用户名: 密码: 验证码:
旋转电极均匀介质阻挡放电及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体在臭氧制备、材料表面处理、流体控制、杀菌消毒等领域有广阔的应用前景。介质阻挡放电(dielectric barrier discharge, DBD)是大气压条件下产生大体积低温等离子体的一种有效手段。然而,大气压条件下,DBD容易形成丝状放电,导致放电分布不均匀,这限制了一些工业应用。近十年来,大气压均匀DBD成了研究热点。目前研究的大气压均匀DBD主要是指不存在微放电的辉光和汤森放电,这种放电通常要求单一气体。从工业应用角度来讲,即使存在微放电,只要在一定时间内,微放电能均匀的分布在材料表面,也能够达到比较好的处理效果。因此,改善微放电的空间分布形成长时间尺度均匀放电,具有很大的工业应用价值。
     论文基于本实验室前期研究,通过提出微放电叠加模型论证了放电图像灰度标准差能够定量反映长时间尺度放电均匀性的变化,灰度标准差越小,放电越均匀。为长时间尺度放电均匀性评价打下理论基础。
     实验发现了长时间尺度内DBD存在暂态过程的现象,即随着放电时间增加,放电图像的灰度标准差会逐渐减小,最后达到稳定。由电极静止不同时刻放电图像灰度曲线可知,暂态过程初始态时放电容易形成比较强的放电细丝,而随着时间增加,达到稳定态时,放电细丝强度逐渐减弱并发生融合,从放电图像上仍能观察到一些‘簇状’放电。出现暂态过程的原因可能是随着放电时间增加,积累了大量热量,加速了空气流动,从而增加放电空间残留物和壁电荷的扩展和相互作用,使种子电子分布更均匀。
     研制了一种新型旋转电极DBD装置,实现了长时间尺度内较为均匀的放电。实验结果显示旋转电极的暂态过程比静止电极的暂态过程更快结束,放电图像的灰度标准差也更小。放电图像灰度标准差随转速增加而减小,当电极转速超过3000rpm时,灰度标准差稳定在4左右,接近大气压氦气中灰度标准差2。拍摄了4000rpm不同电压、频率和间隙放电暂态过程的放电图像,结果表明电压、频率和间隙对放电均匀性影响很小。这说明在转速超过3000rpm时,可以实现长时间尺度均匀放电。
     提出了电极旋转形成长时间尺度均匀放电的机制。在暂态过程初始态,半个周期内放电图像说明放电空间残留物随气流流动为后续放电提供种子电子可以有效改善微放电时空位置分布,形成带状放电轨迹。流场仿真结果显示带状轨迹长度与气流流过距离吻合。微放电空间位置随时间变化可以减小灰度畸变,提高长时间尺度放电均匀性。在稳定态时,放电变糊,放电分布受转速影响不明显。这与微放电本身结构和分布有很大关系。通过ICCD相机拍摄了初始态微秒放电图像和稳定态纳秒放电图像,研究了微放电及分布之间的差异。结果显示在稳定态时,单个微放电强度变弱而且微放电之间相互融合,这是稳定态放电均匀性提高的重要原因。
     研究了丝网和包膜电极形成的空间周期边界在旋转条件下对放电分布和均匀性的影响。结果表明包膜和丝网旋转电极可以更有效改善放电分布,当电极转速为1000rpm时就可以实现同等水平的均匀放电,进一步增加转速对放电均匀性影响不大。在转速达到1000rpm时,电压、频率和间隙变化对放电均匀性影响不大。而且丝网电极可以在比较低的电压下,得到强度更强的放电。
     将旋转电极DBD装置用于臭氧制备,在电压或流量较低时,电极旋转可以提高臭氧浓度和产率。这主要是由于电极旋转可以改变气流流向,有利于增加气流与放电之间接触时间和放电均匀性,从而提高臭氧浓度和产率。其中,电压、频率和流量之间有一个最佳配合。增加电压和频率虽然可以有效提高臭氧浓度,但电压和频率过大,会降低臭氧产率。流速对产额和产率有显著影响,但流速过大会降低臭氧浓度。在保证安全运行条件下,选择高气体流量有助于增加产额和产率。
Low-temperature plasma has a broad application prospects in the field of ozone generation, surface treatment of materials, fluid control, sterilization, et.al. The dielectric barrier discharge is an effective means to produce a large volume of low-temperature plasma under atmospheric conditions. However, it is apt to form filamentary discharge, and the spatial distribution of discharge is uneven, which limits its industrial applications. Over the past decade, the atmospheric pressure homogeneous dielectric barrier discharge research focus mainly on the glow and Townsend discharge which is charateristiced as the absent of micro-discharge. While it requires harsh conditions and is not conducive to industrial applications. From the perspective of industrial applications, even in the presence of micro-discharge, if the microdischarges are evenly distributed on a material surface within a certain time, it is possible to achieve a good treatment effect. Hence improving the spatioal distribution of microdischarges to obtain a long time scale uniform discharge is also an important issue to be examined.
