用户名: 密码: 验证码:
电力系统动态电压稳定控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网的大规模广域互联和电力市场化使得电力系统的运行点比以往更接近稳定极限,这促使电力工业界研究开发更加有效的稳定控制方法。本文的研究工作围绕着“电压稳定”和“功角稳定”两个经典的研究领域展开,定位于系统的稳定性控制,主要内容概括为基于系统运行状态的电压稳定性控制与基于FACTS控制器的暂态功角稳定性控制。本文取得的主要研究成果如下:
     提出了最优协调电压紧急控制新模型,新模型考虑了负荷内在动态和控制的连续/离散特性,紧急情况下能够从全局意义上协调位于不同地理位置的不同类型的控制。电压稳定的性能指标采用负荷母线电压偏差的积分形式。基于最优控制原理严格推导了性能指标相对控制的灵敏度(梯度),灵敏度可以通过前向求解QSS时域仿真与后向求解伴随方程得到。新模型具有以下优点:①求解方便:灵敏度的获得使得难于处理的复杂的优化问题转换为易于求解的二次规划问题。②切负荷的合理性:利用灵敏度指导切负荷,具有最大灵敏度的负荷被优先切除,保证了最少的切负荷量。③模型适应性强:新模型基于QSS时域仿真,对系统模型和规模的适应性与时域仿真等同。④在线计算的潜力:一次灵敏度计算时间小于两次QSS仿真时间,而且二次规划的求解速度比现有模型中采用的智能方法快得多。文中还给出了利用模态分析技术沿着QSS不稳定时域轨迹离线选择系统弱母线的方法。
     提出了考虑电压稳定约束的最优预防控制新方法,与现有预防控制方法相比,新方法不需要沿着系统故障后轨迹鉴别临界点,既能针对故障后系统动态轨迹稳定、但电压不安全的情况实施预防控制,又能针对故障后系统动态轨迹不稳定的情况实施预防控制,具有很强的实用性。新方法不依赖于控制的类型,控制措施可以方便地扩展到其它参数空间。
     统一潮流控制器(UPFC)是功能最全面的FACTS控制器,最早提出了将控制理论中的相对增益矩阵(RGA)方法应用于分析UPFC多个控制回路之间的耦合程度,从而为UPFC选择了控制回路之间耦合程度最为薄弱的最佳变量配对方案,并且详细分析了运行方式以及振荡频率变化对最佳变量配对的影响。基于RGA方法首次为文献中广为采用的UPFC控制方案提供了严格的理论支持。提出了UPFC直流电容电压的控制策略,基于该策略设计了阻尼联络线低频振荡的UPFC两阶段控制方案,文中还给出了一种利用UPFC安装处的本地可测量信号估算惯性中心之间角速度的方法,估算结果准确、可靠。
The large-scale wide area interconnected electric network and deregulated market environment of power systems have driven the operation of power systems closer to their limits than ever, and urge the electric power industry to study and develop more effective stability control methodologies. This thesis involves two classical research fields, namely, voltage and angle stability, and focuses on the power system stability control. The main contents include the voltage stability control based on the operation state of power systems and angle stability control based on the FACTS controller. The following are the main contributions of this thesis.
     This thesis proposes a novel model for optimal coordinated voltage emergency control. It takes account of the dynamics of loads and discrete/continuous nature of controls with coordination of dissimilar controls at different geographical locations in order to prevent voltage collapse during an emergency. An integration index of the load bus voltage deviation is adopted as the voltage stability performance index.
     Based on the optimal control theory, the sensitivities (gradients) of this performance index with respect to controls are derived rigorously. The sensitivities can be evaluated by solving the adjoint equations using the fast quasi-steady-state (QSS) time domain simulation results. This novel model has the following advantages: Firstly, the availability of the sensitivity allows the complex intractable voltage optimization problem to be transformed into a classical quadratic programming problem. Secondly, load shedding is guided via the sensitivity information. The ones with higher sensitivity would have the higher priority to shed such that the minimum amount of load shedding can be ensured. Thirdly, this novel model is based on the QSS simulation; therefore it has the same adaptability to the system modeling and scale as the time domain simulation. Finally, the overall computational speed of the novel model is very competitive. Typical computation time of sensitivity is less than two times QSS computation time, and the computation speed of quadratic programming is much faster than the intelligence methods. Moreover, a method to select the buses vulnerable to voltage instability using the modal analysis technique along QSS unstable trajectory is also provided in this thesis.
     This thesis proposes a novel optimal preventive control methodology with voltage stability constraints. Compared to the existing preventive control methodologies, the proposed novel methodology do not require to identify the critical point along the QSS time domain trajectory of the post-contingency system. It can deal with not only the case that the dynamic trajectory of the post-contingency system is stable but voltages have violation, but also the case that the dynamic trajectory of the post-contingency system is unstable. Since this novel methodology is not dependent on the control type, it is convenient to extend the controls to other parameter spaces.
