用户名: 密码: 验证码:
人白细胞介素-10基因治疗对去卵巢大鼠骨代谢及种植体骨结合影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的将携带人白细胞介素-10 (human interleukin-10, hIL-10)基因的真核表达质粒经尾静脉高压注射的方法导入大鼠体内,探讨hIL-10基因治疗对去卵巢大鼠骨代谢及种植体骨结合的影响,为hIL-10基因治疗骨代谢性疾病及促进种植体骨结合奠定基础。
     方法1.扩增、鉴定携带hIL-10基因的质粒EX-A0007-M03,利用脂质体将其转入293T及RAW264.7细胞;荧光显微镜及ELISA检测目的基因的表达,破骨细胞形成及骨吸收实验鉴定hIL-10蛋白的生物学功能。2.以hIL-10为报告基因,通过尾静脉高压注射的方法将hIL-10质粒导入大鼠体内,观察不同注射条件对hIL-10在体内表达的影响,通过冰冻切片、ELISA及免疫组化等方法验证目的基因的表达。3.切除3月龄雌性SD大鼠双侧卵巢建立绝经后骨质疏松症模型,通过体重监测、子宫病理、血清ALP、Ca、P浓度、双能X线、骨组织病理及生物力学检测等方法验证绝经后骨质疏松症模型建立成功。4.在大鼠绝经后骨质疏松症模型建立成功的基础上,每周经尾静脉高压注射导入hIL-10质粒,于2w、4w、8w处死动物,通过体重监测、血清ALP、Ca、P、TRAP、IL-1β浓度、双能X线、骨组织病理及生物力学检测等方法观察hIL-10基因治疗对骨质疏松症大鼠骨代谢的影响。5.大鼠绝经后骨质疏松症模型建立成功后在其胫骨植入纯钛种植体,每周经尾静脉高压注射导入hIL-10质粒,于2w、4w、8w处死动物,通过X线、显微CT、制作带种植体硬组织磨片等方法观察hIL-10基因治疗对骨质疏松症大鼠种植体骨结合的影响。
     结果1.凝胶电泳和DNA测序鉴定证实EX-A0007-M03上携带的外源基因为hIL-10;EX-A0007-M03脂质体法瞬时转染293T及RAW264.7细胞获得成功,部分细胞发出绿色荧光,ELISA检测表明目的基因获得表达,转染后产生的hIL-10蛋白在体外具有抑制破骨细胞形成和骨吸收的生物学功能。2.冰冻切片、ELISA和免疫组化检测表明经尾静脉高压注射后hIL-10在大鼠体内得到高效的表达。3.去卵巢后12w大鼠体重较SHAM组明显增加,子宫萎缩,骨量丢失明显,血清ALP浓度升高,骨力学性能减退,呈现高转换型骨质疏松状态。4. hIL-10基因治疗可抑制OVX所致的TNF-α和TRAP 5b的升高(P<0.05),但对骨质疏松症大鼠和正常大鼠的骨代谢无明显影响。5. hIL-10基因治疗对骨质疏松症大鼠和正常大鼠的骨结合无显著性差异(P>0.05)。
     结论1. hIL-10质粒经转染后在体外具有抑制破骨细胞形成及骨吸收的生物学作用。2.尾静脉高压注射法可以使hIL-10基因在大鼠体内简单、安全、有效地得以表达。3. 3月龄雌性SD大鼠切除双侧卵巢后12w可以较好地模拟绝经后骨质疏松症。4. hIL-10基因治疗对骨质疏松症大鼠骨代谢及种植体骨结合无明显影响;IL-10对骨代谢性疾病的作用尚需要进一步的研究。
Objective This study aimed to explore the effects of hIL-10 gene therapy on bone metabolism and implant osseointegration in ovariectomized rats by delivering the plasmids (EX-A0007-M03) carried with human interleukin-10 (IL-10) gene into rats via hydrodynamic tail vein injection. Thus it provided evidence for hIL-10 gene therapy on bone metabolism diseases and improvement of osseointegration.