     Based on our previous researches, it is demonstrated that the standard deviation of gray levels could quantitatively reflect the discharge uniformity by a microdischarge superposition model. The smaller the standard deviation, the more uniform the discharge. This is a theoretical foundation for the quantitative evluation of the long time scale discharge.
     We observed a long time-scale DBD transient process, that is, the standard deviation of gray levels gradually reduces with an increase of the discharge time, and finally keeps stable. From the discharge gray curves of different times, it is apt to form relatively strong discharge filaments at the initial state of the transient process, when the discharge reach a steady state, the discharge filaments strength gradually weakened and fusion and some 'clustered' discharges form. The microdischarge interaction caused by the dispersion of the discharge remnant may be the reason for the transient process. With an increase of discharge time, a temperature rise will accelerate the air convection and thus the expansion and interaction of the discharge remnant, which results the seed electron distribution more uniform.
     In this paper, a DBD with rotating electrode is developed to achieve a long time scale uniform discharge. Experimental results show that the transient process of the rotating electrode ends faster than that of the stationary electrode, and the grayscale standard deviation is smaller. The standard deviation of gray levels decreases with the speed increase. When the the electrode speed is over3000rpm, the standard deviation of gray levels keeps about4, which is comparable with that of the discharge at atmospheric pressure helium2. When the rotating rate is4000rpm, the effect of voltage, frequency, and gap distance on the discharge uniformity is small. This suggests that a long time scale uniform discharge can be achieved when the speed exceeds3000rpm.
     When the electrode is rotating, at the initial state of the transient process, the discharge forms lighting bands distribution; at the stable state of the transient process, the discharge becomes diffuse and changes little with the electrode rotation. The discharge image and gas flow simulation results show that the discharge remnant has a dominant effect on the discharge distribution at the initial state. The ICCD images show that the intensity difference of the discharge filaments is obvious, which has an important effect on the discharge uniformity. At the steady state of the discharge, the discharge intensity is relatively weak, which could prevent the burning down of the material surface.
     Mesh and barrier coated electrode are used to investigated the effects of the spatiotemporal periodic boundary on the discharge uniformity. The results show that the same uniform discharge could be obtained at a smaller rotating rate. When the speed is1000rpm, the uniformity of discharge changes little with the variation of the voltage, frequency, and gap. Moreover, the mesh electrode can be obtained in a relatively low voltage, the stronger intensity discharge.
     Rotary electrode is used for the ozone preparation. It is found that voltage and frequency have a significant effect on the ozone concentration, but if the voltage and frequency is too large, the the yield of ozone will reduce. Flow rate has a significant effect on the yield, while the flow rate through the assembly will reduce the ozone concentration. Between the voltage, frequency and flow rate has a best fit. In the case of a higher voltage, regardless of the electrodes is rotated or not, the final ozone will reach a higher concentration; rotation ozone concentration and the yield can be improved when the voltage is low. The electrode rotation will change the air flow field and increase the contact time between the air and the discharge, which could improve the discharge uniformity and the ozone yield.
