用户名: 密码: 验证码:
郯庐断裂带北段构造样式、变形序列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郯庐断裂带从三叠纪以来经历了长期而复杂的演化历史,发生多期不同性质活动,形成各具特色的构造样式。本文通过对郯庐断裂带北段各分支断裂出露的构造样式进行野外性质判断、要素分析,利用各种构造样式和地层间切割或覆盖关系的匹配研究,限定了断裂带活动期次及时代,建立了郯庐断裂带北段变形序列。为最终达到揭示西太平洋板块对东北地区中、新生代构造演化规律制约的目的提供了第一手资料。不同构造样式反映了断裂带由老至新经历了以下6个重要的变形事件:①密山县知一镇韧性剪切带黑云母40Ar/39Ar等时线年龄为161±3Ma,是郯庐断裂带再次发生大规模左旋走滑活动并扩展到东北地区的产物;②四平市石岭子镇碎裂花岗岩形成于晚侏罗世晚期,是继左旋韧性剪切活动后挤压作用的结果;③四平市叶赫乡负花状断层系以及早白垩世早期东北断陷盆地群的形成,是郯庐断裂带北段在早白垩世早期发生了强烈的走滑-伸展作用的重要依据;④四平市石岭子镇佳伊断裂大型走滑-逆冲断褶带、桦甸县敦密断裂“逆地堑”、沈阳-哈尔滨逆冲断裂是郯庐断裂带北段特征最明显、分布最广泛的构造样式,它们形成于晚白垩世嫩江运动-晚白垩世末期,反映了这一时期郯庐断裂带北段遭受到广泛而又强烈的右旋走滑-逆冲作用;⑤佳伊、敦密古近纪地堑是右旋走滑、伸展双重机制控制的产物;⑥渐新世末期古近纪地堑的构造反转结束了地堑的演化;中新世郯庐断裂带北段上地幔剪切控制了新生代含幔源包体火山口沿断裂有规律的分布。上述6个重要的变形事件由老至新组成了郯庐断裂带北段较为完整的构造演化序列,它们是不同地球动力学机制的产物,其演化历史主要受控于滨太平洋构造域的构造作用。
Tancheng-Lujiang fault zone was a large fault zone of longitudinal east China ,which had undergone a long evolutionary history since the Triassic.From west to east the northern segment of the Tancheng-Lujiang fault zone included Shenyang - Harbin fault,Jiamusi-Yitiong fault and Dunhua-Mishan fault. The direction of the general distribution was NE 40°-50°, the northern segment of the fault zone acrossed the eastwest part of Jilin、Heilongjiang small plate group and the North China Block with different evolutionary history .
     Because of the Quaternary and vegetation covering, the less exposed of the northern segment of Tancheng-Lujiang fault zone, seriously restricted on in-depth study , its level was significantly lower than the study of the southern segment, there were many problems failed to solve. Such as when a large-scale sinistral ductile slip? When large-scale extensional activities occurred? When thrusting the main activities? How many terms of extension activities and extrusion activities? and so on. No resolved of the basic geological problems, we can not set up correctly the northern segment of Tancheng-Lujiang fault zone tectonic evolution sequence, can not compare with the southern segment of Tancheng-Lujiang fault zone, also not reveal structural response of the fault to the Western Pacific tectonic plate movement. At the same time, these issues are the important bottleneck of the prototype basin in the Meso-Cenozoic basin group restoring of Jilin and the east part of Heilongjiang . Therefore, the study of the nature and the activities times both tracing Western Pacific tectonic systematic impacting on the construction of the Northeast region,and predicting oil & gas resources in Northeast China、earthquakes、volcanic activity is of great significance. The solution to these problems must rely on system researching structural styles of different stages of the fault. I conducted more detailed field investigation and desk studies in the northern segment of Tancheng-Lujiang fault zone in the recent years, and acquired the first-hand information about a large number of different structural styles, Increasing new evidence for the activities times,properties in different times and evolution sequence of the fault zone.
