用户名: 密码: 验证码:
发电机稳定分析与控制的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文介绍了电力系统稳定研究的发展历程和发电机稳定研究的背景及意义。针对发电机模型及参考系、功角稳定裕度的实用化分析、汽轮发电机组调速侧稳定控制及低频振荡的抑制等问题开展研究,取得了一些研究成果。论文选题具有理论意义和实际应用价值。
     目前,功角稳定控制中的发电机模型一般还是基于恒速旋转的x y坐标系,并近似以x轴为同步轴。在系统受到较大扰动并过渡到新的稳定状态后,即使系统频率变化不大,但发电机转子角(相对于x轴)会随时间积分而不断变化,使转子角偏差控制目标无法确定。此外,功率方程由于采用了转子相对角(相对其它转子),将负荷用恒阻抗元件代替,基于线性网络叠加而得,故较为复杂且与实际系统误差较大。考虑到扰动后转子的惯性,忽略电网(包括定子绕组)暂态,则机端电压矢量是与电网状态准同步的。仿真也表明,扰动后其变化远远快于转子角变化。故选择机端电压矢量作为转子准同步参考轴,建立了基于单机二系坐标的发电机模型。分析表明,在大、小扰动情况下该模型都适用,且保留功角作为稳定判据的特性,能方便地适用于现实的功角稳定控制。
     针对静态功角稳定分析及稳定裕度评估问题,分析发现传统的功角稳定性分析方法或者依赖于系统状态量的强制性解耦,或者依赖于系统的精确模型和参数,在非线性的电力系统状态变化后容易失效。借鉴运动力学空间中静态稳定的物理概念,将电力系统全映射到弹性力学空间,以便直观地理解多机系统的局部稳定与全系统稳定的关系。基于该映射,将发电机与系统解耦并进行了静态功角稳定性分析。利用广域测量系统对节点状态量的实时测量,可得到实用化的稳定判据和稳定裕度指标。
     数字电液调速系统投运后,一次调频的实际效果有时并不理想,主要问题是一次调频能力不足和出现振荡。通过对实际功频调节控制的理论分析发现,在电网侧发生突变扰动时,功率输出控制环节的动态调节过程表现为前馈开环控制特点,使一次调频初期出现“反调”,并引发过程振荡;而静态调节或以给定值主导调节时,则主要表现为闭环反馈控制特点,使一次调频静态调节能力下降,并使区域系统频率稳定性降低。仿真结果证明了定性分析和定量分析结果的正确性。
     振荡源和振荡起因问题是目前共振型低频振荡研究的主要问题。分析发现,当电网侧发生振荡功率扰动时,实际的汽轮发电机组功频控制方式会使机械功率阻尼降低。当扰动频率接近共振频率时,会引发机械功率共振。基于典型参数模型的仿真研究除证实了上述分析的正确性外,还表明若系统中某些机组共振频率相近,在小扰动下引起的振荡可能在机组间耦合放大;功率限幅环节,会使非等幅振荡变成等幅、变频的低频振荡模式。
     针对发电机稳定控制的阻尼方式,研究分析发现,现有控制阻尼是一种被动意义上的阻尼。它与转速偏差同相位,并不减小不平衡力矩,若扰动能量不耗尽,则不能消除振荡。因此,为抑制强迫性振荡,提出了一种减小不平衡力矩的主动阻尼方式,并比较了两种阻尼控制的效果。理论分析表明附加主动阻尼控制后的转速和转子角振幅都较小。基于这两种阻尼原理进行了调速侧电力系统稳定器的设计。仿真结果表明,基于主动阻尼的控制器对电网侧扰动引起的共振型低频振荡有更好的抑制效果。
     提出了一种新的用于电力系统低频振荡模式识别的改进Prony算法。将待求振荡幅值作为权值,基于神经网络训练,避免了实际计算中矩阵病态导致不可逆,或通过矩阵求逆计算幅值和相位时精度不高的问题;克服了传统Prony算法抗干扰较差的问题。仿真结果表明,该改进算法能有效地去除干扰,可靠、准确地识别主导模式,且计算量少。在振荡信号中含有噪声以及采样点数多的情况,该算法具有较大的优势。
Developing history of power system stability study, background and significance in generator stability are introduced. It aims at the problems of generator model and reference frame, practical analysis of generator's static angle stability, practical turbo-generator power system stability and low-frequency oscillation suppression, has obtained the research results. The selected topics bear academic significance and practical applied values.