引文
[1]Kogelschatz U, Eliasson B, Egli W. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure and Applied Chemistry,1999,71(10):1819-1828
    [2]Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. Journal of Physics D:Applied Physics,1987,20:14-21
    [3]Laroussi M. Nonthermal decontamination of biological media by atmospheric pressure plasmas:Review, analysis, and prospects. IEEE Transactions on Plasma Science,2002,30(4Part 1):1409-1415
    [4]Fridman G, Brooks A D, Balasubramanian M, et al. Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria. Plasma Processes and Polymers,2007,4(4):370-375
    [5]Kong M G, Kroesen G, Morfill G, et al. Plasma medicine:An introductory review. New Journal of Physics,2009,11:115012
    [6]Wagner H E, Brandenburg R, Kozlov K V, et al. The barrier discharge:basic properties and applications to surface treatment. Vacuum,2003,71(3):417-436
    [7]Kogelschatz U. Dielectric-barrier discharges:Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing,2003,23(1):1-46
    [8]Desmet T, Morent R, De Geyter N, et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification:A review. Biomacromolecules,2009,10(9):2351-2378
    [9]Morent R, De Geyter N, Verschuren J, et al. Non-thermal plasma treatment of textiles. Surface and Coatings Technology,2008,202(14):3427-3449
    [10]Massines F, Sarra Bournet C, Fanelli F, et al. Atmospheric Pressure Low Temperature Direct Plasma Technology:Status and Challenges for Thin Film Deposition. Plasma Processes and Polymers,2012,9:1041-1073
    [11]Mariotti D, Sankaran R M. Microplasmas for nanomaterials synthesis. Journal of Physics D:Applied Physics,2010,43:323001
    [12]Corke T C, Post M L, Orlov D M. SDBD plasma enhanced aerodynamics:concepts, optimization and applications. Progress in Aerospace Sciences,2007,43(7-8):193-217
    [13]Corke T C, Post M L, Orlov D M. Single dielectric barrier discharge plasma enhanced aerodynamics:physics, modeling and applications. Experiments in Fluids, 2009,46(1):1-26
    [14]Huang J, Corke T C, Thomas F O. Plasma actuators for separation control of low-pressure turbine blades. AIAA journal,2006,44(1):51-57
    [15]He C, Corke T C, Patel M P. Plasma flaps and slats:An application of weakly ionized plasma actuators. Journal of Aircraft,2009,46(3):864-873
    [16]Moreau E. Airflow control by non-thermal plasma actuators. Journal of Physics D: Applied Physics,2007,40(3):605-636
    [17]Enloe C L, Mclaughlin T E, Vandyken R D, et al. Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator:Geometric Effects. AIAA Journal,2004, 42(3):595-604
    [18]Enloe C L, Mclaughlin T E, Van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator:plasma morphology. AIAA journal,2004, 42(3):589-594
    [19]Massines F, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. Journal of Physics D:Applied Physics,1998,31(24):3411-3420
    [20]Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. Journal of Physics D:Applied Physics,1993,26(5):889-892
    [21]Golubovskii Y B, Maiorov V A, Behnke J, et al. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations. Journal of Physics D: Applied Physics,2003,36(8):975-981
    [22]Golubovskii Y B, Maiorov V A, Behnke J F, et al. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure. Journal of Physics D: Applied Physics,2004,37(9):1346-1356
    [23]Brandenburg R, Navratil Z, Jansky J, et al. The transition between different modes of barrier discharges at atmospheric pressure. Journal of Physics D:Applied Physics, 2009,42(8):85208
    [24]Zhang P, Kortshagen U. Two-dimensional numerical study of atmospheric pressure glows in helium with impurities. Journal of Physics D:Applied Physics,2006,39(1): 153-163
    [25]Kozlov K V, Brandenburg R, Wagner H E, et al. Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy. Journal of Physics D:Applied Physics,2005,38:518
    [26]Gherardi N, Massines F. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Transactions on Plasma Science, 2001,29(3):536-544
    [27]Gherardi N, Gouda G, Gat E, et al. Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Science and Technology,2000, 9(3):340-346
    [28]Starostin S A, Premkumar P A, Creatore M, et al. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films. Plasma Sources Science and Technology,2009,18(4):45021
    [29]Guikema J, Miller N, Niehof J, et al. Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system. Physical Review Letters,2000, 85(18):3817-3820