     Sinistral strike-slip is characteristic of Dunhua-Mishan ductile shear zone near Zhiyi town, Mishan county, ductile shear zone is mylonitized granite, protolith with Neoproterozoic granite.deformation extent of ductile shear zone was uneven,it can be divided in strong deformation zone and weak deformation domain. General wide 1cm-10cm about strong deformation zone,which distrubuted in weak deformation domain with reticular. Mylonitic foliation advantage strike to the NE 45°,mainly southward steep dip, angle of inclination with 50°-75°. Mineral stretching lineation SSW gently dipping, angle of inclination about 20°.Microscopic deformation structures are well developed of strong deformation zone, Quartz drawing structure and Feldspar rotation porphyroclast developed widely, Mineral stretching lineation of field and S-C fabric、rotation porphyroclast of interior orientation slices all directed ductile shear zone with sinistral strike-slip characteristics.Getting the biotite40Ar/39Ar isochron age is 161±3Ma by dating, indicateing that later period of J2 was sinistral strike-slip age of the northern segment Tancheng-Lujiang fault zone,which is the product of Tancheng-Lujiang fault zone recurrence of large-scale sinistral strike-slip that extended to the Northeast region.
     About 300 meters Cracked granite belt developed in Shiling town , Shiping city in Jiamusi-Yitong fault zone,which trend towarded to the extension of NE. Cataclastic rock belt were focused on structural breccia and Cataclasite, more irregular shapes of tectonic breccia,edges and corners clear, vary in size, diameter of particle was generally between 2mm-5mm, angle the phenomenon of non-aligned gravel,which belong to squeezing action.Did not break-deformed granite U-Pb age of 150-162.5Ma, in the vicinity of cracked granite,Shahezi-Denglouku formation of Early Cretaceous has no fracture deformation closed to cracked granite. These characteristics limited that cracked granite formed in the late of J3 which was the result of compression following the left-lateral ductile shear activity.
     The negative flower faults exposed in Yehe town,Siping city , which formed by the five normal fault.These faults tend from north slope to south slope, angle of inclination from gently to slope to gently again,indicating external cast of the negative flower faults, the five normal fault down to merged together to form "Dried flowers".By analysing occurrence of brand fault,coming to trend of Dried flowers about NE,which was similar to trend of Jiamusi-Yitong fault.Shahezi formation was cutting by the negative flower faults,but Denglouku formation was not disturbed. By cutting relationship between stratigraphic and faults figured out the negative flower faults forming in Yingcheng epoch between Shahezi epoch and Denglouku epoch. The negative flower faults and the formation of the northeastern fault basin group in the early period of K1 were the important basis for the northern segment Tancheng-Lujiang fault zone suffering from strong strike-slip and stretch in the early period of K1.
     Large-scale strike slip-thrust fold belt was found in Jiamusi-Yitong fault, including thrust faults and fault-related fold.Thrust faults mainly distributed in areas near the main boundary of the Jiamusi-Yitong fault zone,which has similar occurrence,trend about NNE, angle of inclination about 20°-30°,section shape exhibited characteristics of steep, angle of inclination of fault about 70°~85°, structural lenticular body and extrusion schistosity of faults well developed.In plane Jiamusi-Yitong fault zone was NE 45°direction of extension, The branches thrust faults were ususlly 20°-30°direction,and almost all features with steep, showed an acute angle intersection with the main fault, This feature reflects strong right-lateral strike-slip thrusting nature.Yaojiazu formation and Nenjiangzu formation of later period of K2 was cutting by thrust faults,but the thrust faults was been cover unconformity by Ganyaozu of Paleogene
     Fault detachment fold in East boundary of Jiamusi-Yitong fault zone was composed of alternate arrangement a series of synclines and anticlines, the west side of fold formation was askew closed fold in section shape ,for the NW of the tilt axis, which was similar to the trend of thrust faults; gradient for the vertical fold to the SE, angles between the two wings were larger to open fold,then increase angle between the two wings to SE,to upright gentle fold. This fold system variation along the profile shown by the not exposed to the surface of the detachment fault-controlled. Fault bend fold in East of fault detachment fold, thrust fault was composed of flat and ramp, thrust rock of fault on the plate climb along ramp,in the end turn of flat and ramp form wide slow anticline, angle of inclination about anticline wings roughly equal. Folds occured as fine gray conglomerate of Denglouku formation.