     At present, the generator model in power angle stability control based on the constant speed revolving x y reference frame generally, and takes x as the synchronized axis approximately. When system transit the new steady state after large disturbance, the rotor angle (relative to the x axis) will change unceasingly with time integral, even if the change of system frequency is not big, so that the control objective of rotor angular deviation is not definite. In addition, the power equation, used the rotor opposite angle (relative other rotors), loads replaced with the permanent impedance parts, based on linear network superimposition, therefore more complex and big error with the reality system. Considering the rotor inertia and ignoring network (including the stator windings) transient, the generator terminal voltage vector is synchronous with network, and much faster than the rotor angle in change after disturbing shown by the simulation. Therefore generator terminal voltage vector is selected as quasi-synchronous reference axis relative to rotor, and the generator model in two reference frames is established. Analysis shows the model is applicable to large and small disturbances, reservation of the characteristic of the power angle as the stability criterion, and adaptation to the practical control in power angle stability.
     With respect to stability analysis of the static power angle and evaluation of the stability margin, the study reveals that the traditional analysis methods of power angle stability depend on mandatory decoupling of system state values, or rely on system accurate model and parameters, which are easily invalidated with the state changes in the non-linear power system. Profits from the physical concept of static stability in kinetics space, the whole power system is mapped to the elastic mechanics space, but understands the relations between partial stability and the entire system stability intuitively in multi-generator power system. Based on this mapping, the static angle stability has analysed depend upon generators and the system decoupling. The practical stability criterion and indicator of stability margin are provided by real-time node status messages using wide-area measurement System.
     After implementation of a digital electro-hydraulic (DEH) control system, the effect of primary frequency regulation (PFR) is not ideal in some times. The main problems are existence of oscillations and insufficient PFR capability. Through detailed studies of actual power-frequency regulation control, it is discovered that he dynamic PFR process at the power output control module demonstrates feed-forward open-loop characteristics when subjected to abrupt disturbances, causes "reverse regulation" appearing in the initial period of the PFR, and initiates the process vibration. On the other hand, when the system is at steady state or leading regulate state by pre-set value, it mainly illustrates the closed-loop feedback characteristics, debase PFR static regulation capability, and debase the regional power system frequency stability. The simulation results prove the correctness of qualitative analysis and quantitative analysis.
     The source and cause of oscillation are studied as the main problem for the resonance-type low-frequency oscillation at present. Through the analysis, it's concluded that practical turbo-generators power-frequency control mode makes mechanical power damping decrease when network side oscillation power disturbance occurs. When disturbance frequency is close to resonance frequency, mechanical power resonance will be triggered. Simulation research based on the typical parameters model demonstrates the above analysis is correct, and oscillation of some machine initiated by small disturbance may be coupled and amplified between generating units if resonance frequencies of generating units are close to each other, amplitude limiter make unequal amplitude oscillation become equal amplitude and frequency changed low-frequency oscillation mode.
     By studying damping modes of generator stability control, it manifests that existing damping is a passive one, which has the same phase with rotation deviation, can not reduce the unbalanced torque. If disturbance energy not be consumed, oscillation will not be eliminated. Therefore, for the suppression of forced oscillations, an active damping mode aimed to reduce unbalanced torque is put forward, and the control effects of the two kinds of damping are compared. Academic analysis shows amplitudes both of the rotor speed and rotor angle are rather small by additional active damping control. Based on the two damping theories, governor power system stabilizers are devised. Simulation results show the controller based on active damping has better restraining effect to resonance-type low-frequency oscillation aroused by power network side disturbance.
     A new improved Prony algorithm was presented for identifying power system low frequency oscillation mode. The amplitudes were used as weights and trained in neural network, to avoid some problems, such as irreversibility of ill-conditioned matrix during practical calculation, or poor accuracy of amplitude and phase angle gained by matrix inversion. This improved algorithm overcame poor Anti-Jamming in Prony algorithm. The simulation result show that this improved algorithm can remove interference effectively, identify the dominant mode of low frequency oscillation reliably and accurately, and decrease calculation amount. Especially, it has great advantages when oscillation signal exists interference noise, or amount of sampling points is excessive.