     Methods 1. After amplification and identification of the plasmids (EX-A0007-M03) carried with human interleukin-10 (IL-10) gene, the plasmids were transfected into 293T and RAW264.7 cells with liposome. Fluorescence microscopy and ELISA were used to detect the expression of target gene.Osteoclast formation and bone absorption experiments were carried out to identify the biological function of hIL-10. 2. Using hIL-10 as a reporter gene, this study transfered the plasmids into rats by hydrodynamic tail vein injection, and observed the effects of different injection conditions on the hIL-10 expression in vivo, which were verificated through the frozen section, ELISA and immunohistochemistry. 3. The ovaries were completely excised bilaterally in 3 months old female SD rats and factors like the body weight, uterine pathology, serum ALP, Ca, P concentration, dual energy X ray, pathology and biomechanics of bone tissue were used to validate that the model of postmenopausal osteoporosis had been successfully established. 4. In the basis of the successful establishment of postmenopausal osteoporosis, the rats were transferred with hIL-10 plasmids by hydrodynamic tail vein injection weekly. In 2, 4, 8 weeks after injection, the animals were sacrificed, with body weight, serum ALP, Ca, P, TRAP, IL-1βconcentration, dual energy X ray, bone pathology and biomechanical testing to detect the effects of hIL-10 gene therapy on bone metabolism. 5. After the successful establishment of postmenopausal osteoporosis, the titanium implants were placed in the tibia and the rats were transferred with hIL-10 plasmids by hydrodynamic tail vein injection weekly. In 2, 4, 8 weeks after injection, the animals were sacrificed, with the effects of hIL-10 gene therapy on the osseointegraton of implants detected by methods like X-ray, micro-CT, bone-grinding slice techniques.
     Results 1. EX-A0007-M03 was confirmed to carry the foreign gene of hIL-10 by gel electrophoresis and DNA sequencing. EX-A0007-M03 was transiently transfected into 293T and RAW264.7 cells successfully by liposome, with some cells emitting green fluorescence. ELISA detection confirmed that the target gene was expressed; the hIL-10 protein had the biological function to inhibit osteoclast formation and resorption. 2. It was demonstrated from the frozen section, ELISA and immunohistochemistry that hIL-10 were highly expressed in rats after hydrodynamic tail vein injection. 3. In 12 weeks after ovariectomy, the rats developed the features of high turnover osteoporosis with the increased body weight and the serum ALP concentration, atrophy of the uterus, significant loss and diminished mechanical properties of bone. 4. The increase of TNF-αand TRAP 5b induced by OVX could be significantly inhibited after hIL-10 gene therapy (P<0.05), but the hIL-10 gene therapy had no effect on bone metabolism in osteoporosis or normal rats. 5.The hIL-10 gene therapy had no effect on osseointegration in osteoporosis or normal rats (P>0.05).
     Conclusion 1. hIL-10 plasmids have the biological function to inhibit osteoclast formation and bone resorption after transfection. 2. It is a simple, safe and effective approach to express hIL-10 gene in rats. 3. Female SD rats ovariectomized at the age of 3 months could be an ideal animal model for postmenopausal osteoporosis 12 weeks later. 4. hIL-10 gene therapy had no significant effect on bone metabolism and osseointegration in osteoporosis or normal rats. For a better understanding of IL-10 on metabolic bone disease, further studies are required.
引文
[1] K. Asadullah, W. Sterry and H.D. Volk, Interleukin-10 therapy--review of a new approach, Pharmacol Rev 55 (2003), pp. 241-269.
    [2] K.E. Evans and S.W. Fox, Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus, BMC Cell Biol 8 (2007), p. 4.
    [3] S.G. Mohamed, E. Sugiyama, K. Shinoda, H. Taki, H. Hounoki, H.O. Abdel-Aziz, et al., Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells, Bone 41 (2007), pp. 592-602.
    [4] A. Al-Rasheed, H. Scheerens, D.M. Rennick, H.M. Fletcher and D.N. Tatakis, Accelerated alveolar bone loss in mice lacking interleukin-10, J Dent Res 82 (2003), pp. 632-635.
    [5] A. Al-Rasheed, H. Scheerens, A.K. Srivastava, D.M. Rennick and D.N. Tatakis, Accelerated alveolar bone loss in mice lacking interleukin-10: late onset, J Periodontal Res 39 (2004), pp. 194-198.
    [6] S.L. Cohen, A.M. Moore and W.E. Ward, Interleukin-10 knockout mouse: a model for studying bone metabolism during intestinal inflammation, Inflamm Bowel Dis 10 (2004), pp. 557-563.
    [7] M. Boshart, F. Weber, G. Jahn, K. Dorsch-Hasler, B. Fleckenstein and W. Schaffner, A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus, Cell 41 (1985), pp. 521-530.
    [8] D.F. Fiorentino, M.W. Bond and T.R. Mosmann, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones, J Exp Med 170 (1989), pp. 2081-2095.
    [9] B.L. Park, I.K. Han, H.S. Lee, L.H. Kim, S.J. Kim, J.S. Shin, et al., Association of interleukin 10 haplotype with low bone mineral density in Korean postmenopausal women, J Biochem Mol Biol 37 (2004), pp. 691-699.