     Form Dunhua city of Northern Jilin province to Meihekou city of Southern Dunhua-Mishan fault was mainly composed of arranged parallel of two high-angle thrust fault. these two main boundaries fault was 15- 20km apart general, Cenozoic basin were distributed in intermediate.tendency of main fault was contrary, angle of inclination of fault about 50°-80°,on southeast the hanging wall of main fault was composed of supracrustal rocks in the Archean such as variable biotite granulite、amphibolites magnetic quartzite rock folder,on northwest the hanging wall of main fault was composed of Hercynian,Yanshan granite and Jurassic– Cretaceous, the hanging wall of fault hedge in the opposite over Jiuda formation coal measures of Late Jurassic-Dashata formation of Early Cretaceous、Xiaonangou formation of Late Cretaceous, formed a "reverse Graben" fault system. In addition to surface rendering "reverse Graben" outside the structural style, also in deep underground reflected opposite thrust of the tectonic framework. In Tangyuan Graben DB04 profile MT interpretation maps perpendicular to Jiamusi-Yitong fault, proved "reverse Graben" formed of two main thurst faults in deep underground,which indicating consistent of deep detection and surface observations.along the fault zone trend, alternating with each other pattern about rift composed of the Paleogene and uplift composed of Cretaceous exist,in the uplift, for the absence of Paleogene graben coverage, Surface mainly as a "reverse Graben" structural style,in the lift, covered by Graben sedimentary on the surface ,the deep underground showed "reverse graben".
     Large-scale strike slip-thrust fold belt and the"obsequent graben"in Dunhua-Mishan faulted zone of Huadian City were the most obvious and wide-distributed structural styles in the northern segment of Tancheng-Lujiang fault zone formed in the Nenjiang movement of later period of K2 and last stage of K2 ,which reflects the northern segment of the Tancheng-Lujiang faulted zone subjected to the extensive and strong right-lateral strike-slip thrusting activity.
     Paleogene graben of Jiamusi-Yitong and Dunhua-Mishan asymmetry in the cross section in the structural style.Basin side faults was steep and deep and controled large sediment thickness,the other side faults cut shallow and control small sediment thickness,indicating that a side faults had a main action in the formation of the graben. which was the product of the northern segment of Tancheng-Lujiang fault zone controlled by right-lateral strike-slip and extensional double machanism in Paleogene
     Late Oligocene pre-thrusting normal faults in Paleogene graben transform into reverse faults, to form the structural framework right on thrust ,that reversal structure,
     Which ended the early evolution of the graben, in this issue thrusting a relatively small, the formation of small-scale thrust faults, the number of small, very limited displacement;the upper mantle shearing in the northeast segment of Tancheng-Lujiang faulted zone in Miocene controls the Cenozoic volcanic crater containing mantle enclave regularly distributed along the fault.
     Over these different times, different types of structural styles, formed in different deformation events, The above six major deformational events from the old to the new formed a relatively complete tectonic evolutionary sequence of the northern segment of Tancheng-Lujiang faulted zone.
     ①sinistral strike-slip ductile stage (the last stage of J2)
     ②Compression strike-slip stage (in the late of J3)
     ③left-lateral tenso-shear stage(the earlier-mid period of K1)
     ④right-lateral compression shear stage (of later period of K2-last stage of K2)
     ⑤right-lateral strike-slip fault depression stage(E)
     ⑥structural inversion and upper mantle shearing ( the end of E3 and N1)
     These are the products of the different geodynamic machanism.The evolutionary history of the northern segment of Tancheng-Lujiang faulted zone was mainly controlled by circum-Pacific tectonic domain.