引文
[1]Prabha Kundur. Power System Stability and Control.北京:中国电力出版社(影印版),2001,pp 10-49
    [2]WSCC Disturbance Report Task Force (Don Watkins,BPA-chairman).Disturbance Report for the Power System Outage that Occurred on the west Interconnection on August 10,1996,1545 PAST.Approved by the WSCC Operations Committee on October 18,1996,www.bpa.biz
    [3]WSCC Disturbance Report Task Force (Vernon Porter, IPC-Chairman). Disturbance Report for the Power System Outage that Occurred on the west Interconnection on July2,1996,1424 MAST July3,1996,1403 MAST Approved by the WSCC Operations Committee on September 19,1996,www.bpa.biz
    [4]C.Taylor,D.Erickson.Recoding and Analyzing the July 2 Cascading Outage.IEEE computer Application in Power,January,1997:15-20
    [5]US-Canada Power System Outage Task Force.Final Report on the August 14,2003 Blackout in the United States and Canada:Causes and Recommendations.April 2004,www.doe.gov
    [6]IEEE/CIGER Joint Task Force on Stability Terms and Definitions.Definition and Classification of Power System Stability.IEEE Trans On Power System. Aug.2004,Vol.19,No.3, pp:16-21
    [7]常乃超,兰洲,甘德强等.广域测量系统在电力系统分析及控制中的应用综述.电网技术,2005,29(10):46-51
    [8]曹路,张涛,汪德星等.华东电网WAMAP系统的应用实践.电力系统自动化,2008,32(21):97-101
    [9]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景.电网技术,2005,29(2):44-49
    [10]龙厚军,胡志坚,陈允平.基于GPS的功角测量及同步相量在电力系统中的应用研究.继电器,2004,32(3):39-44
    [11]李刚,王少荣,夏涛等.电力系统广域动态监测中的功角直接测量技术.电力系统自动化,2005,29(3):45-49
    [12]蔡田田.广域测量系统在电力系统中的应用研究:[上海交通大学硕士学位论文].上海:上海交通大学,2008,58-90
    [13]王兆家,宗浩,陈汉中.华东电网多功能功角实时监测系统的开发及应用.电网技术,2002,26(8):73-77
    [14]李大虎.基于广域测量的电力系统在线安全分析若干关键问题的研究:[华中科技大学硕士学位论文].武汉:华中科技大学,2006,30-45
    [15]薛禹胜,徐伟.关于广域测量系统及广域控制保护系统的评述.电力系统自动化,2007,31(15):1-4
    [16]赵建国,薛禹胜.南方电网综合防御框架的构思.南方电网技术,2008,2(1):1-7
    [17]薛禹胜.时空协调的大停电防御框架:广域信息、在线量化分析和自适应优化控制.电力系统自动化,2006,30(2):1-10
    [18]贺仁睦.电力系统稳定问题研究的方法论.电力系统自动化,1998,22(9):9-12
    [19]张鹏飞,薛禹胜,张启平等.基于PMU实测摇摆曲线的暂态稳定量化分析.电力系统自动化,2004,28(20):17-42
    [20]LuQ.SunYZ.Lee G K F. Nonlinear Optimal Excitation Control for Multimachine Systems. IFAC Symposium on Power Systems, Modeling and Control Application Oxford (UK).1989:23-40
    [21]Lu Q. Sun Y Z. Decentralized Nonlinear Optimal Excitation Control. IEEE Transactions on Power Systems.1996:22-50
    [22]卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993,10-59
    [23]吴青华,蒋林.非线性控制理论在电力系统中应用综述.电力系统自动化,2001,(03):13-50
    [24]Yoke L T,Wang Youyi.Design of Series and Shunt Facts Controller Using Adaptive Nonlinear Coordinated Design Techniques.IEEE Trans.Power Systems,1997,12 (3):16-40
    [25]Chapman J W. Illic M D.Stabilizing a Multimachine Power System via Decentralized Feedback Linearizing Excitation Control. IEEE Transactions on Power Systems.1993:30-45
    [26]King C A. Chapman J W. Feedback Linearizing Excitation Control on a Full-Scale Power System Model. IEEE Transactions on Power Systems.1994:1-9
    [27]周双喜.汪兴盛.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报.1995:30-45
    [28]卢强,梅生伟,申铁龙等.非线H_∞励磁控制器的递推设计.中国科学E辑,2000,(01):33-45
    [29]孙元章,卢强,孙春晓.电力系统鲁棒非线性控制研究.中国电机工程学报,1996,(06):45-67
    [30]梅生伟,申铁强,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2008:66-78
    [31]唐巍.神经网络在电力系统暂态稳定分析与控制中的应用:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,1997:69-83
    [32]张腾,戴先中.汽门开度的神经网络广义逆系统控制.电力系统自动化,2000,9:25-28
    [33]王伟.广义预测控制理论及其应用.北京:科学出版社,1998,67-89
    [34]Lei Qing sheng, Li Guangxi, Chen Yong ping. Real-time Prediction and Control for Transient Stability of Multi-machine Power System. IEEE PES. Conference Proceedings on 1998 Power Engineering Society Summer Meeting:31-49
    [35]G.Ramakrishna, O.P.Malik. Adaptive control of power systems using radial basis function network identification and predictive control calculation. IEEE PES. Conference Proceedings on 1999Power Engineering Society Winner Meeting: 3-15
    [36]Mello F P.Concepts of synchronous machine stability as affected by excitation control.IEEE Transactions on Power Apparatus and Systems,1969,88(4):85-90.
