    [49]Kucharska M, Grabka J. A review of chromatographic methods for determination of synthetic food dyes. Talanta 2010;80:1045-51.
    [50]Feng F, Zhao Y, Yong W, Sun L, Jiang G, Chu X. Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography B 2011;879:1813-8.
    [51]Yoshioka N, Ichihashi K. Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection. Talanta 2008;74:1408-13.
    [52]Ju C, Xiong Y, Gao A, Yang T, Wang L. Development of a direct competitive enzyme-linked immunosorbent assay using a sensitive monoclonal antibody for bisphenol A. Hybridoma 2011;30:95-100.
    [53]Yang Y, Yin J, Shao B. Simultaneous determination of five aluminum lake dyes in chewing gum by HPLC with photodiode array detection. Food Additives & Contaminants:Part A 2011;28:1159-67.
    [54]Gluckman PD, Hanson MA. Living with the past:evolution, development, and patterns of disease. Science 2004;305:1733-6.
    [55]Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes:a review of the science. Reproductive Sciences 2008;15:631-50.
    [56]Jones R, Ryan A, Wright S. The metabolism and excretion of tartrazine in the rat, rabbit and man. Food and cosmetics toxicology 1964;2:447-52.
    [57]Collishaw NE. The millennium development goals and tobacco control. Global health promotion 2010,17:51-9.
    [58]Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiologic Reviews 1996;18:188-204.
    [59]Benowitz NL. Biomarkers of environmental tobacco smoke exposure. Environmental Health Perspectives 1999;107:349.
    [60]Andres RL, Day M-C. Perinatal complications associated with maternal tobacco use. Seminars in Neonatology:Elsevier,2000. p.231-41.
    [61]Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. Seminars in perinatology:Elsevier,1996. p.115-26.
    [62]Akhtar PC, Currie DB, Currie CE, Haw SJ. Changes in child exposure to environmental tobacco smoke (CHETS) study after implementation of smoke-free legislation in Scotland:national cross sectional survey. BMJ 2007;335:545.
    [63]Fernandez E, Fu M, Pascual JA, Lopez MJ, Perez-Rios M, Schiaffino A, et al. Impact of the Spanish smoking law on exposure to second-hand smoke and respiratory health in hospitality workers:a cohort study. PLoS One 2009;4:e4244.
    [64]Franchini M, Caruso C, Perico A, Pacifici R, Monleon T, Garcia-Algar 0, et al. Assessment of foetal exposure to cigarette smoke after recent implementations of smoke-free policy in Italy. Acta Paediatrica 2008;97:546-50.
    [65]Tuomi T, Johnsson T, Reijula K. Analysis of nicotine,3-hydroxycotinine, cotinine, and caffeine in urine of passive smokers by HPLC-tandem mass spectrometry. Clinical chemistry 1999;45:2164-72.
    [66]Machacek DA, Jiang N. Quantification of cotinine in plasma and saliva by liquid chromatography. Clinical chemistry 1986,32:979-82.
    [67]Feyerabend C, Russell M. A rapid gas-liquid chromatographic method for the determination of cotinine and nicotine in biological fluids. Journal of Pharmacy and Pharmacology 1990;42:450-2.
    [68]Ji AJ, Lawson GM, Anderson R, Dale LC, Croghan IT, Hurt RD. A new gas chromatography-mass spectrometry method for simultaneous determination of total and free trans-3'-hydroxycotinine and cotinine in the urine of subjects receiving transdermal nicotine. Clinical chemistry 1999;45:85-91.
    [69]Wong S, Tesanovic M, Poon M. Detection of two abnormal hemoglobins, Hb Manitoba and Hb G-Coushatta, during analysis of glycohemoglobin (Alc) by high-performance liquid chromatography. Clinical chemistry 1991;37:1456-9.
    [70]Rop PP, Grimaldi F, Oddoze C, Viala A. Determination of nicotine and its main metabolites in urine by high-performance liquid chromatography. Journal of Chromatography B:Biomedical Sciences and Applications 1993;612:302-9.