    [10] H.Y. Chen, W.C. Chen, C.M. Hsu, F.J. Tsai and C.H. Tsai, Tumor necrosis factor alpha, CYP 17, urokinase, and interleukin 10 gene polymorphisms in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis, Eur J Obstet Gynecol Reprod Biol 122 (2005), pp. 73-78.
    [11] A. Gur, A. Denli, K. Nas, R. Cevik, M. Karakoc, A.J. Sarac, et al., Possible pathogenetic role of new cytokines in postmenopausal osteoporosis and changes during calcitonin plus calcium therapy, Rheumatol Int 22 (2002), pp. 194-198.
    [12] L.X. Xu, T. Kukita, A. Kukita, T. Otsuka, Y. Niho and T. Iijima, Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system, J Cell Physiol 165 (1995), pp. 624-629.
    [13] A.C. Lovibond, S.J. Haque, T.J. Chambers and S.W. Fox, TGF-beta-induced SOCS3 expression augments TNF-alpha-induced osteoclast formation, Biochem Biophys Res Commun 309 (2003), pp. 762-767.
    [14] M.H. Hong, H. Williams, C.H. Jin and J.W. Pike, The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins, J Bone MinerRes 15 (2000), pp. 911-918.
    [15] J.M. Owens, A.C. Gallagher and T.J. Chambers, IL-10 modulates formation of osteoclasts in murine hemopoietic cultures, J Immunol 157 (1996), pp. 936-940.
    [16] H.H. Shin, J.E. Lee, E.A. Lee, B.S. Kwon and H.S. Choi, Enhanced osteoclastogenesis in 4-1BB-deficient mice caused by reduced interleukin-10, J Bone Miner Res 21 (2006), pp. 1907-1912.
    [17] H. Sasaki, L. Hou, A. Belani, C.Y. Wang, T. Uchiyama, R. Muller, et al., IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo, J Immunol 165 (2000), pp. 3626-3630.
    [18] A.E. Chernoff, E.V. Granowitz, L. Shapiro, E. Vannier, G. Lonnemann, J.B. Angel, et al., A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses, J Immunol 154 (1995), pp. 5492-5499.
    [19] K. Shetty, G.Y. Wu and C.H. Wu, Gene therapy of hepatic diseases: prospects for the new millennium, Gut 46 (2000), pp. 136-139.
    [20] D. Thomas and M. Suthanthiran, Optimal modes and targets of gene therapy in transplantation, Immunol Rev 196 (2003), pp. 161-175.
    [21] M.D. Brown, A.G. Schatzlein and I.F. Uchegbu, Gene delivery with synthetic (non viral) carriers, Int J Pharm 229 (2001), pp. 1-21.
    [22] W.T. Windsor, R. Syto, A. Tsarbopoulos, R. Zhang, J. Durkin, S. Baldwin, et al., Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10, Biochemistry 32 (1993), pp. 8807-8815.
    [23] S. Dokka, D. Toledo, X. Shi, J. Ye and Y. Rojanasakul, High-efficiency gene transfection of macrophages by lipoplexes, Int J Pharm 206 (2000), pp. 97-104.
    [24] A. Taylor, M.J. Rogers, D. Tosh and F.P. Coxon, A novel method for efficient generation of transfected human osteoclasts, Calcif Tissue Int 80 (2007), pp. 132-136.
    [25] G. Escher, A. Hoang, S. Georges, U. Tchoua, A. El-Osta, Z. Krozowski, et al., Demethylation using the epigenetic modifier, 5-azacytidine, increases the efficiency of transient transfection of macrophages, J Lipid Res 46 (2005), pp. 356-365.
    [26] H.E. Hofland, L. Shephard and S.M. Sullivan, Formation of stable cationic lipid/DNA complexes for gene transfer, Proc Natl Acad Sci U S A 93 (1996), pp. 7305-7309.
    [27] X. Gao and L. Huang, Cationic liposome-mediated gene transfer, Gene Ther 2 (1995), pp. 710-722.
    [28] G. Grassi, P. Maccaroni, R. Meyer, H. Kaiser, E. D'Ambrosio, E. Pascale, et al., Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87, Carcinogenesis 24 (2003), pp. 1625-1635.
    [29] P. Loser, G.S. Jennings, M. Strauss and V. Sandig, Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB, J Virol 72 (1998), pp. 180-190.