    [37]王铁强.电力系统低频振荡共振机理的研究:[华北电力大学硕士学位论文].北京:华北电力大学,2001,22-53
    [38]韩志勇,贺仁睦,徐衍会.由汽轮机压力脉动引发电力系统共振机制的低频振荡研究.中国电机工程学报,2005,25(21):14-18
    [39]韩志勇,贺仁睦,徐衍会.汽轮机压力脉动引发电力系统低频振荡的共振机制分析.中国电机工程学报,2008,28(1):47-51
    [40]徐衍会,贺仁睦,韩志勇.电力系统共振机制低频振荡扰动源分析.中国电机工程学报,2007,27(17):83-87
    [41]李传彪.汽轮机调速系统摆动及其对低频振荡影响的研究:[华北电力大学硕士学位论文].北京:华北电力大学,2006:77-85
    [42]林其友,陈星莺,曹智峰.多机系统调速侧电力系统稳定器GPSS的设计.电网技术,2007,31(3):54-58
    [43]窦春霞.组合电力系统稳定器GPSS的设计.电力系统自动化学报,2000,12(2):13-15
    [44]董航,刘涤尘,邹江峰.基于Prony算法的电力系统低频振荡分析.高电压技术,2006,32(6):97-100
    [45]徐东杰,贺仁睦,高海龙.基于迭代Prony算法的传递函数辨识.中国电机工程学报,2004,24(6):40-43
    [46]曹维,翁斌伟,陈陈.电力系统暂态变量的Prony分析.电工技术学报,2000,15(6):56-60
    [47]王铁强,贺仁睦,王卫国等.电力系统低频振荡机理的研究.中国电机工程学报,2002,22(4):21-25
    [48]肖晋宇,谢小荣,胡志祥等.电力系统低频振荡在线辨识的改进Prony算法.清华大学学报(自然科学版),2004,44(7):95-110
    [49]李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法.电力系统自动化,2007,31(1):14-19
    [50]鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡.中国电机工程学报,2005,25(22):56-60
    [51]熊俊杰,邢卫荣,万秋兰.Prony算法的低频振荡主导模式识别.东南大学学报(自然科学版),2008,38(1):64-68
    [52]张贤达.现代信号处理.第二版.北京:清华大学出版社,2002,46-68
    [53]Z.Leonowicz,T.Lobos,and J.Rezmer.Advanced spectrum estimation method for signal analysis in power electronics.IEEE Tran.Industrial Electronics.2003, 50(3):99-110.
    [54]魏路平.浙江电网机组一次调频问题的分析研究.浙江电力,2004,1:26-28
    [55]王玉山,雷为民,李胜.京津唐电网一次调频投入现状及存在问题分析.华北电力技术,2006,3:1-10
    [56]宋军英,周勇,黄良刚,唐外文,潘力强.湖南电网发电机组一次调频功能投入的研究.湖南电力,2006,26(4):1-3
    [57]黄宗君,李兴源,晁剑等.贵阳南部电网“7·7”事故的仿真反演和分析.电力系统自动化,2007,31(9):95-100
    [58]张毅明,罗承廉,孟远景等.河南电网频率响应及机组一次调频问题的分析研究.中国电力,2002,35(7):35-38
    [59]卢勇,贺祥飞,刘友宽.云南电网一次调频试验工作现状及策略分析.中国电力,2006,39,(11):42-45
    [60]李端超,陈实,陈中元等.发电机组一次调频调节效能实时测定及补偿方法.电力系统自动化,2004,28(2):70-72
    [61]C.P.Steinmetz,Power Control and Stability of Electric Generating Stations.AIEE Trans.,Vol.XXXIX,Part Ⅱ,pp.1215,July-December,1920
    [62]R.D, Evans and R.C. Bergvall "Experimental Analysis of Stability and Power Limitations," AIEE Trans.,pp.39-58,1924:68-91
    [63]R.Wilkins, "Practical Aspects of System Stability," AIEE Trans,pp.41-50,1926: 55-68
    [64]刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社,2007,18-65
    [65]Demello F. P. Concepts of synchronous machine stability as affected by excitation control.IEEE Transactions on Power Apparatus and Systens, 1969,88(4):55-69
