用户名: 密码: 验证码:
高压发电机继电保护及相关稳定性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料科学与制造技术的进步拓展了高压交联聚乙烯(Cross Linked Poly Ethylene,XLPE)电缆的应用领域,促成了高压发电机(Powerformer)的发明,这是发电技术发展史上的一次显著变革。高压发电机能够直接与高压母线相连,与传统发电机相比,高压发电机有望提高系统可靠性、稳定性,提高能量转换效率,减少电厂占地面积。而高压发电机继电保护问题的解决和相关稳定性问题的深入研究将推动这种新型发电技术的进步和推广。论文针对上述问题开展研究,具体工作如下:
     高压发电机在系统中处于重要地位,其定子绕组单相接地故障保护需满足高灵敏度、覆盖100%定子区域的要求。论文基于高压发电机内部故障仿真模型,分析了高压发电机发生定子绕组单相接地故障时的电气特性,提出了一种基于零序能量的高压发电机定子单相接地保护新原理。该保护原理利用高压发电机机端零序电压和零序电流获得零序功率和零序能量,通过分析能量方向检测接地故障,实现对发电机区内故障和区外故障的区分。
     为了减小发电机的体积,高压发电机的绝缘系统在设计上采用分级绝缘方式,中性点侧的绝缘强度相对机端较弱。当其运行在非全相异常工况时,中性点将承受很高的过电压,绝缘受到严重威胁。论文在分析高压发电机非全相运行状态特点的基础上,提出了一种基于高压发电机机端零序电压和定子绕组负序电流、并借助断路器辅助触点信息进行判断的高压发电机非全相运行保护方案,并通过PSCAD/EMTDC建立系统模型,对方案进行仿真验证。
     高压发电机与高压母线直连,当多台高压发电机并列运行时,若其中一台发生励磁系统故障导致过电压,利用简单的过电压保护无法实现选择性动作。论文利用发电机机端电压和无功功率输出之间的关系,提出了一种改进的并列运行高压发电机过电压保护方案。该保护方案除检测过电压故障外,还通过发电机无功功率输出的变化量识别引发过电压的根源。采用补偿系数修正保护的动作时间,保证对母线过电压影响最大的发电机能最先被切除,该保护方案的应用领域并不局限于高压发电机,亦可为直接并列运行的普通发电机提供选择性过电压保护。
     论文研究了传统发电机高压侧电压控制(HSVC)原理,基于此对HSVC提高电力系统暂态功角稳定性的能力进行分析。由于高压发电机能够直接与高压母线相连,无需增设HSVC模块即可很方便地控制高压母线的电压。论文采用高压发电机实现高压侧电压控制,利用电力系统综合程序(PSASP)建立单机-无穷大系统及改进的EPRI-7节点系统,通过与传统发电机AVR和传统发电机HSVC励磁控制的比较,分析了高压发电机电压控制改善电力系统暂态功角稳定性的效果。
     论文研究了电压稳定性的基本理论、提高电力系统暂态电压稳定性的措施及高压发电机的过负荷特性。在此基础上,采用PSASP建立了EPRI-36节点系统仿真模型,通过与传统发电机AVR和HSVC励磁控制的效果比较,分析了高压发电机电压控制改善电力系统暂态电压稳定性的作用。
     论文最后对上述研究结果进行总结,提出进一步研究的方向。
The applications of XLPE (Cross Linked Poly Ethylene) cables have been widely extended due to the developments of material science and manufacturing techniques. One of the significant events is the invention of Powerformer. This means a remarkable revolution in the developing history of generation technology. Powerformer can be connected directly to the High-Voltage (HV) busbar; therefore, compared with conventional generators, Powerformer can improve the system reliability and stability, increase the conversion efficiency and reduce the occupied area of generation plants. There is no doubt that the solution of its relay protection problems and the intensive research of its corresponding stability problems are promising to promote the advancement and the popularization of this novel generation technology. Therefore, the research topics of this dissertation focus on the above problems, and the details of it are as follows:
     Powerformer plays an important role in power systems, so the protection of stator single phase-to-ground fault should have high sensitivity and 100% coverage. On the basis of the internal fault simulation model of Powerformer, the electrical characteristics of it on the occurrence of a stator single phase-to-ground fault are analyzed and a zero-sequence energy based novel protection scheme for stator single phase-to-ground faults is proposed. This protection scheme requires the measurements of the zero-sequence voltage and the zero-sequence current from the terminal of Powerformer to formulate zero-sequence power and zero-sequence energy. By means of the analysis of the direction of zero-sequence energy, the internal faults and the external faults can be distinguished.