引文
[1] Altenberger U, Wilhelm S. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs,Norway. Tectonophysics, 2000,320:107- 121
    [2] Bucher-Nurminen K. A recalibration of the chlorite-biotite-muscovite geobarometer.Contributions to Mineralogy and Petrology, 1987,96:519-522
    [3] Ben-Avrahanm Z. Development of asymmetric basins along continental transform fault. In :Ziegler P A (ed) .Geodynamics of rifting,1992,215 :209-220
    [4] Bowley D B. Minimum age of initiation of collision between Indian and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology , 1998,160:229-235
    [5] Cabanes N, Mercier J C C. Insight into the upper mantle beneath an active extensional zone:The spinel-peridoute xenobths from San Quintin (Baja California,Mesoco).Contrib Mineral Petrol, 1988,100:374-382
    [6] Chang EZ. Collision orogene between north and south China and its eastern extension in the Korean Peninsula [J].Journal of Southeast Asian Earth Sciences, 1996,13(3-5):267-277
    [7] Dahlstrom C D A. Geometric constraints derived from the law of volume and applied to evolutionary models for detachment folding.AAPG Bulletin, 1990,74:336-344
    [8] Engebretson DC,Cox A and Gordon RG. Relative motions between oceanic and continental plates in the Pacific basin . Geol.Soc.Am.Spec.Paper,1985:1-59
    [9] Gilder S A.Leloup P H,Courtillot V,et al. Tectonic evolution of the Tancheng- Lujiang(Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data[J] .Journal of Geophysical Research, 1999,104(37):15365-15390
    [10] Hoisch T. A muscovite– biotite geothermometer. American Mineralogist, 1989,74:565- 572
    [11] Homza T X,Wallace W K.Geometric and kinematic models for detachment folds with fixed and variable detachment depths.Journal of Structural Geology,1995, 17:575-588
    [12] Isozaki Y, Nishimura Y.Fusaki Formation, Jurassic subduction-accretion complex on Ishigaki Island, southern Ryukyus and its geologic implication to Late Mesozoic convergent margin of east Asia.Memoir of Geological Society of Japan, 1989,33:259-275
    [13] Isozaki Y,Maruyama S,Furuoka F. Accreted oceanic materials in Japan.In: M.Kono and B.C.Burchfiel (Edition),Tectonics of Eastern Asia and Western Pacific Continental Margin.Tectonophysics, 1990,191:179-205
    [14] Isozaki Y. Jurassic accretion tectonics of Japan.The Island Arc, 1997,6:25-51
    [15] Li ZX.Collision between the north and south blocks:A crust-detachment model for suturing in the region east of the Tan-Lu fault [J].Geology, 1994,22:739-742
    [16] Lin A,Miyata T,Wan F.Tectonic characteriscics of the central segment of the Tancheng-Lujiang fault zone Shangdong Peninsula,eastern China, Tectonophysics,1998,293:85-104
    [17] Mancktelow N S and Pennacchioni G.The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites.Journal of Structural Geology, 2004,26:47-69
    [18] Maruyama S and Seno T.Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics, 1986,127:305-329
    [19] Maruyama S, Isozaki Y, Kimura G and Terabayashi M. Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. The Island Arc, 1997,6:121-142
    [20] Mercier J C C and Nicolas A.A Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts[J].Journal of Petrology, 1975,16(2): 454-487