    [66]Richard T.Byerly,E.W.Kimbark.Stability of Large Electric Power System,IEEE Press.1974:43-88
    [67]IEEE Task Force on Terms and Definitions.Proposed Terms and Definitions for Power System Stability.IEEE Trans.,Vol.PAS-101 June 1982:41-66
    [68]IEEE/CIGER Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability. IEEE Trans.On Power System. Aug.2004, Vol.19, No.3, pp:36-55
    [69]西安交通大学,清华大学,浙江大学等.电力系统计算.北京:水利电力出版社,1978,37-81
    [70]郝正航,邱国跃,龙凌等.不同参考系的多机系统线性模型及适用性.电力系统及其自动化学报,2005,17(2):38-42
    [71]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002,65-91
    [72]竺炜,谭喜意,唐颖杰等.用于功角稳定控制的发电机动态模型分析.中国电机工程学报,2009,29(13):54~57
    [73]邵洪泮.电力系统机电暂态过程.北京:中国工业出版社,1965,25-66
    [74]王正风,胡晓飞.静态功角稳定和静态电压稳定判据比较分析.电力自动化设备,2008,28(2):61-64
    [75]DUNLOP R D, GUTMAN R, MARCHENKO P P. Analytical development of loadability characteristics for EHV and UHV transmission lines. IEEE Trans on Power Apparatus and System,1979,98(2):60-77
    [76]于广亮,张保会,谢欢等.基于广域信息的非线性全局综合控制器.中国电机工程学报,2007,27(4):36-31
    [77]竺炜,谭喜意,唐颖杰等.汽轮发电机组一次调频性能的分析研究.电力系统自动化,2008,12,32(24):52-79
    [78]竺炜,谭喜意,唐颖杰等.发电机调速附加控制对系统频率稳定的作用.电力自动化设备,2008,12,28(12):21-24
    [79]李文磊,井元伟,刘晓平.汽轮发电机主汽门开度非线性鲁棒控制.控制理论与应用,2003,20(3):38-56
    [80]蒋铁铮,陈陈,艾芊.汽抡发电机汽门开度的分散非线性预测控制.中国电机工程学报,2006,26(20):22-26
    [81]董清,高曙,鲍海.同步发电机调速系统附加H∞鲁棒分散控制.中国电机工程学报,2002,22(2):47-51
    [82]李端超,陈实,陈中元等.发电机组一次调频调节效能实时测定及补偿方法.电力系统自动化,2004,28(2):78-72
    [83]杨建华.华中电网一次调频考核系统的研究与开发.电力系统自动化,2008,32(9):96-99
    [84]于达仁,郭钰锋.电网一次调频能力的在线估计.中国电机工程学报,2004,24(3):72-76.
    [85]张宝.浙江电网火电机组一次调频功能的应用.华东电力,2007,35(3):55-59
    [86]高峰,孔明,徐晓峰.一次调频引发的机组振动分析处理.华东电力,2005,33(2):63-65
    [87]朱方,赵红光,刘增煌等.大区电网互联对电力系统动态稳定性的影响.中国电机工程学报,2007,27(1):1-7
    [88]朱方,刘增煌,高光华.电力系统稳定器对三峡电力系统暂态稳定的影响.中国电机工程学报,2002,22(11):20-22
    [89]Zhu Fang, Liu Zeng huang, Chu Liu. Achievement and experience of improving power system stability by PSS/excitation control in China[C]. IEEE PES 2004 General Meeting,Denver,USA 2004:16-59
    [90]Zhu Fang,Liu Zenghuang,Zhao Hongguang,et al.Design and assessment of PSS with sound adaptability as system expanded from local to nation-wide interconnection.Proceedings of The World Engineers Convention,2004,45-80.