    [71]Fang X, Wang X, Bai C. COPD in ChinaThe Burden and Importance of Proper Management. CHEST Journal 2011;139:920-9.
    [72]Moy KA, Fan Y, Wang R, Gao Y-T, Mimi CY, Yuan J-M. Alcohol and tobacco use in relation to gastric cancer:a prospective study of men in Shanghai, China. Cancer Epidemiology Biomarkers & Prevention 2010;19:2287-97.
    [73]Wang L, Lubin JH, Zhang SR, Metayer C, Xia Y, Brenner A, et al. Lung cancer and environmental tobacco smoke in a non-industrial area of China. International journal of cancer 2000;88:139-45.
    [74]Zheng T, Boyle P, Hu H, Duan J, Jiang P, Ma D, et al. Dentition, oral hygiene, and risk of oral cancer:a case-control study in Beijing, People's Republic of China. Cancer Causes & Control 1990;1:235-41.
    [75]Wang Y, Yang H, Wang B, Deng A. A sensitive and selective direct competitive enzyme-linked immunosorbent assay for fast detection of Sudan I in food samples. Journal of the Science of Food and Agriculture 2011;91:1836-42.
    [76]Cornuz J, Zellweger J, Burnand B. [Smoking cessation:importance for the patient and role of the practitioner]. Schweizerische medizinische Wochenschrift 1994;124:1315-25.
    [77]Oberg M, Jaakkola MS, Woodward A, Peruga A, Pruss-Ustun A. Worldwide burden of disease from exposure to second-hand smoke:a retrospective analysis of data from 192 countries. The Lancet 2011;377:139-46.
    [78]Jarvis MJ, Goddard E, Higgins V, Feyerabend C, Bryant A, Cook DG. Children's exposure to passive smoking in England since the 1980s:cotinine evidence from population surveys. BMJ 2000;321:343-5.
    [79]Sul D, Ahn R, Im H, Oh E, Kim JH, Kim JG, et al. Korea National Survey for Environmental Pollutants in the human body 2008:1-hydroxypyrene,2-naphthol, and cotinine in urine of the Korean population. Environmental research 2012; 118:25-30.
    [80]Becker K, Schulz C, Kaus S, Seiwert M, Seifert B. German Environmental Survey 1998 (GerES Ⅲ): environmental pollutants in the urine of the German population. International journal of hygiene and environmental health 2003,-206:15-24.
    [81]Kareli DE, Pouliliou SE, Nikas IH, Psillaki AN, Galazios GC, Liberis VA, et al. Cytogenetic evaluation of pre-pregnancy smoking in maternal and newborn lymphocytes. European Journal of Obstetrics & Gynecology and Reproductive Biology 2012;165:205-9.
    [82]Wu FY, Chiu HT, Wu HDI, Lin CJ, Lai JS, Kuo HW. Comparison of urinary and plasma cotinine levels during the three trimesters of pregnancy. Paediatric and perinatal epidemiology 2008;22:296-301.
    [83]Baheiraei A, Banihosseini SZ, Heshmat R, Mota A, Mohsenifar A. Association of self-reported passive smoking in pregnant women with cotinine level of maternal urine and umbilical cord blood at delivery. Paediatric and perinatal epidemiology 2012,-26:70-6.
    [84]Shelby MD. NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP). NTP CERHR MON 2006:v, vii-7, Ⅱ-ⅲ-ⅹⅲ passim.
    [85]Willhite CC, Ball GL, McLellan CJ. Derivation of a Bisphenol a Oral Reference Dose (RfD) and Drinking-Water Equivalent Concentration*. Journal of Toxicology and Environmental Health, Part B 2008;11:69-146.
    [86]Rubin BS. Bisphenol A:an endocrine disrupter with widespread exposure and multiple effects. The Journal of steroid biochemistry and molecular biology 2011;127:27-34.
    [87]Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. Ⅲ. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006;147:s56-s69.
    [88]Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reproductive Toxicology 2007;24:139-77.
    [89]Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environmental health perspectives 2011;119:131.
    [90]Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environmental health perspectives 2009;117:639.
    [91]Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol:2003-2004. Environmental health perspectives 2008;116:39.