    [30]Fang Z, Xie X, Li J, et al. Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air. Journal of Physics D:Applied Physics,2009,42(8):85204
    [31]Roth J R, Nourgostar S, Bonds T A. The one atmosphere uniform glow discharge plasma (OAUGDP)—A platform technology for the 21st century. Plasma Science, IEEE Transactions on,2007,35(2):233-250
    [32]Starostin S A, Premkumar P A, Creatore M, et al. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films. Plasma Sources Science and Technology,2009,18(4):45021
    [33]Starostin S A, Premkumar P A, Creatore M, et al. High current diffuse dielectric barrier discharge in atmospheric pressure air for the deposition of thin silica-like films. Applied Physics Letters,2010,96(6):61502
    [34]Aresta G, Premkumar P A, Starostin S A, et al. Optical Characterization of Plasma-Deposited SiO2-Like Layers on Anisotropic Polymeric Substrates. Plasma Processes and Polymers,2010,7(10):766-774
    [35]Fanelli F. Thin film deposition and surface modification with atmospheric pressure dielectric barrier discharges. Surface and Coatings Technology,2010,205(5): 1536-1543
    [36]Da Ponte G, Sardella E, Fanelli F, et al. Trends in surface engineering of biomaterials:atmospheric pressure plasma deposition of coatings for biomedical applications. European Physical Journal Applied Physics,2011,56(240232)
    [37]Fanelli F, Lovascio S, D'Agostino R, et al. Insights into the Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition of Thin Films from Methyldisiloxane Precursors. Plasma Processes and Polymers,2012,9(11-12):1132-1143
    [38]Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharges. JOURNAL OF PHYSICS D:APPLIED PHYSICS,2005,38(2):R1-R24
    [39]Fridman A A. Plasma chemistry. Cambridge Univ Pr,2008
    [40]王新新.介质阻挡放电及其应用.高电压技术,2009,(1):1-11
    [41]Dong L F, Li X C, Yin Z Q, et al. Dielectric barrier discharge image processing by PhotoShop:Data Mining and Applications Bellingham:SPIE Int. Soc Optical Engineering,2001:4556,107-109
    [42]Li X C, Zhao N, Yin Z Q, et al. Image processing of discharge pattern by Spatial Fourier Transform method. Congress on Image and Signal Proceesing, Sanya, China:[s.n.],2008,4:603-607 2008:4,603-607
    [43]Dong L, Li Y, Song Q, et al. Analysis of spatial distribution of hexagonal patterns based on fourier spectra and spatial correlation function. International Conference on Electrical and Control Engineering, Wuhan, China:[s.n.],2010:437-440
    [44]Chen J, Dong L, Yue H, et al. Analysis of time evolution of patterns based on various image processing techiques. Wuhan, China:International Conference on Electrical and Control Engineering. Wuhan, China:[s.n.],2010:441-444
    [45]Dong L, Song Q, Li Y, et al. Study on evolution of patterns in dielectric barrier discharge by image analysis. International Conference on Electrical and Control Engineering, Wuhan, China:[s.n.],2010:2088-2091
    [46]Wu Y F, Ye Q Z, Li X W, et al. Classification of Dielectric Barrier Discharges Using Digital Image Processing Technology. IEEE Transactions on Plasma Science,2012, 40(5Part 2):1371-1379
    [47]吴云飞,叶齐政,李兴旺,等.利用不同曝光时间放电图像的灰度直方图识别介质阻挡放电模式.高电压技术,2012,38(005):1120-1125
    [48]吴云飞,叶齐政,陈田,等.介质阻挡放电灰度直方图的高斯混合概率模型研究.中国电机工程学报,2013,33(1):179-187
    [49]Ye Q Z, Wu Y F, Li X W, et al. Uniformity of dielectric barrier discharges using mesh electrodes. Plasma Sources Science and Technology,2012,21:065008-65015
    [50]Gibalov V I, Pietsch G J. Dynamics of dielectric barrier discharges in different arrangements. Plasma Sources Science and Technology,2012,21:24010
    [51]Massines F, Gherardi N, Naude N, et al. Recent advances in the understanding of homogeneous dielectric barrier discharges. EPJ Applied Physics.17 Avenue du Hoggar-BP 112, Les Ulis Cedex A, F-91944, France,2009:47,22801-22805
    [52]Massines F, Es-Sebbar E, Gherardi N, et al. Comparison of Townsend dielectric barrier discharge in N2, N2/O2 and N2/N2O:behavior and density of radicals,35th EPS Conference on Plasma Phy. Harsonissas, June,2008,32,1-4
    [53]Hoder T, Brandenburg R, Basner R, et al. A comparative study of three different types of barrier discharges in air at atmospheric pressure by cross-correlation spectroscopy. Journal of Physics D:Applied Physics,2010,43(12):124009
    [54]Fang Z, Qiu Y, Zhang C, et al. Factors influencing the existence of the homogeneous dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics,2007,40(5):1401-1407
    [55]Wang C Q, Zhang G X, Wang X X. Comparisons of discharge characteristics of a dielectric barrier discharge with different electrode structures. Vaccum,2012, 86(7SI):960-964