    [30]李斌斌.于世凤.庞淑珍,两种破骨细胞培养方法的比较及其吸收骨质的动态观察,北京大学学报(医学版) 37 (2005), pp. 536-542.
    [31]司徒镇强.吴军正,细胞培养技术,世界图书出版社,西安(2005) , pp. 130-133.
    [32] L.C. Hofbauer, S. Khosla, C.R. Dunstan, D.L. Lacey, W.J. Boyle and B.L. Riggs, The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption, JBone Miner Res 15 (2000), pp. 2-12.
    [33] T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M.T. Gillespie and T.J. Martin, Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families, Endocr Rev 20 (1999), pp. 345-357.
    [34] H. Hsu, D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, et al., Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand, Proc Natl Acad Sci U S A 96 (1999), pp. 3540-3545.
    [35]肖新华.周后德.王运林.廖二元, RANKL诱导小鼠单核细胞RAW264.7分化成成熟破骨细胞,中国骨质疏松杂志11 (2005), pp. 151-156.
    [36]于世凤.李斌斌,破骨细胞与颌骨骨吸收研究展望,牙体牙髓牙周病学杂志13 (2003), pp. 357-361.
    [37] J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, et al., Direct gene transfer into mouse muscle in vivo, Science 247 (1990), pp. 1465-1468.
    [38] F. Liu, Y. Song and D. Liu, Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA, Gene Ther 6 (1999), pp. 1258-1266.
    [39] G. Zhang, V. Budker and J.A. Wolff, High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA, Hum Gene Ther 10 (1999), pp. 1735-1737.
    [40] H. Maruyama, N. Higuchi, S. Kameda, J. Miyazaki and F. Gejyo, Rat liver-targeted naked plasmid DNA transfer by tail vein injection, Mol Biotechnol 26 (2004), pp. 165-172.
    [41] L.Y. Yu, B. Lin, Z.L. Zhang and L.H. Guo, Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes, Acta Pharmacol Sin 25 (2004), pp. 721-726.
    [42] H.L. Davis, B.A. Demeneix, B. Quantin, J. Coulombe and R.G. Whalen, Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle, Hum Gene Ther 4 (1993), pp. 733-740.
    [43] T. Sugimoto, K. Inui and Y. Shimazaki, Gene therapy for myocardial angiogenesis: with direct intramuscular gene transfer of naked deoxyribonucleic acid encoding vascular endothelial growth factor and cell transplantation of vascular endothelial growth factor transfected H9c2 myoblast, Jpn J Thorac Cardiovasc Surg 51 (2003), pp. 192-197.
    [44] H. Herweijer, G. Zhang, V.M. Subbotin, V. Budker, P. Williams and J.A. Wolff, Time course of gene expression after plasmid DNA gene transfer to the liver, J Gene Med 3 (2001), pp. 280-291.
    [45] Z.Y. Chen, S.R. Yant, C.Y. He, L. Meuse, S. Shen and M.A. Kay, Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver, Mol Ther 3 (2001), pp. 403-410.
    [46] V. Budker, T. Budker, G. Zhang, V. Subbotin, A. Loomis and J.A. Wolff, Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process, J Gene Med 2 (2000), pp. 76-88.
    [47] M. Lecocq, F. Andrianaivo, M.T. Warnier, S. Wattiaux-De Coninck, R. Wattiaux and M. Jadot, Uptake by mouse liver and intracellular fate of plasmid DNA after a rapid tail vein injection of a small or a large volume, J Gene Med 5 (2003), pp. 142-156.
    [48] G. Zhang, X. Gao, Y.K. Song, R. Vollmer, D.B. Stolz, J.Z. Gasiorowski, et al., Hydroporation as the mechanism of hydrodynamic delivery, Gene Ther 11 (2004), pp. 675-682.
    [49] D. Liu and J.E. Knapp, Hydrodynamics-based gene delivery, Curr Opin Mol Ther 3 (2001), pp.192-197.
    [50] M. Takekubo, M. Tsuchida, M. Haga, M. Saitoh, H. Hanawa, H. Maruyama, et al., Hydrodynamics-based delivery of plasmid DNA encoding CTLA4-Ig prolonged cardiac allograft survival in rats, J Gene Med 10 (2008), pp. 290-297.
    [51] D.M. Feng, C.X. He, C.Y. Miao, B. Lu, W.J. Wu, Y.F. Ding, et al., Conditions affecting hydrodynamics-based gene delivery into mouse liver in vivo, Clin Exp Pharmacol Physiol 31 (2004), pp. 850-855.
    [52]尹萸,氯胺酮的不良反应及防治,药物不良反应杂志7 (2005), pp. 424-427.