    [92]Cao X-L, Perez-Locas C, Dufresne G, Clement G, Popovic S, Beraldin F, et al. Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Additives and Contaminants 2011;28:791-8.
    [93]LaKind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005-2006 National Health and Nutrition Examination Survey. Journal of Exposure Science and Environmental Epidemiology 2011;21:272-9.
    [94]Teeguarden JG, Calafat AM, Ye X, Doerge DR, Churchwell Ml, Gunawan R, et al. Twenty-four hour human urine and serum profiles of bisphenol a during high-dietary exposure. Toxicological Sciences 2011;123:48-57.
    [95]Chapin RE, Adams J, Boekelheide K, Gray LE, Hayward SW, Lees PS, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Research Part B:Developmental and Reproductive Toxicology 2008;83:157-395.
    [96]Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicology and applied pharmacology 2010;247:158-65.
    [97]Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environmental Research 2007; 103:9-20.
    [98]Biedermann S, Tschudin P, Grob K. Transfer of bisphenol A from thermal printer paper to the skin. Analytical and bioanalytical chemistry 2010;398:571-6.
    [99]Zalko D, Jacques C, Duplan H, Bruel S, Perdu E. Viable skin efficiently absorbs and metabolizes bisphenol A. Chemosphere 2011;82:424-30.
    [100]Vandenberg L, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environmental health perspectives 2010;118:1055-70.
    [101]Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide:a review of controversies in the field of endocrine disruption. Endocrine reviews 2009;30:75-95.
    [102]Markey CM, Wadia PR, Rubin BS, Sonnenschein C, Soto AM. Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biology of reproduction 2005;72:1344-51.
    [103]Newbold RR, Jefferson WN, Padilla-Banks E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reproductive Toxicology 2007;24:253-8.
    [104]Kubo K, Arai O, Omura M, Watanabe R, Ogata R, Aou S. Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neuroscience research 2003;45:345-56.
    [105]Patisaul HB, Fortino AE, Polston EK. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicology and teratology 2006;28:111-8.
    [106]Alonso-Magdalena P, Vieira E, Soriano S, Menes L, Burks D, Quesada I, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environmental health perspectives 2010;118:1243.
    [107]Farabollini F, Porrini S, Della Seta D, Bianchi F, Dessi-Fulgheri F. Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environmental health perspectives 2002;110:409.
    [108]Estevez M-C, Galve R, Sanchez-Baeza F, Marco M-P. Direct competitive enzyme-linked immunosorbent assay for the determination of the highly polar short-chain sulfophenyl carboxylates. Analytical chemistry 2005;77:5283-93.
    [109]Meesters RJ, Schroder HF. Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical chemistry 2002;74:3566-74.
    [110]D'Antuono A, Dall'Orto VC, Balbo AL, Sobral S, Rezzano I. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode. Journal of agricultural and food chemistry 2001;49:1098-101.
    [111]Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. Journal of Chromatography B:Biomedical Sciences and Applications 2000;749:17-23.
    [112]Singh K, Sharma A, Zhang J, Xu W, Zhu D. New sulfur bridged neutral annulenes. Structure, physical properties and applications in organic field-effect transistors. Chemical Communications 2011;47:905-7.
    [113]Spadaro JT, Gold MH, Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Applied and environmental microbiology 1992;58:2397-401.
    [114]何强,井文涌,王翊亭.环境学导论:清华大学出版社有限公司,2004.
    [115]Zhang W, Chen L, Liu K, Chen L, Lin K, Chen Y, et al. Bioaccumulation of decabromodiphenyl ether (BDE209) in earthworms in the presence of lead (Pb). Chemosphere 2014;106:57-64.
    [116]Organization WH, Joint W. Health risks of heavy metals from long-range transboundary air pollution:World Health Organization Regional Office Europe,2007.
    [117]Cancer lAfRo, Organization WH, Humans IWGotEoCRt. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry:IARC,1993.
    [118]Yu B, Wang Y, Zhou Q. Human Health Risk Assessment Based on Toxicity Characteristic Leaching Procedure and Simple Bioaccessibility Extraction Test of Toxic Metals in Urban Street Dust of Tianjin, China. PloS one 2014;9:e92459.