     In order to reduce the volume of the Powerformer, the insulation system of it is designed in a graded way, and the insulation intensity of the neutral is comparatively weaker. When the Powerformer is operating in the condition of open-phase, the neutral will endure very high voltage, which will have seriously negative impact on the insulation of the Powerformer. Based on the analysis of the characteristics of open-phase operational state, a novel open-phase protection scheme utilizing the zero-sequence voltage of the terminal and the negative-sequence current of the stator windings is proposed. A simulation model is set up using EMTDC, and intensive simulations are carried out to verify the protection scheme.
     Powerformer is connected to HV busbar directly. Hence, for a group of Powerformers operating in parallel, if one of them encounters excitation failure and leads to the scenario of overvoltage, all the Powerformers will be isolated without selectivity by the simple overvoltage protection only relying on the same fixed time delay. On the basis of the analysis of the relationship between the terminal voltage and the reactive power of a Powerformer, a new overvoltage protection scheme is put forward in this dissertation. In addition to the detection of overvoltage condition, this protection can also identify the source of overvoltage by virtue of the variety of reactive power. A compensated voltage factor is used to modify the operating time of the protection. In this case, the generator which has the most vital impact on the overvoltage of the busbar will be tripped firstly. Then, the protections of the sound Powerformers will drop off due to the removal of the disturbance source. The application of this protection scheme includes but is not restricted to Powerformer, which can also provide the selective overvoltage protection for conventional generators working in parallel.
     The principle of High side voltage control (HSVC) of conventional generators is studied in this dissertation. On the basis of that, its ability of improving transient angle stability of power systems is analyzed. Because of the direct connection to the HV busbar, the Powerformer can control the voltage of the HV busbar without adding a HSVC module. In this dissertation, the Powerformer is initially utilized to realize HSVC excitation control. A single-generator-infinite-system model and an EPRI-7 nodes system model are set up by virtue of PSASp (Power System Analysis Software Packet). Compared with the controlling effects of the conventional generator AVR and conventional generator HSVC excitation control, the ability of Powerformer voltage control of improving transient angle stability of power systems is analyzed.
     The fundamental theories of voltage stability, the countermeasures of improving transient voltage stability and the overload characteristic of Powerformer are studied in this dissertation. After that, an EPRI-36 nodes system is set up by virtue of PSASP. Compared with the controlling effects of conventional generator AVR and conventional generator HSVC excitation control, the ability of Powerformer voltage control of improving transient voltage stability of power systems is analyzed.
     Finally, conclusions are made and further work worth lucubrating is outlined.