    [21] Otofuji Y, Hayashida A and Torii M. When was the Japan Sea opened? Paleomagnetic evidence from southwest Japan. in: Nasu N, Uyeda S, Kushiro I, Kobayashi K and Kagami H. eds. Formation of Active Ocean Margins.Tokyo: Terra. 1985:551-566
    [22] Passchier CW, Trouw R A J. Microtectonics.Berlin:Springer, 1996:49-95.
    [23] Ren JY,Tamaki K,Zhang JX. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas .Tectonophysics, 2002,344:175-205
    [24] Rosenberg C L, Stunitz H. Deformation and recrystallization of plagioclase along a temperature gradient:an example from the Bergell tonalite. Journal ofStructural Geology, 2003,25:389-408
    [25] Shaw J H.Active bling-thrust faulting and sruike-slip fault-bend folding in california.Princeton,Nj:Princeton University,1993:216
    [26] Suppe J,Donald A. Medwedeff geometry and kinematics of frult-propagation folding.Eclog Geol.Helv., 1990,83(3):409-454
    [27] Urai J L,Means W D and Lister G S. Dynamic recrystallization of minerals.in:Hobbs B E and Heard H C.eds.Mineral and Rock Deformation: laboratory Studies.Washington D C:American Geophysical Union,1986:161-199
    [28] Wang Y.The onset of the Tan-Lu fault movement in eastern China:constraints from zircon (SHRIMP) and 40Ar/39Ar dating.Terra Nova,2006,18:423-431
    [29] Wang Y,Dou LR. Formation time and dynamic characteristics of the northern part of the TanLu fault zone in east China.Seismology And Geology, 1997,19(2): 185-192
    [30] Wang PJ, Liu WZ, Wang SX and Bian WH. 40Ar/39 Ar and K/Ar dating on the volcanic rocks in the Songliao Basin, NE China: constraints on stratigraphy and basin dynamics. International Journal of Earth Sciences, 2002a,91:331-340
    [31] Wang PJ, Ren YG, Shan XL, Sun SB, Wan CB and Bian WH. The Cretaceous volcanic succession around the Songliao Basin, NE China: relationship between volcanism and sedimentation. Geological Journal, 2002b,37(2):97-115
    [32] Wang PJ, Chen FK, Chen SM, Siebel W and Satir M. Geochemical and Nd-Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin, NE China. Geochemical Journal, 2006,40:149-159
    [33] Wu GY,Sun XM,Zhong DL.Structural Geology of the Central Sector of the Hengduan Mountains [T].Geological Publishing House Beijing,China, 1996, 119:1-40
    [34] Xu JW,Zhu G. Tectonic models of the Tan-Lu fault zone,eastern China [J]. International Geology Review, 1994,36:771-784
    [35] Zhang YQ,Shi W,Dong SW.Cenozoic deformation history of the Tancheng-Lujiang fault zone.North China ,and dynamic implications.The Island Arc,2003,12:281-293
    [36] Yin A,Nie S Y. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system,eastern Asia [J]. Tectonics, 1993,12(4):801-813
    [37]陈剑,卢华复,于景宗,王胜利.断层相关褶皱的几何学模型及其应用[J].地球学报,2005,26(1): 89-92
    [38]陈丕基.郯庐断裂巨大平移时代与格局[J].科学通报,1988,4:289-293
    [39]陈宣华,王小凤,张青,陈柏林,陈正乐,Harrison T Mark, Yin An.郯庐断裂带形成演化的年代学研究[J].长春科技大学学报,2000,30(3):215-220
    [40]程新民.吉林省伊通地区白土山组地层的重新厘定[J].吉林地质,1990,1:69-73
    [41]程学儒.对依兰-伊通地堑若干特点的认识.构造地质论丛(三)[M].北京:地质出版社,1984:213-217
    [42]童亨茂,纪洪勇,宋立忠,高金辉.伊通地堑构造样式及其油气分布规律[J].西安石油学院学报(自然科学版),2002,17(5):9-14
    [43]董树文,张岳桥,龙长兴,杨振宇,季强,王涛,胡建民,陈宣华.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1449-1461
    [44]丁日新,舒萍,曲延明,程日辉,张斌.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版),2007,37(3):525-530