    [56]Takaki K, Shimizu M, Mukaigawa S, et al. Effect of electrode shape in dielectric barrier discharge plasma reactor for NOx removal. IEEE Transactions on Plasma Science,2004,32(11):32-38
    [57]Choi J H, Ⅱ Lee T, Han I, et al. Improvement of plasma uniformity using ZnO-coated dielectric barrier discharge in open air. Applied Physics Letters,2006,89(0815018): 81501
    [58]Choi J H, Han M H, Baik H K, et al. Plasma expansion of ZnO-coated surface barrier discharge in open air and its optical analysis. Journal of applied physics,2007,101: 33304
    [59]Watanabe J, Nagatsu M. Transition from dielectric barrier discharge to microhollow discharge in parallel-plate electrodes with intercavity microholes. Applied Physics Letters,2011,98(22150222):221502
    [60]Cieplak T, Yamabe C, Ihara S, et al. Investigations on the rotating electrode effect on the ozone generation process in a plate ozonizer. Japanese Journal of Applied Physics,1999,38(8):4930-4931
    [61]Bae J C, Yoon Y J, Lee S J, et al. Diameter control of single-walled carbon nanotubes by plasma rotating electrode process. Carbon,2002,40(15):2905-2911
    [62]Bae J C, Yoon Y J, Baik H K, et al. Effect of a rotating electrode on the formation of single-walled carbon nanotubes. Applied physics letters,2003,82:2154
    [63]Fanelli F, D'Agostino R, Fracassi F. Effect of Gas Impurities on the Operation of Dielectric Barrier Discharges Fed with He, Ar, and Ar-C3F6. Plasma Processes and Polymers,2011,8,557-567
    [64]Xu X D, Kushner M J. Multiple microdischarge dynamics in dielectric barrier discharges. Journal of Applied Physics,1998,84(8):4153-4160
    [65]Golubovskii Y B, Maiorov V A, Li P, et al. Effect of the barrier material in a Townsend barrier discharge in nitrogen at atmospheric pressure. Journal of Physics D:Applied Physics,2006,39(8):1574-1583
    [66]Osawa N, Yoshioka Y, Mochizuki Y, et al. Generation of Low Frequency Atmospheric Pressure Uniform Discharge in Air. ISPC,2009
    [67]Hudon C, Bartnikas R, Wertheimer M R. Spark-to-glow discharge transition due to increased surface conductivity on epoxy resin specimens. IEEE Transactions on Electrical Insulation,1993,28(1):1-8
    [68]Gallon H J, Tu X, Whitehead J C. Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge. Plasma Processes and Polymers,2012,9(1):90-97
    [69]Tu X, Verheyde B, Corthals S, et al. Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure. Physics of Plasmas,2011,18:80702-80705
    [70]Tu X, Gallon H J, Whitehead J C. Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system:effect of packing with TiO2. Journal of Physics D:Applied Physics,2011,44:482003
    [71]Garamoon A A, El-Zeer D M, Abd El-Ghany A, et al. Influences of the barrier types and arrangements on dielectric barrier discharge characteristics. European Physical Journal Applied Physics,2011,53:210012-210017
    [72]Kundu S K, Kennedy E M, Gaikwad V V, et al. Experimental investigation of alumina and quartz as dielectrics for a cylindrical double dielectric barrier discharge reactor in argon diluted methane plasma. Chemical Engineering Journal,2012,180: 178-189
    [73]Roth J R, Rahel J, Dai X, et al. The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP (TM)) reactors for surface treatment applications. Journal of Physics D:Applied Physics,2005,38(4):555-567
    [74]Naude N, Massines F. Influence of the surface conductivity on the stability of a glow dielectric-barrier discharge. IEEE Transactions on Plasma Science,2008,36(4 PART 1):1322-1323
    [75]Radu I, Bartnikas R, Wertheimer M R. Frequency and Voltage Dependence of Glow and Pseudoglow Discharges in Helium Under Atmospheric Pressure. IEEE Transactions on Plasma Science,2003,31(6 Ⅱ):1363-1378
    [76]Shao T, Long K, Zhang C, et al. Electrical characterization of dielectric barrier discharge driven by repetitive nanosecond pulses in atmospheric air. Journal of Electrostatics,2009,67(2-3):215-221
    [77]Shao T, Yan P, Long K H, et al. Dielectric-barrier discharge excitated by repetitive nanosecond pulses in air at atmospheric pressure. IEEE Transactions on Plasma Science,2008,36(4Part 1):1358-1359
    [78]Somekawa T, Shirafuji T, Sakai O, et al. Effects of self-erasing discharges on the uniformity of the dielectric barrier discharge. Journal of Physics D:Applied Physics, 2005,38(12):1910-1917
    [79]Hung C T, Chiu Y M, Hwang F N, et al. Investigation of the Atmospheric Helium Dielectric Barrier Discharge Driven by a Realistic Distorted-Sinusoidal Voltage Power Source. Plasma Chemistry and Plasma Processing,2011,31(1):1-21