     The unified power flow controller (UPFC) is the most versatile FACTS controller, in this thesis the relative gain array (RGA) method in control theory is first applied to analyze the interaction degree among UPFC multiple control channels, and select the best variable pairs for UPFC under which the interaction among UPFC control channels is the weakest. Furthermore, the influences of operation mode variations and oscillation frequency variations on best pairs are analyzed. Based on RGA method this thesis for the first time provides the rigorous theory support for the widely used control scheme of UPFC. Novel control strategies of DC capacitor voltage are then proposed and lead to the design of a novel two-stage control scheme for UPFC to damp tie-line low frequency oscillation. Moreover, an effective estimation method based on the locally measurable quantities is proposed in this thesis to estimate the angular speed difference between centers of inertia (COI), and the estimation result is quite accurate.
引文
[1] 于群, 郭剑波, 中国电网停电事故统计与自组织临界性特征, 电力系统自动化, 2006, 30(2): 16-20
    [2] 国家电力公司, 2002 年中国电力市场分析与研究, 北京:中国电力出版社, 2002, 1-24
    [3] 李鹏, 从平衡点到振荡-基于域、分岔及阻尼理论的电力系统稳定分析, 博士学位论文, 天津大学, 2004.12
    [4] 崔凯, 电力系统概率暂态稳定性分析与控制方法研究, 博士学位论文, 天津大学, 2006.4
    [5] 包黎昕, 段献忠, 状态空间中电压稳定性的动态分析, 中国电机工程学报, 2001, 21(5): 17-22
    [6] 韩祯祥, 曹一家, 电力系统的安全性及防治措施, 电网技术, 2004, 28(9): 1-6
    [7] 曹一家, 丁理杰, 江全元, 等, 基于协同性原理的电力系统大停电预测模型, 中国电机工程学报, 2005, 25(18): 13-18
    [8] US-Canada power system outage task force, Final report on the August 14th blackout in the United States and Canada: Causes and Recommendations, http://www.nerc.com/2004
    [9] 鲁宗相, 电网复杂性及大停电事故的可靠性研究, 电力系统自动化, 2005, 29(12): 93-97
    [10] 唐斯庆, 张弥, 李建设, 海南电网“9?26”大面积停电事故的分析与总结, 电力系统自动化, 2006, 30(1): 1-7
    [11] 程芸, 钟德成, 钟志勇, 考虑动态电压稳定约束的互联系统间有效输电能力计算, 电力系统自动化, 2004, 28(6): 30-34
    [12] 薛禹胜, 建立中国南方电网的协调防御体系, 电力系统自动化, 2005, 29(24): 2-5
    [13] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, Definition and classification of power system stability, IEEE Trans. on Power Systems, 2004, 19(2): 1387-1400
    [14] 肖晋宇, 谢小荣, 胡志祥, 等, 电力系统低频振荡在线辨识的改进 Prony 算法, 清华大学学报(自然科学版), 2004, 44 (7): 883-887
    [15] 朱方, 汤涌, 张东霞, 等, 我国交流互联电网动态稳定性问题的研究及解决策略, 国家电网公司电力系统稳定工作研讨会论文集, 2004: 14-20
    [16] P. Kundar, Power system stability and control, New York: McGraw~Hill, 1994
    [17] T. Van Cutsem, C. Vournas, Voltage stability of electric power systems, Norwell,MA:Kluwer, 1998
    [18] T. Van Cutsem, Voltage instability: phenomena, countermeasures, and analysis methods, Proceedings of The IEEE, 2000, 88 (2): 208-227
    [19] V. Ajjarapu, C. Christy, The continuation power flow: a tool for steady state voltage stability analysis, IEEE Trans. on Power Systems, 1992, 7 (1): 416-423
    [20] Antonio C.Z. de Souza, C.A. Canizares, V.H. Quintana, New techniques to speed up voltage collapse computations using tangent vectors, IEEE Trans. on Power Systems, 1997, 12 (3): 1380-1387
    [21] F.C.V. Malange, D.A. Alves, L.C.P. da Silva, et al, Real power losses reduction and loading margin improvement via continuation method, IEEE Trans. on Power Systems, 2004, 19 (3): 1690-1692
    [22] 朱凌志, 周双喜, 电压稳定分析的潮流算法研究, 电力系统自动化, 2000, 24 (5): 1-4
    [23] Z.H. Feng, V. Ajjarapu, B. Long, Identification of voltage collapse through direct equilibrium tracing, IEEE Trans. on Power Systems, 2000, 15 (1): 342-349
    [24] B.H. Chowdhury, C.W. Taylor, Voltage stability analysis: V-Q power flow simulation versus dynamic simulation, IEEE Trans. on Power Systems, 2000, 15 (4): 1354-1359
    [25] R.B. Prada, E.G.C. Palomino, J.O.R. dos Santos, et al. Voltage stability assessment for real-time operation, IEE Proceedings-Generation, Transmission and Distribution, 2002, 149 (2): 175-181
    [26] Z.H. Jia, B. Jeyasurya, Contingency ranking for on-line voltage stability assessment, IEEE Trans. on Power Systems, 2000, 15 (3): 1093-1097