    [91]IEEE Guide for the Preparation of Excitation System Specifications,IEEE Std 421.4-2004:46-78
    [92]李丹,苏为民,张晶等.“9.1”内蒙古西部电网振荡的仿真研究.电网技术,2006,30(6):41-47
    [93]邓集祥,刘广生,边二曼.低频振荡的Hopf分歧研究.中国电机工程学报,1997,17(6):39-45
    [94]贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报,2001,21(7):26-30
    [95]高景德,张麟征.电机过渡过程的基本理论及分析方法.北京:科学出版社,1983,37-49
    [96]Vournas C D,Krassas N,Papadias B C.Analysis of forced oscillations in a multimachine power system[C].IEE Conference Publication,British,1991:33-51
    [97]Magdy M A,Coowar F.Frequency domain analysis of power system forced oscillations.IEE Proceedings,1990,137(4):26-39
    [98]汤涌.电力系统强迫功率振荡的基础理论.电网技术,2006,30(10):29-33
    [99]苗友忠,汤涌,李丹等.局部振荡引起区间大功率振荡的机制.中国电机工程学报,2007,27(10):73-77
    [100]杨汉如,阎伟.电力系统稳定器(PSS)设计的一种新思路.西北水力发电,2004,20(4):13-16
    [101]张少如,吴爱国.基于简单自适应控制的电力系统稳定器.电工技术学报,2006,21(9):62-66
    [102]杨秀,王西田,陈陈.利用LMI技术设计鲁棒电力系统稳定器.继电器,2005,33(2):1-4
    [103]蔡超豪.可抑制低频振荡的鲁棒电力系统稳定器设计.电力科学与工程,2006,(1):22-26
    [104]赵书强,丁峰,侯子利.自寻优模糊电力系统稳定器的设计.电工技术学报,2004,19(3):94-98
    [105]赵辉,刘鲁源,王红君等.基于遗传算法的窄间距隶属函数在模糊逻辑电力系统稳定器设计中的应用.低压电器,2005,(2):38-41
    [106]于占勋,陈学允.多机电力系统智能变结构PSS的研究.中国电机工程学报,1998,18(3):18-59
    [107]邵锐,秦建明.基于解耦降阶法的电力系统稳定器设计.微计算机信息,2007,(22):31-54
    [108]李伟.调速侧电力系统稳定器实用化方法研究[华北电力大学硕士学位论文].北京:华北电力大学,2003
    [109]E.Z.Zhou. Functional Sensitivity Concept and Its Application to Power System. IEEE Transactions on Power Systems,1994,9(1):51-68
    [110]Graham J Rogers. The Application of Power System Stabilizers to a Multigenerator Plant. IEEE Transactions on PWRS,2000,15(1):35-40
    [111]M.A.AI-Biati, M.A.El-Kady, A.A.Al-Ohaly. Dynamic stability improvement via coordination of static var compensator and power system stabilizer control actions.Electric Power Systems Research,2001,(58):37-44
    [112]王惠中,邓科,郑伟.抑制电力系统低频振荡综述.工业仪表及自动化装置,2009,(1):15-21
    [113]方思立,朱方.电力系统稳定器的原理及应用.北京:中国电力出版社,1996.
    [114]张学佳,马立新.复合智能控制型电力系统稳定器的研究.上海理工大学学报,2007,29(3):29-36
    [115]管霖,程时杰.神经网络电力系统稳定器的设计与实现.中国电机工程学报,1996,19(6):38-47
    [116]梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究.电工技术学报,2004,19(5):61-65
    [117]田立军,郭雷,陈晰.H∞电力系统稳定器的设计.中国电机工程学报,1999,19(3):59-62
    [118]杨琳,赵书强.H∞设计中加权函数的选择及模型降阶.华北电力大学学报,2003,30(2):15-19
    [119]王克文,谢志棠.基于概率特征根分析的电力系统稳定器参数设计[J].电力系统自动化,2001,25(11):20-23
    [120]江全元.基于极大极小值原理的电力系统稳定器的设计.浙江大学学报,工学版,2005,39(12):19-34
    [121]赵辉,刘鲁源,张更新.基于微粒群优化算法的最优电力系统稳定器设计.电网技术,2006,30(3):32-35
    [122]赵亮,陈陈.基于免疫算法的单机系统电力系统稳定器的设计.低压电器,2004,(10):37-40
    [123]郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究—第1部分:可行性分析.电力系统自动化,1992,16(5):36-42
    [124]郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究—第2部分:多机系统中特性分析.电力系统自动化,1993,17(3):26-32
    [125]董清,郝玉山,郝育黔,等.调速侧电力系统稳定器动模实验系统.华北电力大学学报,1999,26(2):49-54
    [126]谷根代,郝玉山.发电机调速控制中自振荡的有效抑制.电力系统自动化,2001,18(9):45-47
    [127]窦春霞.组合电力系统混合自适应稳定器的设计.电力系统自动化,2000,10(5):21-24
    [128]H.F.Wang,Y.S.Hao,B.W.Hogg,Y.H.Yang.An adaptive power system stabilizer based on turbine governor control.IEE 2nd International Conference on Advances in Power System Control,Operation and Management,December 1993:28-59