引文
1.Alfredson S,Hernnas B,Bergstrom H.Assembly of generators with rated voltage higher than 100 kV.In:Wong KP.2000 International Conference on Power System Technology Proceedings.New York,United States:Institute of Electrical and Electronics Engineers Inc.2000.189-193
    2.Leijon M.Powerformer-a radically new rotating machine.ABB Review,1998(2):21-26
    3.Leijon,M.Novel concept in high voltage generation:Powerformer.In:IEE Conference Publication.New York,United States,Institute of Electrical and Electronics Engineers Inc.,1999.5-9
    4.Lindahl S.Improved control of field current heating for voltage stability machine design-Powerformer.In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2001.209-213
    5.田庆,林湘宁,刘沛.高压发电机内部故障仿真研究.中国电机工程学报,2006,26(5):26-31
    6.林湘宁,田庆.Powerformer 继电保护系统研究动态.电力系统自动化,2005,29(8):5-9
    7.Lloyd G J,Yip T H,Lin X,et al.Evolution of numerical generator protection for application to a Powerformer.In:Proceedings of Eighth IEE International Conference on Developments in Power System Protection.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2004.555-558
    8.Aumuller C A,Saha T K.Investigating the Impact of Powerformer on Voltage Stability by Dynamic Simulation.IEEE Transactions on Power Systems,2003,18(3):1142-1148
    9.Sachdev M S,Wind D W.Generator differential protection using a Hybrid computer.IEEE Transactions on Power Apparatus and Systems,1973,92(6):2062-2073
    10.Hope G S,Dash P K,Malik O P.Digital differential protection of a generating unit scheme and real-time test results.IEEE Transactions on Power Apparatus and Systems,1977,96(2):502-512
    11.陈德树.计算机继电保护原理与技术.北京:水利电力出版社,1992.145-153
    12.李海,王维俭.发变组增量差动微机保护.继电器,1992,20(1):7-14
    13.Mcleer P J,Mir M.A new technique of differential relaying:the differential relay,IEEE Transactions on Power Apparatus and Systems,1992,101 (10):4164-4170
    14.姚晴林,邹东霞,林韩等.微机型发电机相位比较式纵差动保护.继电器,1993,21(1):17-24
    15.王维俭,张学深,田开华等.电气主设备纵差保护的进展.继电器,2000,28(5):6-8
    16.王维俭.电气主设备继电保护原理与应用(第二版),北京:中国电力出版社,2002.多处
    17.王维俭,刘俊宏.大型发电机内部短路主保护的发展新动向.电力自动化设备,1994,(1):1-4
    18.刘俊宏,王维俭.发电机不完全纵差保护.中国电力,1997,30(4):34-37
    19.王维俭,桂林,王祥珩.三峡电站发电机新型标积制动不完全纵差保护的最新进展.电力自动化设备,2000,20(6):6-10
    20.李振华,王维俭.单元件发电机内部短路保护的研究.电力自动化设备,1994,14(2):1-6
    21.王维俭,孙宇光,王祥珩.大型发电机定子绕组匝间短路保护的讨论.电力自动化设备,2000,20(3):1-3
    22.陈德树,尹项根,张哲.发电机单元件横差保护的一些问题.见:第八届全国继电保护学术研讨会论文集.北京:中国电机工程学会,2001.85-89
    23.伍叶凯,邹东霞.一种高灵敏度的发电机横差保护方案.电网技术,1997,21(1):35-37
    24.王维俭,桂林.三峡电站不完全裂相横差保护的灵敏度分析.电力自动化设备,2001,21(4):1-5
    25.王维俭,桂林,王祥珩.论大型发电机微机主保护设计的科学性.电力自动化设备,2002,22(2):1-7
    26.傅自清,陈文学.大型汽轮发电机定子匝间保护及中性点引出方式探讨.电力系统自动化,2000,24(9):63-66
    27.尹项根,陈德树.反应故障分量的发电机定子不对称故障微机保护.中国电机工程学报,987,7(3):50-55
    28.尹项根,陈德树.新型大型发变组主保护方案的研究与试验—微机故障分量功率方向保护的应用.电力系统及其自动化学报,1993,5(6):20-24
    29.王豫川.大坝电厂30万 kW 汽轮发电机定子绕组内部故障主保护技改的可行性探讨.继电器,2000,28(7):16-21
    30.王维俭.主设备保护的几个理论和运行问题.电力系统自动化,1999,23(11):1-5
    31.屠黎明.同步发电机定子绕组内部故障分析方法及其应用的研究:[博士学位论文].南京:东南大学图书馆,1999
    32.肖仕武.同步发电机定子绕组内部故障暂态仿真及其应用的研究:[博士学位论文].保定:华北电力大学图书馆,2003
    33.毕大强,王祥珩,王维俭.发电机中性点经消弧线圈谐振方式接地中串联电阻对定子单相接地保护的影响.继电器,2001,29(11):5-8
    34.王维俭,毕大强.防止高压厂用变压器低压侧单相接地造成发电机单相接地保护误动.电力自动化设备,2001,21(9):1-3