    [27] Z. Feng, W. Xu, Fast computation of post-contingency system margins for voltage stability assessments of large-scale power systems, IEE Proceedings-Generation, Transmission and Distribution, 2000, 147 (2): 76-80
    [28] B.Gao, G.K. Morison, P. Kundur, Voltage stability evaluation using modal analysis, IEEE Trans. on Power Systems, 1992, 7(4): 1529-1542
    [29] G.K. Morison, B. Gao, P. Kundur, Votage stability analysis using static and dynamic approaches, IEEE Trans. on Power Systems, 1993, 8 (3): 1159-1171
    [30] 冯治鸿, 周双喜, 大规模电力系统电压失稳区的确定方法, 中国电机工程学报, 1997, 17(3): 21-26
    [31] I. Dobson, L.M. Liu, New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse, IEEE Trans. on Power Systems, 1993, 8(3): 905-913
    [32] F. Alvarado, I. Dobson, Y. Hu, Computation of closest bifurcation in power systems, IEEE Trans. on Power Systems, 1994, 9(2): 918-928
    [33] S. Greene, I. Dobson, F. Alvarado, Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters, IEEE Trans. on Power Systems, 1997, 12(1): 262-270
    [34] I. Dobson, L.M. Liu, Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems, IEEE Trans. on Automatic Control, 1992, 37(10): 1616-1620
    [35] I. Dobson, Observation of the geometry of saddle node bifurcation and voltage collapse in electrical power systems, IEEE Trans. on Circuits and System –I: Fundamental Theory and Application, 1992, 39(3): 240-243
    [36] I. Dobson, H.D. Chiang, Towards a theory of voltage collapse in electric power systems, Systems & Control Letters, 1989, 13: 253-262
    [37] C.A. Canizares, On bifurcation, voltage collapse and load modeling, IEEE Trans. on Power Systems, 1995, 10(1): 512-522
    [38] C.A. Canizares, Calculating optimal system parameters to maximize the distance to saddle-node bifurcations, IEEE Trans. on Circuits and System –I: Fundamental Theory and Application, 1998, 45(3): 225-237
    [39] B. Lee, V. Ajjarapu, Invariant subspace parametric sensitivity (ISPS) of structure-preserving power system models, IEEE Trans. on Power Systems, 1996, 11(2): 845-850
    [40] B. Long, V. Ajjarapu, The sparse formulation of ISPS and its application to voltage stability margin sensitivity and estimation, IEEE Trans. on Power Systems, 1999, 14(3): 944-957
    [41] V. Ajjarapu, B. Lee, Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system, IEEE Trans. on Power Systems, 1992, 7(1): 424-431
    [42] E.H. Abed, P.P. Varaiya, Nonlinear oscillations in power systems, International Journal of Electric Energy and Power Systems, 1984, 6(1): 37-43
    [43] A.A.P. Lerm, C.A. Canizares, A. S. e Silva, Multiparameter bifurcation analysis of the South Brazilian power system, IEEE Trans. on Power Systems, 2003, 18(2): 737-746
    [44] I. Dobson, F. Alvarado, C.L. Demarco, Sensitivity of Hopf bifurcations to power system parameters, Proceedings of the 31st Conference on Decision and Control, Tucaon, Artzons, 1992, 2928-2933
    [45] A.A.P. Lerm, A.S. e Silva, Avoiding Hopf bifurcations in power systems via set-points tuning, IEEE Trans. on Power Systems, 2004, 19(2): 1076-1084
    [46] V. Venkatasubramanian, H. Schattler, J. Zaborszky, Local bifurcations and feasibility regions in differential-algebraic systems, IEEE Trans. on Automatic Control, 1995, 40(12): 1992-2013
    [47] K. Kim, H. Schattler, V. Venkatasubramanian, et al. Methods for calculating oscillations in large power systems, IEEE Trans. on Power Systems, 1997, 12(4): 1639-1648
    [48] T. Smed, Feasible eigenvalue sensitivity for large power systems, IEEE Trans. on Power Systems, 1993, 8 (2): 555-563
    [49] P. Nolan, N. Sinha, R. Alden, Eigenvalue sensitivities of power systems including network and shaft dynamics, IEEE Trans. on Power Apparatus and Systems, PAS-95, 1976, 1318-1324
    [50] F. L. Pagola, I.J. Peres-Arriaga, G.C. Verghese, On sensitivities, residues and participations: applications to oscillatory stability analysis and control, IEEE Trans. on Power Systems, 1989, PWRS-4(1): 278-285
    [51] C.A. Canizares, Concepts, practices and tools, IEEE/PES Power System Stability Subcommittee, Available: http:// www.power.uwaterloo.ca