    [119]Hariharan G, Purvaja R, Ramesh R. Toxic Effects of Lead on Biochemical and Histological Alterations in Green Mussel (Perna viridis) Induced by Environmentally Relevant Concentrations. Journal of Toxicology and Environmental Health, Part A 2014;77:246-60.
    [120]Winiarska-Mieczan A. Protective effect of tannic acid on the brain of adult rats exposed to cadmium and lead. Environmental toxicology and pharmacology 2013;36:9-18.
    [121]Fatima M, Usmani N. Histopathology and Bioaccumulation of Heavy Metals (Cr, Ni and Pb) in Fish (Channa striatus and Heteropneustes fossilis) Tissue:A Study for Toxicity and Ecological Impacts. Pakistan Journal of Biological Sciences 2013;16.
    [122]Lin Y-S, Caffrey JL, Lin J-W, Bayliss D, Faramawi MF, Bateson TF, et al. Increased risk of cancer mortality associated with cadmium exposures in older americans with low zinc intake. Journal of Toxicology and Environmental Health, Part A 2013;76:1-15.
    [123]Ikeh-Tawari EP, Anetor JI, Charles-Davies M. Cadmium level in pregnancy, influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicology international 2013;20:108.
    [124]Gay F, Laforgia V, Caputo I, Esposito C, Lepretti M, Capaldo A. Chronic Exposure to Cadmium Disrupts the Adrenal Gland Activity of the Newt Triturus carnifex (Amphibia, Urodela). BioMed Research International 2013;2013.
    [125]陈秉衡,郭红卫,施玮,阚海东.过高和过低摄入必需微量元素的危险度评价.中华预防医学杂志2002;36:414-6.
    [126]Halatek T, Lutz P, Stetkiewicz J, Krajnow A, Wieczorek E, Swiercz R, et al. Comparison of neurobehavioral and biochemical effects in rats exposed to dusts from copper smelter plant at different locations. Journal of Environmental Science and Health, Part A 2013;48:1000-11.
    [127]Wu Y-S, Huang F-F, Lin Y-W. Fluorescent Detection of Lead in Environmental Water and Urine Samples Using Enzyme Mimics of Catechin-Synthesized Au Nanoparticles. ACS applied materials & interfaces 2013;5:1503-9.
    [128]Meng L, Fang Z, Lin J, Li M, Zhu Z. Highly sensitive determination of copper in HeLa cell using capillary electrophoresis combined with a simple cell extraction treatment. Talanta 2014.
    [129]Yue W, Bange A, Riehl BL, Riehl BD, Johnson JM, Papautsky I, et al. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode:Anodic versus Cathodic Stripping Voltammetry. Electroanalysis 2012;24:1909-14.
    [130]李野,尹利辉,曹进,朱俐,张学博,孙晓翠,et al.化妆品中重金属检测方法的现状.药物分析杂志2013;33:1816-21.
    [131]Pulgarin JAM, Bermejo LFG, Duran AC. Fast simultaneous determination of traces of Cu (Ⅱ) and Co (Ⅱ) in soils and sediments with the luminol/perborate chemiluminescent system. Environmental monitoring and assessment 2013;185:573-80.
    [132]Julin B, Bergkvist C, Wolk A, Akesson A. Cadmium in Diet and Risk of Cardiovascular Disease in Women. Epidemiology 2013;24:880-5.
    [133]Gorospe EC, Gerstenberger SL. Atypical sources of childhood lead poisoning in the United States: a systematic review from 1966-2006. Clinical toxicology 2008;46:728-37.
    [134]Deng J, Guo J, Zhou X, Zhou P, Fu X, Zhang W, et al. Hazardous substances in indoor dust emitted from waste TV recycling facility. Environmental Science and Pollution Research 2014:1-12.
    [135]Clemens S, Palmgren MG, Kramer U. A long way ahead:understanding and engineering plant metal accumulation. Trends in plant science 2002;7:309-15.