    [80]Ren C S, Ma T C, Wang D Z, et al. Stable and diffuse atmospheric pressure glow plasma in a multipoint-to-plane configuration in air. IEEE Transactions on Plasma Science,2005,33(1Part2):210-211
    [81]Montie T C, Kelly-Wintenberg K, Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Transactions on Plasma Science,2000,28(1):41-50
    [82]Moon S Y, Choe W, Kang B K. A uniform glow discharge plasma source at atmospheric pressure. Applied Physics Letters,2004,84(2):188-190
    [83]Nersisyan G, Graham W G. Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Science & Technology,2004,13(4):582-587
    [84]Gherardi N, Massines F. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Transactions on Plasma Science, 2001,29(3):536-544
    [85]Golubovskii Y B, Maiorov V A, Li P, et al. Effect of the barrier material in a Townsend barrier discharge in nitrogen at atmospheric pressure. Journal of Physics D:Applied Physics,2006,39(8):1574-1583
    [86]Luo H Y, Liang Z, Wang X X, et al. Effect of gas flow in dielectric barrier discharge of atmospheric helium. Journal of Physics D:Applied Physics,2008,41(20): 205205-205206
    [87]Takaki K, Nawa K, Mukaigawa S, et al. Self-organization of microgap dielectric-barrier discharge in gas flow. IEEE Transactions on Plasma Science,2008, 36(4Part 1):1260-1261
    [88]Rahel J, Sherman D M. The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics,2005,38(4):547-554
    [89]Akishev Y S, Aponin G, Balakirev A, et al. Role of the volume and surface breakdown in a formation of microdischarges in a steady-state DBD. European Physical Journal D,2011,61(2):421-429
    [90]Pavon S, Dorier J L, Hollenstein C, et al. Effects of high-speed airflows on a surface dielectric barrier discharge. Journal of Physics D:Applied Physics,2007,40(6): 1733-1741
    [91]Reichen P, Sonnenfeld A, von Rohr P R. Influence of increased velocity on the statistical discharge characteristics of He and air barrier discharges. Journal of Physics D:Applied Physics,2010,43(0252072):25207
    [92]Wang Z, Ren C S, Nie Q Y, et al. Effects of Airflows on Dielectric Barrier Discharge in Air at Atmospheric Pressure. Plasma Science & Technology,2009,11(2):177-180
    [93]Cieplak T, Yamabe C, Ihara S, et al. Investigations on the rotating electrode effect on the ozone generation process in a plate ozonizer. Jpn. J. Appl. Phys,1999,38:4930
    [94]Sun Y, Zhang F. Investigation of influencing factors in ozone generation using dielectric barrier discharge. IEEE Conference on the Properties and Application of Dielectric Materials Harbin China,2009:614-617
    [95]Gibalov V, Pietsch G. On the performance of ozone generators working with dielectric barrier discharges. Ozone Science & Engineering,2006,28(2):119-124
    [96]Paris P, Valk F, Aints M, et al. Ozone production in dark discharge in oxygen,28th ICPIG, July, Prague,2007:160-163
    [97]Itoh H, Teranishi K. Recent Topics Related to Ozone Generation Technology in Japan. Ozone Science & Engineering,2011,33(2SI):93-97
    [98]Horinouchi T, Hayashi T, Nakajima N. Development of a new type ozonizer with rotating electrode,9th Annual Conference on Ozone Science,2000
    [99]Horinouchi T, Hayashi T, Nakajima N. Ozone generator with cylindrical type of rotating electrode. Ozone Science & Engineering,2005,27(1):53-57
    [100]Gnapowski S, Yamabe C, Ihara S. Ozone Generation Characteristics of Ozonizer with the Rotating Type Electrode.電気学会論文誌A(基礎·材料·共通部门誌),2008,128(10):619-623
    [101]Yamabe C, Kayashima K, Nakahigashi N, et al. Ozone Production Characteristics Including Ozone-Zero Phenomena in Pure Oxygen.Conference on Electrical Engineering,2009:1-6
    [102]Launder B, Poncet S, Serre E. Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities. Annual Review of Fluid Mechanics, Palo Alto:Annual Reviews,2010:42,229-248
    [103]Severac E, Poncet S, Serre E, et al. Large eddy simulation and measurements of turbulent enclosed rotor-stator flows. Physics of Fluids,2007,19(8):85113
    [104]Tuliszka-Sznitko E, Zielinski A, Majchrowski W. Large eddy simulation of non-isothermal flow in rotor/stator cavity, Int. Symp. on Heat Transfer in Gas Turbine Systems, August, Antalya, Turkey,2009
    [105]Bouzerar R, Ding L, Jaffrin M Y. Local permeate flux-shear-pressure relationships in a rotating disk microfiltration module:implications for global performance. Journal of Membrane Science,2000,170(1):127-141
    [106]李万平.计算流体力学.武汉:华中科技大学出版社,2004.