    [52] P.A. Lof, G. Andersson, D.J. Hill, Voltage dependent reactive power limits for voltage stability studies, IEEE Trans. on Power Systems, 1995, 10(1): 220-228
    [53] I. Dobson, L. Liu, Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered, IEEE Trans. on Power Systems, 1992, 39(9): 762-766
    [54] I.A. Ozcan, H. Schattler, On the calculation of the feasibility boundary for differential-algebraic systems, Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona USA, 1999, vol.3: 2580-2586
    [55] I.A. Ozcan, H. Schattler, A computational method for the calculation of the feasibility boundary and clustering in differential-algebraic systems, IEEE Trans. On Circuits and Systems-I: Regular Papers, 2005, 52 (9): 1940-1952
    [56] K. Ben-Kilani, R.A. Schlueter, An approach for determining the subsystem experiencing and producing a bifurcation in a power system dynamic model, IEEE Trans. on Power Systems, 2000, 15 (3): 1053-1061
    [57] R. Schlueter, S. Liu, K. Ben-Kilani, Justification of the voltage stability security assessment and diagnostic procedure using a bifurcation subsystem method, IEEE Trans. on Power Systems, 2000, 15 (3): 1105-1111
    [58] R.A. Schlueter, A voltage stability security assessment method, IEEE Trans. on Power Systems, 1998, 13 (4): 1423-1438
    [59] C.L. Demarco, T.J. Overbye. An energy based security measure for assessing vulnerability to voltage collapse, IEEE Trans. on Power Systems, 1990, 5 (2): 419-4279
    [60] T.J. Overbye, C.L. Demarco, Voltage security enhancement using energy based sensitivities, IEEE Trans. on Power Systems, 1991, 6 (3): 1196-1202
    [61] A.O. Ekwue, H.B. Wan, D.T.Y. Cheng, et al, Singular value decompositionmethod for voltage stability analysis on the National Grid System, Electrical Power & Energy System, 1999, 21: 425-432
    [62] P. Kessel, H. Glavitsch, Estimating the voltage stability of a power system, IEEE Trans. on Power Delivery, 1986, 1 (3): 346-354
    [63] 余贻鑫, 贾宏杰, 严雪飞, 可准确跟踪鞍节点分岔的改进局部电压稳定指标LI, 电网技术, 1999, 23(5): 19-23
    [64] W. Xu, Y. Mansour, Voltage stability analysis using generic dynamic load models, IEEE Trans. on Power Systems, 1994, 9(1): 479-493
    [65] D. Karlsson, D.J. Hill, Modeling and identification of nonlinear dynamic loads in power systems, IEEE Trans. on Power Systems, 1994, 9(1): 157-166
    [66] D.J. Hill, Nonlinear dynamic load models with recovery for voltage stability studies, IEEE Trans. on Power Systems, 1998, 13(2): 395-400
    [67] A. Borghetti, R. Caldon, A. Mari, et al, On dynamic load models for voltage stability studies, IEEE Trans. on Power Systems, 1997, 12(1): 293-303
    [68] S. Arnborg, G. Andersson, D. J. Hill, et al. On influence of load modeling for under-voltage load shedding studies, IEEE Trans. on Power Systems, 1993, 8(1):166-176
    [69] Y. Kataoka, A probabilistic nodal loading model and worst case solutions for electric power system voltage stability assessment, IEEE Trans. on Power Systems, 2003, 18 (4): 1507-1514
    [70] D. Chen, R. Mohler, Neural-network-based load modeling and its use in voltage stability analysis, IEEE Trans. on Control Systems Technology, 2003, 11 (4): 460-470
    [71] E. Vaahedi, Y. Mansour, S. Granville, et al, Dynamic security constrained optimal power flow/var planning, IEEE Trans. on Power Systems, 2001, 16 (1): 38-43
    [72] W.D. Rosehart, C.A. Canizares, V.H. Quintana, Effect of detailed power system models in traditional and voltage-stability-constrained optimal power-flow problems, IEEE Trans. on Power Systems, 2003, 18 (1): 27-35
    [73] W.D. Rosehart, C.A. Canizares, V.H. Quintana, Multi-objective optimal power flows to evaluate voltage security costs in power networks, IEEE Trans. on Power Systems, 2003, 18(2): 578-587
    [74] H. Song, B. Lee, Y.H. Moon, Reactive optimal power flow incorporating margin enhancement constraints with nonlinear interior point method, IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(6): 961-968