    [129]Wang H.F.,Hao Y.S.,Hogg B.W.,yang y.h..Stabilization of multi-machine power systems by turbine governor control.IEE 2nd International Conference on Advances in Power System Control,Operation and Management,December 1991:49-67
    [130]窦春霞.组合电力系统自适应稳定器GPSS的设计.自动化与信息工程,1999,(4):26-29
    [131]Doyle J,Glover K,et al.State-space solution to standard H∞and H2 control problem.IEEE Trans on AC,1989,34(8):831-842
    [132]Walker BEng P.A.W.,Serag A.M.,Prof.Abdalla O.H..Integrated excitation and turbine control in a multi-machine power system.IEE Proceedings,1989, 136(6):33-46
    [133]鲍文,于达仁,夏松波.最优快速汽门控制对大型汽轮发电机组轴系扭振稳定性的影响.电力系统自动化,1998,22(1):18-21
    [134]于达仁,鲍文.汽轮发电机组转速信号的扭振信号极小化.动力工程(96增刊),1996,10:51-99
    [135]Yu Daren,Bao Wen,Xu Jiyu.Reasonable frequency band of largeturbine generator governor based on shaft torsional stability.Modelling, Measurement & Control(B),1994,46(4):1-6
    [136]杨献勇.热工过程自动控制.北京:清华大学出版社,2000,31-88
    [137]王剑,毛宗源,许敬涛.发电机励磁及调速综合控制可行性分析.中国电机工程学报,2006,26(13):74-78
    [138]吴敬儒,徐永禧.我国特高压交流输电发展前景.电网技术,2005,29(4):1-4
    [139]郑宝森,郭日彩.中国互联电网的发展.电网技术,2003,27(2):1-3
    [140]郭强,张运洲,吕健.我国未来同步电网构建研究.电网技术,2005,29(22):14-18
    [141]J.F.Hauer,F.Vakili.A Oscillation Detector Uses in the BPA Power System Disturbance Monitor. IEEE Transactions on Power Systems,1990,5(1):74-79
    [142]Graham Rogers. Power System Oscillations.New York:Kluwer Academic Publishers,1999:36-78
    [143]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003,9-15
    [144]赵书强.电力系统振荡模式分析与控制的分群等值方法研究[华北电力大学博士学位论文].北京:华北电力大学,1999:23-56
    [145]李庚银.电力系统低频振荡及振荡解列策略研究综述.全国高等学校电力系统及其自动化专业第十六届学术年会论文集,2000,10:25-28
    [146]Jing C, mccalley D, kommateddy M. An energy approach to analysis of inter-area oscillation in power system. IEEF Transactions on PWRS, 1996.11(2):73-89
    [147]A.R.Messina, M.Ckhoa, E.Rarocio. Use of energy and power concepts in the analysis of the inter-area mode phenomenon.Electric Power Systems Research, 2001,(59):11-56.
    [148]Hiyama T,Suzuki N,Funakoshi T.On-line identification of power system oscillation modes by using real time FFT.IEEE PES Winter Meeting,Singapore,2000:89-100
    [149]张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析.电力系统自动化,2004,28(16):32-35
    [150]刘应梅,高玉洁.基于Prony法的暂态扰动信号分析.电网技术,2006,30(4):26-30
    [151]芦晶晶,郭剑,田芳等.基于Prony方法的电力系统振荡模式分析及PSS参数设计.电网技术,2004,28(15):31-34
    [152]刘辉,李啸骢,韦化等.基于目标状态方程的非线性预测励磁控制器的设计.中国电机工程学报,2005,25(17):27-31
    [153]梁志珊,张化光,王红月等.同步发电机励磁非线性预测控制.中国电机工程学报,2000,20(12):52-56
    [154]桂小阳,梅生伟,刘锋等.水轮机调速系统的非线性自适应控制.中国电机工程学报,2006,26(8):66-71
    [155]孙郁松,孙元章,卢强等.水轮机调节系统非线性H∞控制规律的研究.中国电机工程学报,2001,21(2):56-65
    [156]马进,席在荣,梅生伟.基于哈密顿理论的发电机汽门鲁棒非线性控制器设计.电力系统自动化,2001,(18):7-15
    [157]蒋铁铮,陈陈,艾芊.汽轮发电机汽门开度的分散非线性预测控制.中国电机工程学报,2006,26(20):22-26
    [158]葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用.中国电机工程学报,2001,21(4):1-4
    [159]李文磊,井元伟,刘晓平.非线性汽门控制器的自适应鲁棒逆推设计.中国电机工程学报,2003,23(1):15-36
    [160]马进,席在荣,梅生伟,等.基于Hamilton能量理论的发电机汽门与励磁非线性稳定控制器的设计.中国电机工程学报,2002,22(5):88-93
    [161]Sun Y Z,Cao M,Shen T L,et al.Passiation controller design for Turbo-generators based on generalized Hamiltonian system theory.IEE Proceedings-Generation, Transmission and Distribution,2002,149(3):305-309.