    [136]应英,沈向红,汤鋆,俞莎,于村,虞晓珍,et al.杭州地区部分食品重金属污染状况监测研究.中国卫生检验杂志2007;16:1498-500.
    [137]丁园,宗良纲,何欢,钟桂芳,刘艳.蔬菜中重金属含量及其评价.安徽农业科学2008;35:10672-4.
    [138]钟晓兰,周生路,李江涛,赵其国.长江三角洲地区土壤重金属污染的空间变异特征.土壤学报2007;44:33-40.
    [139]王军,张红英,何燕,邹晓华,张晓燕.石家庄市市售食物中重金属污染调查分析.职业与健康2010:1493-4.
    [140]Luongo G, Thorsen G, Ostman C. Quinolines in clothing textiles-a source of human exposure and wastewater pollution? Analytical and bioanalytical chemistry 2014:1-10.
    [141]Brigden K, Labunska I, Johnston P, Santillo D. Organic chemical and heavy metal contaminants from communal wastewater treatment plants with links to textile manufacturing, and in river water impacted by wastewater from a textile dye manufacturing facility. China Greenpeace Research Laboratories Technical Report 2012;7:2012.
    [142]Keith L, Telliard W. ES&T special report:priority pollutants:la perspective view. Environmental Science & Technology 1979;13:416-23.
    [143]Pope 3rd C. Epidemiology of fine particulate air pollution and human health:biologic mechanisms and who's at risk? Environmental health perspectives 2000;108:713.
    [144]Brulle RJ, Pellow DN. Environmental justice:human health and environmental inequalities. Annu Rev Public Health 2006;27:103-24.
    [145]龚向东,叶顺章.1999—2001年我国性病流行病学分析.中华皮肤科杂志2002;35:178-82.
    [146]黄哲宙,陈万青,吴春晓.中国女性乳腺癌的发病和死亡现况-全国32个肿瘤登记点2003-2007年资料分析报告[J].肿瘤2012;32:435-9.
    [147]赫捷,赵平,陈万青.中国肿瘤登记年报.军事医学科学出版社,北京2012.
    [148 ]范若兰.我国肺癌流行病学研究及病因研究概况.中国肿瘤1993;2:3-9.
    [149]Lubin JH. Estimating lung cancer risk with exposure to environmental tobacco smoke. Environmental health perspectives 1999;107:879.
    [150]Boffetta P. Human cancer from environmental pollutants:the epidemiological evidence. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2006;608:157-62.
    [151]Rappaport SM, Smith MT. Environment and disease risks. Science(Washington) 2010;330:460-l.
    [152]Bellinger DC, Stiles KM, Needleman HL. Low-level lead exposure, intelligence and academic achievement:a long-term follow-up study. Pediatrics 1992;90:855-61.
    [153]Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004;109:71-7.
    [154]Phillips P, Vedig A, Jones P, Chapman M, Collins M, Edwards J, et al. Metabolic and cardiovascular side effects of the beta 2-adrenoceptor agonists salbutamol and rimiterol. British journal of clinical pharmacology 1980;9:483-91.
    [155]Crinnion WJ. The CDC Fourth National Report on Human Exposure to Environmental Chemicals: What it Tells Us About our Toxic Burden and How it Assists Environmental Medicine Physicians. Alternative medicine review 2010;15.
    [156]Canada H. Report on Human Biomonitoring of Environmental Chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 1 (2007-2009). Health Canada Ottawa, Ontario, 2010.
    [157]Fukui Y, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Okamoto S, et al. Lead levels in urine of never-smoking adult women in non-polluted areas in Japan, with references to cadmium levels in urine. Industrial health 2004;42:415-23.
    [158]Castano A, Sanchez-Rodriguez JE, Canas A, Esteban M, Navarro C, Rodriguez-Garcia AC, et al. Mercury, lead and cadmium levels in the urine of 170 Spanish adults:a pilot human biomonitoring study. International journal of hygiene and environmental health 2012;215:191-5.
    [159]G.职业性慢性铅中毒诊断标准[S].2002.
    [160]Cheraghali A, Yazdanpanah H, Doraki N, Abouhossain G, Hassibi M, Ali-Abadi S, et al. Incidence of aflatoxins in Iran pistachio nuts. Food and Chemical Toxicology 2007;45:812-6.