    [45]窦立荣、宋建国、王瑜.郯庐断裂带北段形成的年代学及其意义[J].地质论评, 1996,42(6):508-512
    [46]姚彦之、方仲景.郯庐断裂学术讨论会摘记.地震地质,1984,3(2):69-78
    [47]冯建辉,吕延仓,谭试典.中国石油构造样式[M].石油工业出版社,2000:42-43
    [48]何登发,John SUPPE,贾承造.断层相关褶皱理论与应用研究新进展[J].地学前缘,2005,12(4):353-364
    [49]郭振一.郯城—庐江断裂带的形成演化与运动学分析[J].山东地质,1987,3(1):51-62
    [50]国家地震局地质研究所.郯庐断裂[M].地震出版社,1987,62-67
    [51]国家地震局地学断面编委会.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.北京:地震出版社,1992
    [52]侯贵廷,冯大晨,王文明,杨默涵.松辽盆地的反转构造作用及其对油气成藏的影响[J].石油与天然气地质,2004,25(1):49-53
    [53]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1989:258-291,617-629
    [54]贾军涛,王璞珺,万晓樵.松辽盆地断陷期白垩纪营城组的时代归属[J].地质论评,2008,4(54):440-448
    [55]黄汲清,任纪舜,姜春发等.中国大地构造基本轮廓[J].地质学报,1977 ,5(2):117-135
    [56]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988:554-562
    [57]吉林省地质矿产局.吉林省岩石地层[M].中国地质大学出版社,1997:265-282
    [58]劳秋元.郯庐断裂带前古生代、中生代的形成演化问题.构造地质论认(三) [M].北京:地质出版社,1984:80-93
    [59]李三忠,刘建忠,赵国春,吴福元,韩宗珠,杨中柱.华北克拉通东部地块中生代变形的关键时限及其对构造的制约—以胶辽地区为例[J].岩石学报,2004,20(3):633-646
    [60]李希霍芬.山东的地质结构(胶州)及有用矿床[J].应用地质杂志,1898:(3)
    [61]李四光.新华夏海之起源,区域地质构造分析[J].科学出版社,1948.(1974年版)
    [62]李四光.旋卷构造及其他有关中国西部大地构造体系复合问题[J].科学出版社,1955
    [63]李捷.中国地质图南京开封幅(1:100万)说明书[M].商务印书馆,1929
    [64]李献甫,陈全茂,张学海,张春华,张付生,张振威.伊通地堑-走滑断陷盆地的构造特征及演化[J].石油实验地质,2002,24(1):19-25
    [65]李鹏武,张世红,申宁华.黑龙江省那丹哈达与日本美浓地区古地磁结果对比及其意义[J].长春地质学院学报,1997,27(1):62-66
    [66]林传勇,史兰斌,何永年,陈孝德.中国东部幔源包体的变形特征及其上地幔流变学意义[A].见钱祥麟主编:伸展构造研究[C].北京出版社,1994,87-98
    [67]林传勇,徐义刚,张小鸥,史兰斌,陈孝德.中国东部是地幔岩石变形特征、流体的作用及软流层(体)初步探讨[A].见杜乐天主编:地幔流体与软流层(体)地球化学[C].北京出版社,1996:312-340
    [68]刘德来,马莉.中生代东亚大陆边缘构造演化[J].现代地质, 1997,11(4):444-451
    [69]刘国生,宋传中,王道轩,牛漫兰.郯庐断裂(K2- E)的伸展活动及其对合肥盆地的控制[J].合肥工业大学学报(自然科学版),2002,25(5):672-677
    [70]刘嘉麒.中国东北地区新生代火山岩年代学研究[J].岩石学报,1987,4:21-31
    [71]刘茂强,杨丙中,邓俊国,周永辉.伊通—舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993:6-20、24-34、97-102
    [72]刘顺,沈忠民,司建涛.郯庐断裂带演化动力学—多力源多时期分段作用模式.成都理工大学学报(自然科学版),2006,33(5):473-477
    [73]刘财,孟令顺,吴燕冈,等.东北地区物理场与地壳演化[M].地质出版社,2010:150-154
    [74]刘若新,陈文寄,孙建中,李大明.中国新生代火山岩的K-Ar年代与构造环境,见:刘若新主编.中国新生代火山岩年代学与地球化学[C].地震出版社,1992:1-43
    [75]陆克政.构造地质学教程[M].中国石油大学出版社,1996:148、157-158、205-206
    [76]罗志立,李景明,李小军,刘树根,赵锡奎,孙玮.试论郯城—庐江断裂带形成、演化及问题[J].吉林大学学报,2005,35(6):699-706
    [77]牛漫兰,朱光,刘国生,宋传中,王道轩.郯庐断裂带中-南段新生代火山活动与深部过程[J].地质科学,2005,40(3):390-403
    [78]牛漫兰.张八岭地区中生代岩体中黑云母的40Ar/39Ar年龄及其地质意义[J].地质科学,2006,41(2):217-225
    [79]任建业,陆永潮,李思田,杨士恭,庄新国.伊舒地堑构造演化的沉积充填响应[J].地质科学,1999,34(2):196-203
    [80]任延广,陈均亮,冯志强,等.喜山运动对松辽盆地含油气系统的影响.石油与天然气地质,2004,25(2):185-190
    [81]邵济安,唐克东,王成源,藏启家,张允平.那丹哈达地体的构造特征及演化[J].中国科学B辑,1991,(7):744-751
    [82]水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报,1989,(3):205-215
    [83]舒萍,丁日新,纪学雁,曲延明.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志. 2007,26(3):239-245
    [84]宋传中,朱光,刘洋,牛漫兰,刘国生.郯庐断裂带肥东韧性剪切带的变形规律、同位素年龄及其构造意义[J].地质论评,2003,19(1):10-16
    [85]孙晓猛,刘永江,孙庆春,韩国卿,王书琴,王英德.敦密断裂带走滑运动的40Ar/39Ar年代学证据[J].吉林大学学报(地球科学版),2008,38(6):965-972
    [86]孙晓猛,龙胜祥,张梅生,刘晓燕,郝福江.佳木斯-伊通断裂带大型逆冲构造带的发现及形成时代讨论[J].石油与天然气地质,2006,27(5):637-643
    [87]孙晓猛,王书琴,王英德,杜继宇,许强伟.郯庐断裂带北段构造特征及构造演化序列[J].岩石学报,2010,26(1):156-176
    [88]孙晓猛,朱德丰,郑常青,等.松辽盆地东缘中生代断裂构造特征、形成期次及其储层意义.吉林大学学报(地球科学版),2007,37(6):1055-1063
    [89]孙革,沙金庚,王义刚.黑龙江饶河东安镇侏罗-白垩系界线及新知[J].古生物学报,1989,28(5):579-597
    [90]谭锡畴.山东中生代及旧张三纪地层.见地质汇报,第五号,第二册,1923.