    35.夏东升,王燕明,王云飞.厂用电系统单相接地故障对发电机零序电压的影响.电力情报,2001(3):19-22
    36.田伟,白铮,权东国等.北安电厂发电机定子接地故障误动原因的分析.继电器,2000,28(5):51-54
    37.Pazmandi L.Stator earth-leakage protection for large generators.IEEE Transaction on Power Apparatus and Systems,1975,94(4):1436-1439
    38.Marttila R J.Design principles of a new generator stator ground relay for 100% coverage of the stator winding.IEEE Transaction on Power Delivery,1986,1 (4):41-51
    39.史世文.发电机变压器三次谐波式接地保护分析.南京工学院学报,1979,(7):1-20
    40.王维俭,鲁华富.三次谐波电压式定子接地保护的运行和改进.中国电力,1995,28(11):46-49
    41.Kerr D J.The application of 100%stator earth fault protection to salient pole generators.Journal of Electrical and Electronics Engineering,1988,10(1):51-59
    42.Rifaat R M.Considerations for generator ground fault protection in midsize congeneration plants.IEEE Transaction on Industry Application,1997,33(3):628-634
    43.Rifaat R M.Utilizing third harmonic 100%stator ground fault protection a cogeneration experience.In..Proceedings of IEEE Industry Applications Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.3254-3259
    44.Zielichowskil M and Fulczyk M.Optimization of third harmonic ground-fault protection systems of unit-connected generators ground through neutralizer.Electric Power System Research,1998,(45):149-162
    45.Zielichowski M and Fulczyk M.Influence of voltage transformers on operating conditions of ground-fault protection system for unit-connected generator.Electrical Power and Energy Systems,1998,20(5):313-319
    46.Zieliehowski M and Fulczyk M.Influence of load on operating conditions of third harmonic ground-fault protection system of unit connected generators.IEE Proceedings:Generation,Transmission and Distribution,1999,146(3):313-319
    47.唐清弟,谭建华.定子接地保护误动原因分析和对策.电力系统自动化,2001,25(1):59-61
    48.马肃,李玉海.JDJ-31型三次谐波式定子接地保护存在问题的研究及改进.电力自动化设备,1994,14(2):27-30,44
    49.张政军.QFQS-200-2型汽轮发电机定子接地保护的改进.电力自动化设备,1997,17(2):65-66
    50.李晋民.双频分离100%定子接地保护动作分析.华东电力,1998,(7):24-26
    51.李晋民.100%定子接地保护改进方案的研究.电网技术,1998,22(9):46-48
    52.逍遥,胡斌,邓春年等.发电机三次谐波电压与定子接地保护整定值.华中电力,2000,13(1):23-25
    53.乐秀蕃,张方军.大容量发电机定子接地保护改造过程的分析.电力自动化设备,2002,22(12):20-22
    54.马俊超.防止发电机定子接地保护误动的措施.华中电力,1998,(4):35-37
    55.史世文,丁莹,孙斌华等.外加直流法定子接地保护.电力系统自动化,1978,2(3):36-56
    56.颜卓胜,李振然.微机人工二次谐波发电机定子单相接地保护.继电器,1997,25(4):26-29,59
    57.Ilar M,Zidar J,Fiorentzis M.Innovations in generator protection.Brown Boveri Review,1978,65(6):379-387
    58.Pope J W.A comparison of 100%stator ground fault protection schemes for generator stator windings.IEEE Transaction on Power Apparatus and Systems,1994,103(4):832-840
    59.赵兴国,柏青海.新原理的发电机100%定子接地保护.电站设备自动化,1988,(1):44-49
    60.大机组继电保护调查报告.电力自动化设备,1996,16(2):60-64
    61.Eitel F,Knutter,Karl N.New stator fault for high voltage machines.Siemens Review,1973,(4):157-159
    62.王维俭,徐振宇,张振华.大型发电机定子单相接地保护的研讨.继电器,1999,27(4):6-9
    63.邰能灵,尹项根,胡玉峰等.注入式定子单相接地保护的应用分析.继电器,2000,28(6): 15-17
    64.Tai N L,Yin X G,Zhang Z et al.Research of subharmonic injection schemes for hydro-generator stator ground protection.In:Proceedings of IEEE Power Engineering Society Winter Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.1928-1932