    [75] F. Milano, C.A. Canizares, M. Invernizzi, Multi-objective optimization for pricing system security in electricity markets, IEEE Trans. on Power Systems, 2003, 18 (2): 596-604
    [76] F. Milano, C.A. Canizares, A.J. Conejo, Sensitivity-based security-constrained OPF market clearing model, IEEE Trans. on Power Systems, 2005, 20(4): 2051-2060
    [77] 潘雄, 徐国禹, 连续潮流与最优潮流相结合的电力市场双侧竞价交易计划研究, 中国电机工程学报, 2005, 25(6): 6-10
    [78] 潘雄, 徐国禹, 基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算, 中国电机工程学报, 2004, 24(12): 86-91
    [79] 余贻鑫, 李鹏, 贾宏杰, 基于混合法的潮流可行域边界计算, 电力系统自动化, 2004, 28(13): 18-25
    [80] 韩琪, 余贻鑫, 李慧玲, 等, 电力系统注入空间静态电压稳定域边界的实用表达式, 中国电机工程学报, 2005, 25(5): 8-14
    [81] 韩琪, 余贻鑫, 贾宏杰, 等, 静态电压稳定域边界的非线性近似解析表达, 电力系统自动化, 2005, 29 (11): 11-14
    [82] 李慧玲, 余贻鑫, 韩琪, 等, 割集功率空间上静态电压稳定域的实用边界, 电力系统自动化, 2005, 29 (4): 18-23
    [83] 牛犇, 余贻鑫, 贾宏杰, 等, 静态电压稳定域的三维可视化技术, 电网技术, 2005, 29(7): 56-59
    [84] 余贻鑫, 宿吉锋, 贾宏杰, 等, 电力大系统电压稳定可行域可视化初探, 电力系统自动化, 2001, 25(22): 1-5
    [85] 王成山, 许晓菲, 余贻鑫, 等, 电力系统电压稳定域的局部可视化描述及其应用, 中国电机工程学报, 2004, 24(3): 1-5
    [86] 赵金利, 余贻鑫, 贾宏杰, 等, 电力系统割集空间静态电压稳定域的可视化及实现, 电力系统自动化, 2005, 29(5): 56-61
    [87] 贾宏杰, 电力系统小扰动稳定域的研究, 天津大学博士学位论文, 2001.3
    [88] 贾宏杰, 王伟, 余晓丹, 等, 小扰动稳定域微分拓扑学性质初探, (一) 小扰动稳定域非凸边界和空洞现象示例, 电力系统自动化, 2005, 29(20): 20-23
    [89] 贾宏杰, 余晓丹, 小扰动稳定域微分拓扑学性质初探, (二) 小扰动稳定域内部空洞出现机理分析, 电力系统自动化, 2005, 29(21): 15-18
    [90] 余贻鑫, 贾宏杰, 王成山, 电力系统中的混沌现象与小扰动稳定域, 中国科学 E 辑, 2001, 31(5): 431-441
    [91] 曾沅, 电力系统实用动态安全域的研究, 天津大学博士学位论文, 2003.7
    [92] 余贻鑫, 曾沅, 冯飞, 电力系统注入空间动态安全域的微分拓扑特性, 中国科学(E 辑), 2002, 32(4): 503-509
    [93] 曾沅, 余贻鑫, 电力系统动态安区域的实用解法, 中国电机工程学报, 2003, 23(5): 24-28
    [94] 杨延滨, 余贻鑫, 曾沅, 等, 实用动态安全域降维可视化方法, 电力系统自动化, 2005, 29(12): 44-48
    [95] 樊纪超, 余贻鑫, 交直流并联输电系统实用动态安全域研究, 中国电机工程学报, 2005, 25(23): 19-24
    [96] T.J. Overbye, A power flow measure for unsolvable cases, IEEE Transactions on Power Systems, 1994, 9(3): 1359-1365
    [97] T.J. Overbye, Computation of a practical method to restore power flow solvability, IEEE Transactions on Power Systems, 1995, 10(1): 280-287
    [98] T.J. Overbye, Determination of emergency power system voltage control actions, IEEE Transactions on Power Systems, 1998, 13(1): 205-210
    [99] T.X. Zhu, S.K. Tso, K.L. Lo, An investigation into the OLTC effects on voltage collapse, IEEE Trans. on Power Systems, 2000, 15(2): 515-521
    [100] C. Vournas, M. Karystianos, Load tap changers in emergency and preventive voltage stability control, IEEE Trans. on Power Systems, 2004, 19(1): 492-498
    [101] D.H. Popovic, I.A. Hiskens, Y.V. Makarov, et al, Tap-locking as an emergency voltage control action in power supply systems, in Proceedings of 12th Power Systems Computation Conference, Dresden, 1996
    [102] C. Vournas, G.A. Manos, Emergency tap-blocking to prevent voltage collapse, IEEE Porto Power Tech Conference, 10th-13th September, Porto, Portugal, 2001, vol.2
    [103] C.W. Taylor, Concepts of undervoltage load shedding for voltage stability, IEEE Trans. on Power Delivery, 1992, 7(2): 480-488
    [104] C. Moors, T.V. Cutsem, Determination of optimal load shedding against voltage instability, in proceeding 13th PSCC, Trondheim, 1999
    [105] S. Arnborg, G. Andersson, D.J. Hill, et al, On under-voltage load shedding in power systems, international journal of Electrical Power and Energy System, 1997, 19(2): 141-149
    [106] Z.H. Feng, V. Aijarapu, A practical minimum load shedding strategy to mitigate voltage collapse, IEEE Trans. on Power Systems, 1998, 13(4): 1285-1291
    [107] X. Wang, G.C. Ejebe, J. Tong, et al, Preventive/corrective control for voltage stability using direct interior point method, IEEE Trans. on Power Systems, 1998, 13 (3): 878-883
    [108] Q. Wu, D. H. Popovic, D. J. Hill, et al, Voltage security enhancement via coordinated control, IEEE Transactions on Power Systems, 2001, 16(1): 127-135
    [109] D.H. Popovic, D.J. Hill, Q. Wu, Optimal voltage security control of power systems, Electrical Power and Energy Systems, 2002, 24, 305-320