    [53] G. Zhang, Y.K. Song and D. Liu, Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure, Gene Ther 7 (2000), pp. 1344-1349.
    [54] V. Budker, G. Zhang, S. Knechtle and J.A. Wolff, Naked DNA delivered intraportally expresses efficiently in hepatocytes, Gene Ther 3 (1996), pp. 593-598.
    [55] M.A. Hickman, R.W. Malone, K. Lehmann-Bruinsma, T.R. Sih, D. Knoell, F.C. Szoka, et al., Gene expression following direct injection of DNA into liver, Hum Gene Ther 5 (1994), pp. 1477-1483.
    [56] H. Ochiai, H. Harashima and H. Kamiya, Intranuclear disposition of exogenous DNA in vivo: silencing, methylation and fragmentation, FEBS Lett 580 (2006), pp. 918-922.
    [57]成峰.王学浩.肇毅.黄蓬,尾静脉液压法注射转hIL-10在大鼠肝组织中的表达,世界华人消化杂志14 (2006), pp. 2135-2138.
    [58] H. Herweijer and J.A. Wolff, Gene therapy progress and prospects: hydrodynamic gene delivery, Gene Ther 14 (2007), pp. 99-107.
    [59] J.E. Hagstrom, J. Hegge, G. Zhang, M. Noble, V. Budker, D.L. Lewis, et al., A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs, Mol Ther 10 (2004), pp. 386-398.
    [60] S. Sidiropoulou-Chatzigiannis, M. Kourtidou and L. Tsalikis, The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review, J Int Acad Periodontol 9 (2007), pp. 77-84.
    [61] J. Wactawski-Wende, S.G. Grossi, M. Trevisan, R.J. Genco, M. Tezal, R.G. Dunford, et al., The role of osteopenia in oral bone loss and periodontal disease, J Periodontol 67 (1996), pp. 1076-1084.
    [62]简小冲.陈江.闫福华,复杂情况下口腔种植的探讨,口腔医学研究23 (2007), pp. 344-346.
    [63] Z. Du, J. Chen, F. Yan and Y. Xiao, Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats, Clin Oral Implants Res 20 (2009), pp. 145-150.
    [64]汪春风.林柏云.李朝阳,实验骨组织形态计量学参数分析与意义,解剖学研究17 (1995), p. 97-101.
    [65]郭世紴.罗先正.丘贵兴,骨质疏松基础与临床,天津科学技术出版社(2001), pp. 70-71.
    [66]马增春.王道福.邱贞琴.高月.谭洪玲,建立骨质疏松症模型的研究与进展,中国临床康复8 (2004), p. 7478-7481.
    [67] J.B. Rodgers, M.C. Monier-Faugere and H. Malluche, Animal models for the study of bone loss after cessation of ovarian function, Bone 14 (1993), pp. 369-377.
    [68] P.D. Saville, Changes in skeletal mass and fragility with castration in the rat; a model of osteoporosis, J Am Geriatr Soc 17 (1969), pp. 155-166.
    [69] D.D. Thompson, H.A. Simmons, C.M. Pirie and H.Z. Ke, FDA Guidelines and animal models for osteoporosis, Bone 17 (1995), pp. 125S-133S.
    [70] D.N. Kalu, The ovariectomized rat model of postmenopausal bone loss, Bone Miner 15 (1991), pp. 175-191.
    [71] P.P. Lelovas, T.T. Xanthos, S.E. Thoma, G.P. Lyritis and I.A. Dontas, The laboratory rat as an animal model for osteoporosis research, Comp Med 58 (2008), pp. 424-430.
    [72] T.J. Wronski, M. Cintron and L.M. Dann, Temporal relationship between bone loss and increased bone turnover in ovariectomized rats, Calcif Tissue Int 43 (1988), pp. 179-183.
    [73]刘忠雄,骨质疏松学,科学出版社(1998) , pp. 507-508.
    [74] G. Giavaresi, V. Borsari, M. Fini, L. Martini, M. Tschon, F. De Terlizzi, et al., Different diagnostic techniques for the assessment of cortical bone on osteoporotic animals, Biomed Pharmacother 58 (2004), pp. 494-499.
    [75]肖恩.孟萍,骨质疏松骨代谢生化指标的研究进展,中国骨质疏松杂志14 (2008), pp. 212-218.
    [76]谈志龙.任海龙.白人骁.王学谦,骨质疏松症与骨代谢生化测定指标,中国骨质疏松杂志12 (2006), pp. 89-94.