    65.曾祥君,尹项根,陈德树等.注入信号法补偿式高灵敏度发电机定子接地保护.中国电机工程学报,2000,20(11):51-55,61
    66.Wu J A,Wan H,Lu Y P.Study of a fresh subharmonic injection scheme based on equilibrium principle for hydro-generator stator ground protection.In:Proceedings of IEEE Power Engineering Society Winter Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2002.924-929
    67.王维俭,侯炳蕴.大型机组继电保护理论基础(第二版).北京:中国电力出版社.1982.多处
    68.Hojo,M,Mitani Y,Tsuji K.Voltage and power swing stabilization by decoupled control with AVR and phase shifter.In:Proceedings of the International Conference on Energy Management and Power Delivery,EMPD.New York,United States:Institute of Electrical and Electronics Engineers Inc.1998.183-187
    69.Kim J M,Kim K H,Moon S I.A study on an AVR parameter tuning method using real-time simulator.In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.1936-1939
    70.于占勋,段献忠,陈德树等.多机电力系统智能变结构 PSS 的研究.中国电机工程学报,1998.18(3):186-190
    71.杨敏虹,邵伟,于渤.PSS 参数选择和优化的仿真分析.浙江大学学报(工学版),2001,35(5):526-531
    72.Ahmed T P I,Gajendran E Study of dynamic stability of power system with PSS,a software package.Journal of the Institution of Engineers (India),Part EL..Electrical Engineering Division,1992,73(4):234-240
    73.Taylor C W.Line drop compensation,high side voltage control,secondary voltage control-Why not control a generator like a static var compensator? In:Proceedings of IEEE Power Engineering Society Summer Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.307-311
    74.Kosterev D.Design,installation,and initial operating experience with Line Drop Compensation at John Day powerhouse.IEEE Transactions on Power Systems,2001.16(2):261-267
    75.Amatore C,Lefrou C.New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV.Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1992,324(1-2):33-38
    76.Davies J B,Midford L E.High side voltage control at Manitoba Hydro.In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.271-275
    77.Murdoch A,Sanchez-Gasca J J,D'Antonio M J et al.Excitation control for high side voltage regulation.In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.285-289
    78.Kitamura H,Shimomura M,Paserba J.Improvement of voltage stability by the advanced high side voltage control regulator.In:Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.278-283
    79.程林,孙元章,贾宇等.发电机励磁控制中负荷补偿对系统稳定性的影响.中国电机工程学报,2007,27(25):32-37
    80.王琦,朱凌志,安宁等.采用先进的高压侧电压控制改善电压稳定性.清华大学学报(自然科学版),2004,44(1):102-105
    81.孙元章,姚小寅,刘峰.二级电压控制对电力系统稳定性的影响.中国电机工程学报,2000,20(2):28-32
    82.李兴源,段海峰.改善电压稳定性的发电机非线性最优变目标励磁控制.中国电机工程学报,1998,18(3):209-211
    83.王琦,周双喜,朱凌志.采用高压侧电压控制改善系统的角度稳定性.电网技术,2003,27(6):19-21
    84.安宁,张丽,朱凌志等.采用先进的高压侧电压控制改善阳城—淮阴500kV 交流输电系统性能.中国电力,2004,37(3):14-18
    85.IEEE/CIGRE Joint Task Force on Stability Terms and Definitions.Definition and Classification of Power System Stability.IEEE Transactions on Power System.2004,19(3):1387-1401
    86.刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社,2007.4-7
    87.Dellby B.High-voltage cable technology.ABB Review,2000(4):35-39