    [110] M. Larsson, D.J. Hill, G. Olsson, Emergency voltage control using search and predictive control. Electrical Power and Energy Systems, 2002, 24: 121-130
    [111] M. Larsson, D. Karlsson, Coordinated system protection scheme against voltagecollapse using heuristic search and predictive control, IEEE Trans. on Power Systems, 2003, 18(3): 1001-1006
    [112] J.Y. Wen, Q.H. Wu, D.R. Turner, et al, Optimal coordinated voltage control for power system voltage stability, IEEE Trans. on Power Systems, 2004, 19(2): 1115-1122
    [113] R. Wang, R.H. Lasseter, Re-dispatching generation to increase power system security margin and support low voltages bus, IEEE Trans. Power Systems, 2000, 15(2): 496-501
    [114] Z.H. Feng, V. Aijarapu, et al, A comprehensive approach for preventive and corrective control to mitigate voltage collapse, IEEE Trans. on Power Systems, 2000, 15(2): 791-797
    [115] T. Kumano, A. Yokoyama, Y. Sekine, Fast monitoring and optimal preventive control of voltage instability, Electrical Power and Energy Systems, 1994, 16(2): 117-125
    [116] B. Gao, G.K. Morison, P. Kundur, Towards the development of a systematic approach for voltage stability assessment of large-scale power systems, IEEE Trans. on Power Systems, 1996, 11(3): 1314-1324
    [117] T. Van Cutsem, C. Moisse, R. Mailhot, Determination of secure operating limits with respect to voltage collapse, IEEE Trans. on Power Systems, 1999, 14(1): 327-335
    [118] F. Capitanescu, T. Van Cutsem, Preventive control of voltage security margins: A multi-contingency sensitivity-based approach, IEEE Trans. on Power Systems, 2002, 17(2): 358-364
    [119] IEEE Recommended Practice for excitation system models for power system stability studies, IEEE Standard 421.5, 1992
    [120] A.E. Hammad, M.Z. El-Zadek, Prevention of transient voltage instabilities due to induction motor loads by static var compensators, IEEE Trans. on Power Systems, 1989, 4(3): 1182-1190
    [121] C.D. Vournas, G.A. Manos, Modeling of stalling motors during voltage stability studies, IEEE Trans. on Power Systems, 1998, 13(3): 775-781
    [122] C. W. Taylor 著, 王伟胜译, 电力系统电压稳定, 北京: 中国电力出版社, 2002
    [123] Q.Wang, V. Ajjarapu, A novel approach to implement generic load restoration in continuation-based quasi-steady-state analysis, IEEE Trans. on Power Systems, 2005, 20(1): 516-518
    [124] T.V. Cutsem, C.D. Vournas, Voltage stability analysis in transient and mid-term time scales, IEEE Transactions on Power Systems, 1996, 11(1): 146-154
    [125] 黄家裕, 陈礼义, 孙德昌, 电力系统数字仿真, 北京:水利电力出版社, 1993
    [126] 余贻鑫, 陈礼义, 电力系统的安全性和稳定性, 北京:科学出版社, 1988
    [127] T. Van Cutsem, Y. Jacquemart, J.N. Marquet, et al, A comprehensive analysis of mid-term voltage stability. IEEE Trans. on Power System, 1995, 10(3): 1173-1182
    [128] T. Van Cutsem, An approach to corrective control of voltage instability using simulation and sensitivity. IEEE Trans. on Power Systems, 1995, 10(2): 616-622
    [129] T. Van Cutsem, R. Mailhot, Validation of a fast voltage stability analysis method on the Hydro-Quebec system. IEEE Trans. on Power Systems, 1997, 12(1): 282-292
    [130] 孙元章, 王志芳, 姚小寅, 电力系统二级电压控制的研究, 电力系统自动化, 1999, 23(9): 9-14
    [131] 孙元章, 姚小寅, 刘锋, 二级电压控制对电力系统稳定性的影响, 中国电机工程学报, 2000, 20(2): 28-32
    [132] 范磊, 陈珩, 二次电压控制研究(二), 电力系统自动化, 2000, 24(2): 20-24
    [133] 盛戈皞, 涂光瑜, 罗毅, 等, 考虑控制区域间影响的二级电压控制, 电力系统自动化, 2002, 26(15): 27-32
    [134] 刘小波, 丁晓群, 龙启峰, 等, 基于 Ward 等值的二级电压控制研究, 电网技术, 2005, 29(12): 53-56
    [135] 王琦, 朱凌志, 周双喜, 采用先进的高压侧电压控制改善电压稳定性, 清华大学学报(自然科学版), 2004, 44(1): 102-105
    [136] 孙景强, 房大中, 钟德成, 暂态稳定约束下的最优潮流, 中国电机工程学报, 2005, 25(12): 12-17
    [137] 解学书, 最优控制理论与应用, 北京:清华大学出版社, 1986
    [138] R.K. Brayton, R. Spence, Sensitivity and optimization, Elsevier: New York, 1980
    [139] M.A. Pai, Energy function analysis for power system stability. Boston: Kluwer Academic Publishers, 1989
    [140] 郭庆来, 孙宏斌, 张伯明, 等, 基于无功源控制空间聚类分析的无功电压分区, 电力系统自动化, 2005, 29(10): 36-40
    [141] 薛禹胜, 时空协调的大停电防御框架(一)从孤立防线到综合防御, 电力系统自动化, 2006, 30(1): 8-16