    [77] L.G. Raisz, Pathogenesis of osteoporosis: concepts, conflicts, and prospects, J Clin Invest 115 (2005), pp. 3318-3325.
    [78]李恩.薛延.王洪复,骨质疏松鉴别诊断与治疗,人民卫生出版社,北京(2005),pp. 175-176.
    [79] M. Motohashi, T. Shirota, Y. Tokugawa, K. Ohno, K. Michi and A. Yamaguchi, Bone reactions around hydroxyapatite-coated implants in ovariectomized rats, Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87 (1999), pp. 145-152.
    [80]余卫.程晓光,我国双能x线骨密度测量仪临床应用状况浅析,中华骨质疏松和骨矿盐疾病杂志2 (2009), p. 13-16.
    [81] S.H. Abbasi-Jahromi, A. Matayoshi, R. Kimble, A. Dimarogonas and R. Pacifici, Bone quality factor analysis: a new noninvasive technique for the measurement of bone density and bone strength, J Bone Miner Res 11 (1996), pp. 594-599.
    [82]王烨明,微囊化人降钙素基因修饰细胞治疗绝经后骨质疏松症的研究博士毕业论文,上海交通大学(2004), p. 130.
    [83]黄文秀.简小冲.杜志斌.陈江,辛伐他汀对去势大鼠骨代谢和股骨生物力学影响,福建医科大学学报43 (2009), pp. 454-459.
    [84] L.A. Fitzpatrick, Estrogen therapy for postmenopausal osteoporosis, Arq Bras Endocrinol Metabol 50 (2006), pp. 705-719.
    [85] B. Ma, S.A. Clarke, R.A. Brooks and N. Rushton, The effect of simvastatin on bone formation and ceramic resorption in a peri-implant defect model, Acta Biomater 4 (2008), pp. 149-155.
    [86] K. Matsuzaka, M. Shimono and T. Inoue, Characteristics of newly formed bone during guided bone regeneration: observations by immunohistochemistry and confocal laser scanning microscopy, Bull Tokyo Dent Coll 42 (2001), pp. 225-234.
    [87] S.C. Manolagas and R.L. Jilka, Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis, N Engl J Med 332 (1995), pp. 305-311.
    [88] A.M. Parfitt, Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone, J Cell Biochem 55 (1994), pp. 273-286.
    [89] A.M. Parfitt, A.R. Villanueva, J. Foldes and D.S. Rao, Relations between histologic indices ofbone formation: implications for the pathogenesis of spinal osteoporosis, J Bone Miner Res 10 (1995), pp. 466-473.
    [90] M.N. Weitzmann and R. Pacifici, The role of T lymphocytes in bone metabolism, Immunol Rev 208 (2005), pp. 154-168.
    [91] N. Kim, Y. Kadono, M. Takami, J. Lee, S.H. Lee, F. Okada, et al., Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis, J Exp Med 202 (2005), pp. 589-595.
    [92] S. Cenci, M.N. Weitzmann, C. Roggia, N. Namba, D. Novack, J. Woodring, et al., Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha, J Clin Invest 106 (2000), pp. 1229-1237.
    [93] L.C. Hofbauer, D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, B.L. Riggs and S. Khosla, Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells, Bone 25 (1999), pp. 255-259.
    [94] J. Lam, S. Takeshita, J.E. Barker, O. Kanagawa, F.P. Ross and S.L. Teitelbaum, TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J Clin Invest 106 (2000), pp. 1481-1488.
    [95] Y.H. Zhang, A. Heulsmann, M.M. Tondravi, A. Mukherjee and Y. Abu-Amer, Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways, J Biol Chem 276 (2001), pp. 563-568.
    [96] M.S. Nanes, Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology, Gene 321 (2003), pp. 1-15.
    [97] K. Fuller, C. Murphy, B. Kirstein, S.W. Fox and T.J. Chambers, TNFalpha potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL, Endocrinology 143 (2002), pp. 1108-1118.
    [98] G. Shanker, M. Sorci-Thomas and M.R. Adams, Estrogen modulates the expression of tumor necrosis factor alpha mRNA in phorbol ester-stimulated human monocytic THP-1 cells, Lymphokine Cytokine Res 13 (1994), pp. 377-382.
    [99] S.H. Ralston, R.G. Russell and M. Gowen, Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women, J Bone Miner Res 5 (1990), pp. 983-988.
    [100] R. Pacifici, C. Brown, E. Puscheck, E. Friedrich, E. Slatopolsky, D. Maggio, et al., Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells, Proc Natl Acad Sci U S A 88 (1991), pp. 5134-5138.