    [91]唐大卿,何生,陈红汉,江涛,邱玉超.伊通盆地断裂体系特征及其演化历史[J].吉林大学学报(地球科学版),2009,39(3):386-396
    [92]田在艺,韩屏.中国东北地区中新生代沉积盆地构造形成演化及其油气展望[J].石油地震地质,1992,4(2):1-23
    [93]万天丰.郯-庐断裂带的演化与古应力场[J].地球科学-中国地质大学学报,1995,20(5):526-534
    [94]万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期[J].高校地质学报,1996a,2(1):14-27
    [95]万天丰.郯庐断裂带的延伸与切割深度[J].现代地质,1996b,10(4):518-525
    [96]王小凤,李中坚,陈柏林.郯庐断裂带[M].北京:地质出版社,2000:1-40、222-244、307-312
    [97]王永春.伊通地堑含油气系统与油气成藏[M].北京:石油工业出社,2001:10-50、119-129
    [98]王勇生,朱光,陈文,宋传中,刘国生.郯庐断裂带热年代学信息及其与大别造山带折返的关系[J].地球化学, 2005,34(3):193-214
    [99]王义强,单玄龙.地学认识实习指南[M].吉林科学技术出版社,2004:39-52
    [100]吴福元,葛文春,孙德有,郭春丽.中国东部岩石圈减薄研究中的几个问题[J].地学前缘, 2003,10(3):51-60
    [101]吴福元,徐义刚,高山,郑建平.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,2008,24(6):1145-1174
    [102]吴根耀,梁兴,陈焕疆.试论郯城-庐江断裂带的形成、演化及其性质[J].地质科学,2007,42(1):160-175
    [103]徐嘉炜.郯城-庐江平移断裂系统.构造地质论丛(三)[M].北京:地质出版社,1984:18-32
    [104]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾[J].地质论评,1992,38(4):316-324
    [105]徐嘉炜,朱光.中国东部郯庐断裂带构造模式讨论[J].华北地质矿产杂志,1995,10(2):121-134
    [106]徐先兵,张岳桥,贾东,舒良树,王瑞瑞.华南早中生代大地构造过程[J].中国地质,2009,36(3):573-593
    [107]徐义刚,李洪颜,庞崇进,何斌.论华北克拉通破坏的时限[J].科学通报,2009,54(14):1974-1989
    [108]许志琴.郯庐裂谷系概述.构造地质论丛(三)[M].北京:地质出版社1984:39-46
    [109]姚超,劁贵浩,王同和,邢厚松.中国含油气构造样式.石油工业出版社,2004:1-410
    [110]姚大全.密-抚断裂带西南段中生代早中期变位与变形的研究[J].辽宁地质学报,1988,(1):16-34
    [111]殷长建,彭玉鲸,王彦生,李睿等.伊舒断裂带年代学新证据[J].吉林地质.2005,24(1): 6-15
    [112]张贻侠,孙运生,张兴洲,等.中国满洲里—绥芬河地学断面[M].北京:地质出版社,1999:31
    [113]张宏.敦化—密山断裂带平移问题讨论[J].中国地质科学学院,见:沈阳地质矿产研究所集刊,1993,2:35-43
    [114]张宏.郯-庐断裂系的两期左行平移及其中生代时期演化史[J].辽宁地质,1994,(1-2):131-143
    [115]张宏,王小风.郯庐断裂系北段地质特征及中生代演化[J].中国地质科学院-沈阳地质矿产研究所集刊,1995,(4):50-778
    [116]张勤运.那丹哈达地体放射虫动物群的生态特征[J].中国地质科学院-沈阳地质矿产研究所集刊,1992,(1):18-22
    [117]张青,朱光,刘国生,C.Teyssier,W.J.Dunlap.郯庐断裂带张八岭隆起北段的左旋走滑挤压变形及其40Ar/39Ar定年[J].地学前缘,2008,15(3):234-249
    [118]张庆龙,王良书,谢国爱,等.郯庐断裂带北延及中新生代构造体制转换问题的探讨[J].高校地质学报,2005,(40):577-584
    [119]张小欧.伊通地堑上地幔剪切带[J].地震地质,1995,17(2):167-176