    [142] 薛禹胜, 时空协调的大停电防御框架(二)广域信息、在线量化分析和自适应优化控制, 电力系统自动化, 2006, 30(2): 1-10
    [143] 薛禹胜, 时空协调的大停电防御框架(三)各道防线内部的优化和不同防线之间的协调,电力系统自动化, 2006, 30(3): 1-10
    [144] Long Term Dynamics: Phase II, CIGRE Task Force 38-02-08, 1995
    [145] D.A.N. Jacobson, R.W. Menzies, Comparison of thyristor switched capacitor and voltage source GTO inverter type compensators for single phase feeders, IEEE Trans on Power Delivery, 1992, 7(2): 776-781
    [146] B. Fardanseh, M. Henderson, B, Shperling, et al, Convertible static compensator: application to the New York transmission system. Paris, France: CIGRE, 1998, 14-103
    [147] L. Gyugyi, C.D. Schauder, K.K. Sen, Static synchronously series compensator: a solid-state approach to the series compensation of transmission line, IEEE Trans on Power Delivery, 1997, 12(1): 406-417
    [148] L. Gyugyi, Unified power-flow control concept for flexible AC transmission system, IEE Proceedings-C, 1992, 139(4): 323-331
    [149] B.A. Renz, A. Keri, C. Schauder, et al, AEP unified power flow controller performance. IEEE Trans on Power Delivery, 1999, 14(4): 1374-1381
    [150] 黄振宇, 倪以信, 陈寿孙, 等, UPFC 动态模型在电力系统动态分析中的实现, 电力系统自动化, 1999, 23(6): 26-30
    [151] Z.Y. Huang, Y.X. Ni, C.M. Shen, et al, Application of unified power flow controller in interconnected power systems-modeling, interface, control strategy and case study, IEEE Trans on Power Systems, 2000, 15(2): 817-824
    [152] 黄振宇, 刁勤华, 倪以信, 等, 统一潮流控制器的控制系统分析及控制策略设计, 电网技术, 1999, 23(7): 3-9
    [153] 颜伟, 朱继忠, 孙洪波, 等, 统一潮流控制器的控制器设计与暂态仿真研究, 电网技术, 1999, 23(7): 15-23
    [154] 颜伟, 朱继忠, 孙洪波, 等, UPFC 的潮流控制与暂态稳定性研究, 中国电机工程学报, 2000, 20(12): 57-61
    [155] K. Schoder, A. Hasanovic, A. Feliachi, Power system damping using fuzzy controlled unified power flow controller, IEEE Power Engineering Society Winter Meeting, Columbus, OH USA, 2001, 617-622
    [156] 章良栋, 岑文辉, 刘为, UPFC 的模型及控制器研究, 电力系统自动化, 1998, 22(1): 36-39
    [157] S. Mishra, P.K. Dash, G. Panda, TS-fuzzy controller for UPFC in a multi-machine power system. IEE Proceedings-Generation, Transmission and Distribution, 2000, 147(1): 15-22
    [158] 张鹏翔, 曹一家, 王海风, 等, 相对增益矩阵方法在柔性交流输电系统多变量控制器交互影响分析中的应用, 中国电机工程学报, 2004, 24 (7): 13-17
    [159] 孙琳, 谢桦, 梅生伟, 等, UPFC 混成控制器设计及其对四川电网稳定性的改善, 控制理论与应用, 2005, 22 (1): 57-62
    [160] Wang Haifeng, Interactions and multivariable design of multiple control functions of a Unified Power Flow Controller, Electrical Power and EnergySystems, 2002, 24: 591-600
    [161] 王海风, 李敏, 陈珩, 统一潮流控制器的多变量控制设计, 中国电机工程学报, 2000, 20(8): 51-55
    [162] 王海风, 李帆, 房大中, 基于电力系统非参数化模型设计统一潮流控制器, 中国电机工程学报, 2002, 22(7): 62-65
    [163] 颜伟, 朱继忠, 孙洪波, 等, UPFC 的模型与控制器研究, 电力系统自动化, 1999, 23(6): 36-41
    [164] 颜伟, 朱继忠, 徐国禹, 等, UPFC 线性最优控制方式的研究及其对暂态稳定性的改善, 中国电机工程学报, 2000, 20(1): 45-49
    [165] 陈众, 颜伟, 徐国禹, 等, 统一潮流控制器的智能解耦与结构设计研究, 电网技术, 2004, 28(2): 23-27
    [166] 王涛, 李霄燕, 柳焯, 等, 线路功率波动对统一潮流控制器动态行为的影响, 电力系统自动化, 1998, 22(1): 22-25
    [167] S. Kannan, J. Shesha, M.M.A. Salama, Real and reactive power coordination for a Unified Power Flow Controller, IEEE Trans on Power Systems, 2004, 19(3): 1454-1461
    [168] 李浩昱, 吴建强, 能量缓冲统一潮流控制器的协调控制技术, 电网技术, 2004, 28(11): 53-56
    [169] 李浩昱, 李兰英, 李霄燕, 等, 具有能量缓冲的统一潮流控制器及其控制的研究, 中国电机工程学报, 2001, 21(7): 9-13
    [170] 鞠儒生, 陈宝贤, 邱晓刚, UPFC 控制方法研究, 中国电机工程学报, 2003, 23(6): 60-70
    [171] P. Garcia-Gonzalez, A. Garcia-Cerrada, Detailed analysis and experimental results of the control system of a UPFC, IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(2): 147-154
    [172] 刘黎明, 康勇, 陈坚, 等, 统一潮流控制器控制策略的研究与实现, 中国电机工程学报, 2006, 26 (10): 114-119
    [173] Y. Yu, Electric Power System Dynamics, Academic Press, 1983
    [174] 马大强, 电力系统机电暂态过程, 北京: 水利电力出版社, 1988
    [175] 鞠 平,电力系统低频振荡研究概观, 河海大学科技情报, 1990, 12(2): 20-28
    [176] 郭剑波, 姚国灿, 等, 我国未来大区电网互联可能出现或应该注意的若干技术问题, 电网技术, 1998, 22(6): 63-67
    [177] T.T. Ma, K.L. Lo, A robust UPFC damping scheme using PI and ANN based adaptive controllers, International Journal for computation and mathematics in Electrical and Electronic Engineering, 2000, 19(3): 878-902