    [101] R.B. Kimble, S. Bain and R. Pacifici, The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice, J Bone Miner Res 12 (1997), pp. 935-941.
    [102] S. Wei, H. Kitaura, P. Zhou, F.P. Ross and S.L. Teitelbaum, IL-1 mediates TNF-induced osteoclastogenesis, J Clin Invest 115 (2005), pp. 282-290.
    [103] J.H. Kim, H.M. Jin, K. Kim, I. Song, B.U. Youn, K. Matsuo, et al., The mechanism of osteoclast differentiation induced by IL-1, J Immunol 183 (2009), pp. 1862-1870.
    [104] H.Y. Chen, W.C. Chen, M.C. Wu, F.J. Tsai and C.C. Lin, Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphism in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis, Maturitas 44 (2003), pp. 49-54.
    [105] S.X. Zheng, Y. Vrindts, M. Lopez, D. De Groote, P.F. Zangerle, J. Collette, et al., Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) bystimulated whole blood cells in postmenopausal osteoporosis, Maturitas 26 (1997), pp. 63-71.
    [106] S. Cuzzocrea, E. Mazzon, L. Dugo, I. Serraino, D. Britti, M. De Maio, et al., Absence of endogeneous interleukin-10 enhances the evolution of murine type-II collagen-induced arthritis, Eur Cytokine Netw 12 (2001), pp. 568-580.
    [107] M. Puliti, C. Von Hunolstein, C. Verwaerde, F. Bistoni, G. Orefici and L. Tissi, Regulatory role of interleukin-10 in experimental group B streptococcal arthritis, Infect Immun 70 (2002), pp. 2862-2868.
    [108] D.J. Berg, R. Kuhn, K. Rajewsky, W. Muller, S. Menon, N. Davidson, et al., Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance, J Clin Invest 96 (1995), pp. 2339-2347.
    [109] H.B. Qiu, D.C. Chen, J.Q. Pan, D.W. Liu and S. Ma, Inhibitory effects of nitric oxide and interleukin-10 on production of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 in mouse alveolar macrophages, Zhongguo Yao Li Xue Bao 20 (1999), pp. 271-275.
    [110] D.H. Hsu, K.W. Moore and H. Spits, Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity, Int Immunol 4 (1992), pp. 563-569.
    [111] Y. Kotake, H. Sang, T. Tabatabaie, G.L. Wallis, D.R. Moore and C.A. Stewart, Interleukin-10 overexpression mediates phenyl-N-tert-butyl nitrone protection from endotoxemia, Shock 17 (2002), pp. 210-216.
    [112] H.M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem, Anat Rec 226 (1990), pp. 414-422.
    [113] C. Pautke, S. Vogt, T. Tischer, G. Wexel, H. Deppe, S. Milz, et al., Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis, Bone 37 (2005), pp. 441-445.
    [114] T. Goldschlager, A. Abdelkader, J. Kerr, I. Boundy and G. Jenkin, Undecalcified bone preparation for histology, histomorphometry and fluorochrome analysis, J Vis Exp.
    [115] P. Van Vlasselaer, B. Borremans, R. Van Den Heuvel, U. Van Gorp and R. de Waal Malefyt, Interleukin-10 inhibits the osteogenic activity of mouse bone marrow, Blood 82 (1993), pp. 2361-2370.
    [116] P. Van Vlasselaer, B. Borremans, U. van Gorp, J.R. Dasch and R. De Waal-Malefyt, Interleukin 10 inhibits transforming growth factor-beta (TGF-beta) synthesis required for osteogenic commitment of mouse bone marrow cells, J Cell Biol 124 (1994), pp. 569-577.
    [117] R. Dresner-Pollak, N. Gelb, D. Rachmilewitz, F. Karmeli and M. Weinreb, Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones, Gastroenterology 127 (2004), pp. 792-801.
    [118] M. Claudino, T.P. Garlet, C.R. Cardoso, G.F. de Assis, R. Taga, F.Q. Cunha, et al., Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice, Eur J Oral Sci 118 (2010), pp. 19-28.
    [119] J.M. Halleen, S.L. Tiitinen, H. Ylipahkala, K.M. Fagerlund and H.K. Vaananen, Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption, Clin Lab 52 (2006), pp. 499-509.
    [120] B. Habermann, C. Eberhardt, M. Feld, L. Zichner and A.A. Kurth, Tartrate-resistant acidphosphatase 5b (TRAP 5b) as a marker of osteoclast activity in the early phase after cementless total hip replacement, Acta Orthop 78 (2007), pp. 221-225.