    [120]张岳桥,董树文,赵越,张田.华北侏罗纪大地构造:综评与新认识[J].地质学报,2007,81(11)1462-1480
    [121]张岳桥,董树文.郯庐断裂带中生代构造演化史:进展与新认识[J].地质通报,2008,27(9):1371-1390
    [122]张岳桥,徐先兵,贾东,舒良树.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J].地学前缘,2009,16(1):234-247
    [123]张用夏,李卢玲.郯庐断裂带平移及其对邻区构造的影响.构造地质论丛(三)[M].北京:地质出版社:1-8
    [124]章振铨,李志田,迟天峰.敦化—密山断裂带(二道甸子—大山嘴子段)断裂活动性评价[J].吉林地质,1999,18(1):51-56
    [125]郑建平.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J].科学通报,2009,54(14):1990-2007
    [126]朱大岗,王治顺.构造岩的结构成因分类与命名[J].中国科学院地质力学研究所所刊,1995:55-76
    [127]朱光,刘国生,宋传中,王道轩.郯庐断裂带的脉动式伸展活动.高校地质[115]学报,2000,6(3):396-404
    [128]朱光,牛漫兰,宋传中,王道轩,刘国生.郯庐断裂带新生代的上地幔剪切作用与火山活动[J].安徽地质,2001a,11(2):106-112
    [129]朱光,王道轩,刘国生,宋传中,徐嘉炜,牛漫兰.郯庐断裂带的伸展活动及其动力学背景[J].地质科学,2001b,36(3):269-278
    [130]朱光,宋传中,牛漫兰,刘国生,王勇生.郯庐断裂带的岩石圈结构及其成因分析[J].高校地质学报,2002a,8(3):248-256
    [131]朱光,牛漫兰,刘国生,王道轩,宋传中.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件[J].地质学报,2002b,76(3):325-334
    [132]朱光,刘国生,牛漫兰,宋传中,王道轩.郯庐断裂带的平移运动与成因[J].地质通报,2003,22(3):200-207
    [133]朱光,刘国生,W.J. Dunlap,C. Teyssier,王勇生,牛漫兰.郯庐断裂带同造山走滑运动的40Ar-39Ar年代学证据[J].科学通报,2004a,49(2):190-198
    [134]朱光,王道轩,刘国生,牛漫兰,宋传中.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,2004b,39(1):36-49
    [135]朱光,谢成龙,王勇生,牛漫兰,刘国生.郯庐高压走滑韧性剪切带特征及其40Ar\39Ar定年[J].岩石学报,2005a,21(6):1687-1702
    [136]朱光,牛漫兰,刘国生,王勇生,谢成龙,李长城.郯庐断裂带肥东段走滑运动的40Ar\39Ar法定年[J].地质学报,2005b,79(3):303-316
    [137]朱光,王勇生,王道轩,牛漫兰,刘国生,谢成龙.前陆沉积与变形对郯庐断裂带同造山运动的制约[J].地质科学,2006a,41(1):102-121
    [138]朱光,徐佑德,刘国生,王勇生,谢成龙.郯庐断裂带中南段走滑构造特征与变形规律[J].地质科学,2006b,41(2):226-241
    [139]朱光,胡召齐,陈印,牛漫兰,谢成龙.华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示[J].地质通报,2008,27(10):1594-1604
    [140]朱光,张力,谢成龙,牛漫兰,王勇生.郯庐断裂带构造演化的同位素年代学制约[J].地质科学,2009,44(4):1327-1342
    [141]朱起煌.反转构造的运动学分析与形态类型[J].中国海上油气(地质),1994,8(4):245-251
    [142]朱志澄,宋鸿林.构造地质学[M].中国地质大学出版社,1990:183-184、195-196、222-223
    [143]朱志澄,曾佐勋,樊光明.构造地质学(第三版)[M].中国地质大学出版社,2008:205-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700