    [161]Iqbal S, Asi M, Arino A. Aflatoxin M1 contamination in cow and buffalo milk samples from the North West Frontier Province (NWFP) and Punjab provinces of Pakistan. Food Additives and Contaminants:Part B 2011,-4:282-8.
    [162]赵金山.黄曲霉毒素导演的 “牛奶门”.家庭健康2012:43-.
    [163]Coulter J, Hendrickse R, Lamplugh S, Macfarlane S, Moody J, Omer M, et al. Aflatoxins and kwashiorkor:clinical studies in Sudanese children. Transactions of the Royal Society of Tropical Medicine and Hygiene 1986;80:945-51.
    [164]De Vries H, Lamplugh S, Hendrickse R. Aflatoxins and kwashiorkor in Kenya:a hospital based study in a rural area of Kenya. Annals of tropical paediatrics 1987;7:249-51.
    [165]Bean T, Yourtee D, Akande B, Ogunlewe J. Aflatoxin metabolites in the urine of Nigerians comparison of chromatographic methods. Toxin Reviews 1989;8:43-52.
    [166]Piekkola S, Turner P, Abdel-Hamid M, Ezzat S, E1-Daly M, E1-Kafrawy S, et al. Characterisation of aflatoxin and deoxynivalenol exposure among pregnant Egyptian women. Food Additives & Contaminants:Part A 2012;29:962-71.
    [1]周生贤.中国环境状况公报.北京:中华人民共和国环境保护部,2012.
    [2]李洪成.地下水质量标准(GB/T 14848-93).
    [3]黄锡生,许珂.环境友好型社会下我国饮用水源的法律保护.环境保护2007:40-2.
    [4]Vijayan V. Bhopal gas disaster. Lung India 1996; 14:153-60.
    [5]Burrows B, Kellogg AL, Buskey J. Relationship of symptoms of chronic bronchitis and emphysema to weather and air pollution. Archives of Environmental Health:An International Journal 1968;16:406-13.
    [6]Harada M. Minamata disease:methylmercury poisoning in Japan caused by environmental pollution. CRC Critical Reviews in Toxicology 1995;25:l-24.
    [7]Cancer IAfRo, Humans IWGotEoCRt. IARC monographs on the evaluation of carcinogenic risks to humans:International Agency for Research on Cancer, 2001.
    [8]姚彤炜.体内药物分析.杭州:浙江大学出版社,2001.
    [9]吴鸳鸯,施卫星,陈枢青.GC/MS同时检测人体尿液中p-雌二醇,双酚A,已烯雌酚和沙丁胺醇的含量.浙江大学学报:医学版2009;38:235-41.
    [10]吴鸳鸯,施卫星,陈枢青.GC/MS同时检测人体尿液中可的宁和苯乙醇酸及苯乙醛酸的含量.浙江大学学报:医学版2009;38:229-34.
    [11]Dinc E, Aktas AH, Baleanu D, Ustundag O. Simultaneous determination of tartrazine and allura red in commercial preparation by chemometric HPLC method. Journal of food and drug analysis 2006; 14:284.
    [12]Leblanc YG, Gilbert R, Hubert J. Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with postcolumn flow splitting for simultaneous detection of the species. Analytical chemistry 1999;71:78-85.
    [13]Ghaedi M, Ahmadi F, Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. Journal of Hazardous Materials 2007;142:272-8.
    [14]Matschulat D, Deng A, Niessner R, Knopp D. Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo [a] pyrene in potable water. Analyst 2005; 130:1078-86.
    [15]Jin Y, Jang J-W, Han C-H, Lee M-H. Development of ELISA and immunochromatographic assay for the detection of gentamicin. Journal of agricultural and food chemistry 2005;53:7639-43.
    [16]Sano T, Smith CL, Cantor CR. Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992;258:120-2.
    [17]Chen H-Y, Zhuang H-S. Real-time immuno-PCR assay for detecting PCBs in soil samples. Analytical and bioanalytical chemistry 2009;394:1205-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700