    [107]李静.基于CFD的轴向柱塞泵配流特性研究.[硕士论文],浙江:浙江大学图书馆,2008
    [108]王东屏.CFD数值仿真建模技术研究及其在高速动车组中的验证.[博士学位论文],大连:大连交通大学图书馆,2006
    [109]于大海,杨芾藜,叶齐政,等.利用旋转电极形成50Hz带状介质阻挡放电的研究.高电压技术,2012,38(5):1114-1119.
    [110]Yurgelenas Y V, Wagner H E. A computational model of a barrier discharge in air at atmospheric pressure:The role of residual surface charges in microdischarge formation. Journal of Physics D:Applied Physics,2006,39(18):4031-4043
    [111]Stollenwerk L. Interaction of current filaments in a dielectric barrier discharge system. Plasma Physics and Controlled Fusion,2010,52(12):124017
    [112]Luque A, Ebert U, Hundsdorfer W. Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. Physical Review Letters,2008,101:75005
    [113]Strumpel C, Astrov Y A, Purwins H G. Nonlinear interaction of homogeneously oscillating domains in a planar gas discharge system. Physical Review E,2000, 62(4Part A):4889-4897
    [114]Radu I, Bartnikas R, Czeremuszkin G, et al. Diagnostics of dielectric barrier discharges in noble gases:Atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns. IEEE Transactions on Plasma Science,2003,31(3): 411-421
    [115]Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges. IEEE Transactions on Plasma Science,2002,30(4Part 1):1400-1408
    [116]Fang Z, Wang X G, Shao R P, et al. The effect of discharge power density on polyethylene terephthalate film surface modification by dielectric barrier discharge in atmospheric air. Journal of electrostatics,2011,69(1):60-66
    [117]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.
    [118]杨津基.气体放电.北京:科学出版社,第1版,1983.
    [119]Ye Q Z, Zhang T, Lu F, et al. Dielectric barrier discharge in a two-phase mixture. Journal of Physics D:Applied Physics,2008,41:25207
    [120]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究.[博士学位论文].大连:大连理工大学图书馆,2002
    [121]张国平.高频介质阻挡放电产生臭氧的实验研究:[硕士学位论文].浙江:浙江大学图书馆,2007
    [122]Aints M, Valk F, Plank T, et al. Ozone production rate as a function of electric field strength in oxygen. Journal of Physics D:Applied Physics,2012,45:20520120-205201
    [123]白希尧,沈丽,白敏的,等.强电离放电产生高浓度臭氧的基础理论与方法研究.物理,2000,29(10):615-619
    [124]Takahashi G, Akashi H. Various Kinds of Streamers in Atmospheric Pressure Oxygen Dielectric Barrier Discharge. IEEE Transactions on Plasma Science,2011, 39(11SIPart1):2234-2235
    [125]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure. Journal of Physics D:Applied Physics,1994,27(9):1985-1987
    [126]Shimizu T, Sakiyama Y, Graves D B, et al. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New Journal of Physics,2012,14:103028
    [127]Kobayashi H, Tandou T, Nagaishi H, et al. Decrease in Ozone Density of Atmospheric Surface-Discharge Plasma Source. Japanese Journal of Applied Physics, 2012,51(Part 2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700