    [178] T.T. Ma, K.L. Lo, Nonlinear power system damping control strategies for the Unified Power Flow Controller (UPFC), Power System Technology, 2000Proceedings (2): 673-678
    [179] T.T. Ma, K.L. Lo, UPFC damping control strategy based on transient energy function. Electric Power Systems Research, 2000, 56: 195-203
    [180] J.F. Gronquist, W.A. Sethares, Power oscillation damping control strategies for FACTS device using locally measurable quantities, IEEE Trans on PWRS, 1995, 10(3): 1598-1605
    [181] M. Noroozian, L. Angqusit, M. Ghandhari, et al, Improving power system dynamics by series-connected FACTS devices, IEEE Trans on Power Delivery, 1997, 12(4): 1635-1641
    [182] S. Limyingcharoes, U.D. Annakkage, N.C. Pahalawaththa, Effect of UPFC on transient stability, IEE Proceedings-Generation, Transmission and Distribution, 1998, 145(2): 182-188
    [183] D.Z. Fang, X.D. Yang, T.S. Chung, et al, Adaptive fuzzy-logic SVC damping controller using strategy of oscillation energy descent, IEEE Trans. on Power Systems, 2004,19(3):1414-1421
    [184] D.Z. Fang, X.D. Yang, W.N. Song, et al, Oscillation transient energy function applied to the design of a TCSC fuzzy logic damping controller to suppress power system interarea mode oscillations, IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(2): 233-238
    [185] 房大中, 包顺先, 杨晓东, 等, 基于振荡能量下降原理的 UPFC 模糊控制器设计, 电力系统及其自动化学报, 2006, 18(3): 7-13
    [186] N. Tambey, M.L. Kothari, Damping of power system oscillations with unified power flow controller (UPFC), IEE Proceedings- Generation, Transmission and Distribution, 2003, 150(2): 129-140
    [187] S. Wei, Z. Xu, Per unit model of UPFC and its optimal control. IEEE Power Engineering Society Winter Meeting, Columbus, OH USA, 2001, vol.3: 1105-1108
    [188] Wang H F, Damping function of unified power flow controller. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(1): 81-87
    [189] 王海风, 李敏, 陈珩, 装有统一潮流控制器的多机电力系统 Phillips-Heffron模型及其应用, 中国电机工程学报, 2001,21(2): 6-10
    [190] Hideaki Fujita, Yasuhiro Watanabe, Hirofumi Akagi. Transient Analysis of a Unified Power Flow Controller and its Application to Design of the DC-Link Capacitor. IEEE Trans on Power Electronics, 2001, 16 (5): 735-740
    [191] H. Fujita, Y. Watanabe, H. Akagi, Control and analysis of a Unified Power Flow Controller, IEEE Trans on Power Electronics, 1999, 14(6): 1021-1027
    [192] 陈众, 颜伟, 徐国禹, 等, 基于直流侧电容电压弱控制策略的 UPFC 二阶段控制器设计, 中国电机工程学报, 2004, 24(1): 49-53
    [193] 陈众, 徐国禹, 颜伟, 等, UPFC 直流侧电容电压弱控制策略研究, 电工技术学报, 2004, 19(1): 49-54
    [194] Modelling of power electronics equipment (FACTS) in load flow and stability programs, CIGRE TF 38-01-08, 1998
    [195] 董蕾, 蒲天骄, 鲍海, 等, 基于本地可测量参数的 UPFC 暂态能量控制, 电网技术, 2003, 27(2): 50-53
    [196] K.S. Smith, L. Ran, J. Penman, Dynamic modeling of a unified power flow controller, IEE Proceedings-Generation, Transmission and Distribution, 1996, 144(1): 7-12
    [197] 王强, 姜齐荣, 梁旭, 等, FACTS 装置控制器设计中的关键技术问题, 中国电力, 1999, 32(2): 29-33
    [198] 刘晨晖, 多变量过程控制系统解耦理论, 北京: 水利电力出版社, 1984
    [199] H.F. Wang, Phillips-Heffron model of power system installed with STATCOM and applications, IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(5): 521-527
    [200] X. Xu, R.M. Mathur, J. Jiang, Modeling of generators and their controls in power system simulations using singular perturbations, IEEE Trans on Power Systems, 1998, 13(1): 109-114
    [201] F. Zhang, D.Z. Fang, Multi-functional UPFC controller using decoupling compensator, Proceeding of the 37th International University Power Engineering Conference, 2002, 269-273
    [202] 张芳, 房大中, 冯崇智, 等, 相对增益矩阵方法在 UPFC 潮流控制中的应用, 电网技术, 2005, 29(17): 14-20
    [203] 张芳, 房大中, 宋文南, 多变量统一潮流控制器最佳变量配对选择的研究,郑州大学学报(工学版), 2005, 26(2): 43-46
    [204] C. Bulac, M. Eremia, R. Balaurescu, et al, Load flow management in the interconnected power system using UPFC devices, IEEE Bologma PowerTech Conference, Bologma, Italy, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700