    88.Touma-Holmberg M,Hjame S.Suppression of slot discharges in a cable wound generator.IEEE Transactions on Energy Conversion,2003.18(3):458-465
    89.Ming L,Jaksts A,Liu Rongsheng et al.Recent trends within insulation systems for transmission and distribution apparatus.In:Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.849-855
    90.Imrell A M.Life cycle assessment-looking at powerformer.ABB Review,2000(2):63-67
    91.辜承林,朱建华.电力主设备制造与运行监测新技术.电力自动化设备,2004,24(7):19-30
    92.Andersson T,Forsmark S,Jaksts A.Dryformer-a new type of oil-free power transformer with low environmental impact.ABB Review,2000(3):59-64
    93.Leijon M,et al.High voltage power generation without transformers.International Journal on Hydropower & Dams,1998.5(4):37-41
    94.Darveniza M,Saha T K,Berggren B et al.A research project to investigate the impact of electricity system requirements on the design and optimal application of the powerformer.In Proceedings of the IEEE Power Engineering .Society Transmission and Distribution Conference.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2001.504-509
    95.Aumuller C,Saha T K.Investigating the impact of Powerformer on large scale system voltage stability.In Proceedings of IEEE Power Engineering Society General Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2005.1768-1774
    96.Limbu T R,Saha T K.Investigations of the impact of powerformer on composite power system reliability.In Proceedings of IEEE Power Engineering Society General Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2005.406-410
    97.Andersson L.Powerforrner chosen for Swedish combined heat and power plant.ABB Review,1999(3):19-23
    98.戈宝军,张大魁,梁艳萍.能量变换器及其最新发展.电工技术学报,2005,20(1):26-32
    99.Zeng Xiangjun,Yin Xianggen,Lin Gan et al.Improvement of Subharmonic Injection Schemes for Huge Hydro-generator Stator Ground Fault Protection.In Proceedings of International Conference on Power System Technology.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2002.707-710
    100.Leijon M,et al.Powerformer-experiences from the application of extruded solid dielectric cables in the stator winding of rotating machines.In Proceedings of IEEE Power Engineering Society Winter Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2000.736-744
    101.Leijon M,et al.Powerformer:a giant step in power piant engineering.In Proceedings of International Conference on Electric Machines and Drives.New York,United States:Institute of Electrical and Electronics Engineers Inc.,1999.830-832
    102.Dettmer R.The heart of a new machine [Powerformer,cable-wound stator machine].IEE Review,1998,44(6):255-258
    103.IEEE guide for AC generator protection.IEEE Standard C37.102-1995,Aug.1996
    104.Holmberg M T,Hjame S.Suppression of Slot Discharges in a Cable Wound Generator.IEEE Transactions on Energy Conversion,2003,18(3):458-465
    105.Liu P,Malik O P,Chen D Set al.Improved operation of differential protection of power transformers for intemal faults.IEEE Transactions on Power Delivery,1992,7(4):1912-1919
    106.Megahed A I,Malik O P.Synchronous generator internal fault computation and experimental verification.IEE Proceedings - Generation,Transmission and Distribution,1998,145(5):604-610