    [162]吴俊勇.多机电力系统发电机励磁与调速器的最优变目标非线性控制的研究.电工技术学报,2006,21(6):106-110
    [163]王宝华,杨成梧,张强.发电机的非线性自适应逆推综合控制.控制理论与应用,2006,23(1):60-64
    [164]常乃超,郭志忠.基于广域量测的全局非线性励磁控制.中国电机工程学报,2004,24(2):43-48
    [165]陈珩.电力系统稳态分析(第二版).北京:中国电力出版社,1995,29-34
    [166]卢强,梅生伟,孙元章.电力系统非线性控制(第2版).北京:清华大学出版社,2008,212-334
    [167]董清,高曙,鲍海,李岩松.汽轮发电机调速系统附加H∞鲁棒分散控制.电力系统自动化,2001,7:19-23
    [168]宋方方,毕天姝,杨奇逊.基于暂态能量变化率的电力系统多摆稳定性判别新方法.中国电机工程学报,2007,27(16):13-18.
    [169]毛安家,郭志忠,张学松.一种基于广域测量系统过程量测数据的快速暂态稳定预估方法.中国电机工程学报,2006,26(17):38-43.
    [170]宋方方,毕天姝,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法.中国电机工程学报,2006,26(16):38-45.
    [171]秦晓辉,毕天姝,杨奇逊.基于WAMS的电力系统机电暂态过程动态状态估计.中国电机工程学报,2008,28(7):19-25.
    [172]谢欢,张保会,于广亮等.基于轨迹几何特征的暂态不稳定识别.中国电机工程学报,2008,28(4):16-22.
    [173]西安交通大学,清华大学,湖南大学等.水利电力部电网调度研究所.电力线系统计算.北京:水利电力出版社,1978,23-68
    [174]李刚,王少荣,夏涛等.电力系统广域动态监测中的功角直接测量技术.电力系统自动化,2005,29(3):45-50
    [175]Phadke A G. Synchronized Phasor Measurement s in Power Systems. IEEE Computer Applications in Power,1993,6 (2):10-15
    [176]Phadke A G, Pickett B, Adamiak M, et al. Synchronized Sampling and Phasor Measurement s for Relay and Cont rol. IEEE Trans on Power Delivery,1994, 9(1):44-59
    [177]Phadke A G. Synchronized Phasor Measurements-a Historical Overview IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific,2002 (1):47-66
    [178]Taylor C W,Erickson D C. Recording and Analyzing the July 2 Cascading Outage. IEEE Computer Applications in Power,1997,10 (1):26-30
    [179]Ballance J W, Bhargava B, Rodriguez G D. Monitoring Power System Dynamics Using Phasor Measurement Technology for Power System Dynamic Security Assessment [C].2003 Bologna IEEE Power Tech-conference Proceedings, Bologna,2003 (3):68-89
    [180]杨冠城.电力系统自动装置原理(第二版).北京:中国电力出版社,1994,5,147-154
    [181]于达仁,郭钰锋,徐基豫.发电机组并网运行一次调频的稳定性.中国电机工程学报,2000,20(0):59-63
    [182]赵书强,常鲜戎,贺仁睦等.PSS控制过程中的借阻尼现象与负阻尼效应.中国电机工程学报,2004,24(5):7-11
    [183]徐东杰,贺仁睦,胡国强,等.正规形方法在互联电网低频振荡分析中的应用.中国电机工程学报,2004,24(3):18-23
    [184]樊爱军,雷宪章,刘红超,等.研究大规模互联电网区域间振荡的特征值分析方法.电网技术,2005,29(17):35-39
    [185]Sanchez-Gasca J J,Chow J J.Performance comparison of three identification methods for the analysis of electromechanical oscillations.IEEE Transactions on Power Systems,1999,14(3):91-100
    [186]王青,闵勇,张毅威.低频振荡的功率振荡增量分布计算新方法.电力系统自动化,2008,32(6):1-4
    [187]韩志勇,贺仁睦,徐衍会等.基于能量角度的共振机制电力系统低频振荡分析.中国电机工程学报,2007,31(8):13-16
    [188]贺仁睦,韩志勇,周密等.互联电力系统未知机理低频振荡分析.华北电力大学 学报,2009,36(1):1-4
    [189]韩志勇,贺仁睦,马进.电力系统强迫功率振荡扰动源的对比分析.电力系统自动化,2009,33(3):12-16
    [190]陆颂元.汽轮发电机组振动.北京:中国电力出版社,2000,35-68
    [191]许本文,焦群英.机械振动与模态分析基础.北京:机械工业出版社,1998,42-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700