    107.田庆.Powerformer 故障仿真、保护及相关的电力系统稳定问题:[博士学位论文].武汉:华中科技大学图书馆,2006
    108.Holmberg P.Modeling The Transient Response of Windings,Laminated Steel Cores And Electromagnetic Power Devices By Means Of Lumped Circuits:[Doctor Degree Dissertation].Uppsala:Uppsala University,2000
    109.Omer Usta,Mehmet Bayrak.A New Power-Based Digital Algorithm for Generator Protection.IEEE Power Engineering Review,2000,20(2):49-52
    110.夏文武.发电机非全相运行分析及处理.江西电力,2007,(31)3:6-9
    111.冯杨州.大型汽轮发电机组非全相运行的分析与研究:[硕士学位论文].保定:华北电力大学,2005
    112.国家电力调度中心.电力系统继电保护实用技术问答(第2版).北京:中国电力出版社, 2000.309
    113.何仰赞,温增银.电力系统分析(上册)(第3版).武汉:华中科技大学出版社,2002.多处
    114.Kundur Prabha.Power system stability andcontrol.America:McGraw-Hill Press,2001.多处
    115.何仰赞,温增银.电力系统分析(下册)(第3版).武汉:华中科技大学出版社,2002.多处
    116.周晓渊,邱家驹,陈新琪.高压侧电压控制对单机一无穷大系统稳定性的影响.中国电机工程学报,2003,23(1):60-63
    117.Dong F,et al.Mid-term Voltage Stability Study Using the Quasi-Steady State Analysis Method.In Proceedings of IEEE Power Engineering Society General Meeting.New York,United States:Institute of Electrical and Electronics Engineers Inc.,2003.2646-2650
    118.孙元章,姚小寅,刘锋.二级电压控制对电力系统稳定性的影响.中国电机工程学报,2000,20(2):28-32
    119.Taylor C W.Improving grid behavior.IEEE Spectrum,1999.36(6):40-45
    120.袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社.2007.51-70
    121.周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制.北京:中国电力出版社.2004年.多处
    122.IEEE Committee Report,Voltage Stability of Power System:Concept,Analytical Tools,and Industry Experience,IEEE/PES 90TH0358-2-PWR,1990
    123.GIGRE TF38.02.10.Modeling ofVoltage Collapse including Dynamic Phenomena.Electra,No.147,Apr.1993,71-77
    124.曾江.电力系统电压稳定的稳态方法研究:[硕士学位论文].杭州:浙江大学图书馆,1996
    125.Lee B,Ajjarapu V.A Piecewise Global Small-Disturbance Voltage-Stability Analysis of Structure-Preserving Power System Models.IEEE Transactions on Power Systems,1995,10(4):1963-1971
    126.IEEE Working Group K12.Voltage collapse mitigation.IEEE Power System relaying Committee,1996
    127.Hammad A E,E1-Sadek M Z.Prevention of Transient Voltage Instabilities Due to Induction Motor Loads by Static VAR Compensators.IEEE Power Engineering Review,1989,9(8):62-63
    128.Pilotto L A,Szechtrnan M,Hammad A E.Transient AC voltage related phenomena for HVDC schemes connected to weak AC systems.IEEE Transactions on Power Delivery,1992,7(3):1396-1404
    129.Williams B R,Schmus W R,Dawson D C.Transmission voltage recovery delayed by stalled air conditioner compressors.IEEE Transactions on Power Systems,1992,7(3):1173-1181
    130.Deuse J,Dubois J,Fanna R et al.EWR under voltage load shedding scheme.IEEE Transactions on Power Systems,1997,12(4):1446-1454
    131.Taylor C W,Concept of undervoltage load shedding for voltage stability.IEEE Transactions on Powey Delivery,1992,7(2):480-488
    132.Nirenberg S A,Mclnnis D A,Sparks K D.Fast acting load shedding.IEEE Transactions on Power Systems,1992,7(2):873-877
    133.Thierry V C,Costas V.电力系统电压稳定性.王奔译.北京:电子工业出版社,2008.72-76,189-190
    134.中国电力科学研究院.EPRI-36算例说明.北京:中国电力科学研究院,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700