    [121] D. Liu, S. Yao and G.E. Wise, Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle, Eur J Oral Sci 114 (2006), pp. 42-49.
    [122]张绍芬.陆湘云,绝经-内分泌与临床,人民卫生出版社(2004), pp. 205-206.
    [123] K. Inagaki, Y. Kurosu, M. Sakano, T. Sugiishi, G. Yamamoto, T. Noguchi, et al., [Osteoporosis and periodontal disease in postmenopausal women: association and mechanisms], Clin Calcium 16 (2006), pp. 269-277.
    [124] P.I. Br?nemark, R. Adell, U. Breine, B.O. Hansson, J. Lindstrom and A. Ohlsson, Intra-osseous anchorage of dental prostheses. I. Experimental studies, Scand J Plast Reconstr Surg 3 (1969), pp. 81-100.
    [125] T. Albrektsson, P.I. Branemark, H.A. Hansson and J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop Scand 52 (1981), pp. 155-170.
    [126] P.J. Kribbs, C.H. Chesnut, 3rd, S.M. Ott and R.F. Kilcoyne, Relationships between mandibular and skeletal bone in an osteoporotic population, J Prosthet Dent 62 (1989), pp. 703-707.
    [127] N. von Wowern and G. Kollerup, Symptomatic osteoporosis: a risk factor for residual ridge reduction of the jaws, J Prosthet Dent 67 (1992), pp. 656-660.
    [128] T. Fujimoto, A. Niimi, H. Nakai and M. Ueda, Osseointegrated implants in a patient with osteoporosis: a case report, Int J Oral Maxillofac Implants 11 (1996), pp. 539-542.
    [129] B. Friberg, A. Ekestubbe, D. Mellstrom and L. Sennerby, Branemark implants and osteoporosis: a clinical exploratory study, Clin Implant Dent Relat Res 3 (2001), pp. 50-56.
    [130] M.M. Bornstein, N. Cionca and A. Mombelli, Systemic conditions and treatments as risks for implant therapy, Int J Oral Maxillofac Implants 24 Suppl (2009), pp. 12-27.
    [131]杜志斌,辛伐他汀对骨质疏松大鼠种植体骨愈合的影响硕士毕业论文,福建医科大学,福州(2007), p. 42.
    [132] J.E. Davies, Mechanisms of endosseous integration, Int J Prosthodont 11 (1998), pp. 391-401.
    [133] B. Kasemo and J. Gold, Implant surfaces and interface processes, Adv Dent Res 13 (1999), pp. 8-20.
    [134] D.A. Puleo and A. Nanci, Understanding and controlling the bone-implant interface, Biomaterials 20 (1999), pp. 2311-2321.
    [135] T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, et al., Early bone formation around calcium-ion-implanted titanium inserted into rat tibia, J Biomed Mater Res 36 (1997), pp. 131-136.
    [136]宿玉成,现代口腔种植学,人民卫生出版社,北京(2004), pp. 53-55.
    [137]王海涛.潘巨利,增龄变化对钛种植体骨结合影响的实验研究,北京口腔医学16 (2008), pp. 65-69.
    [1] S.C. Manolagas and R.L. Jilka, Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis, N Engl J Med 332 (1995), pp. 305-311.
    [2] A.M. Parfitt, Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone, J Cell Biochem 55 (1994), pp. 273-286.
    [3] T. Suda, N. Takahashi and T.J. Martin, Modulation of osteoclast differentiation, Endocr Rev 13 (1992), pp. 66-80.
    [4] K. Redlich, S. Hayer, R. Ricci, J.P. David, M. Tohidast-Akrad, G. Kollias, et al., Osteoclasts are essential for TNF-alpha-mediated joint destruction, J Clin Invest 110 (2002), pp. 1419-1427.
    [5] Anne Klibanski, Lucile Adams-Campbell, Tamsen Bassford, Steven N. Blair and Scott D. Boden, Osteoporosis prevention, diagnosis, and therapy, Jama 285 (2001), pp. 785-795.
    [6] S. Sidiropoulou-Chatzigiannis, M. Kourtidou and L. Tsalikis, The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review, J Int Acad Periodontol 9 (2007), pp. 77-84.
    [7] J. Wactawski-Wende, S.G. Grossi, M. Trevisan, R.J. Genco, M. Tezal, R.G. Dunford, et al., The role of osteopenia in oral bone loss and periodontal disease, J Periodontol 67 (1996), pp. 1076-1084.
    [8]陈江,口腔种植图谱—手术与修复,福建科学技术出版社,福州(2006).
    [9]简小冲.陈江.闫福华,复杂情况下口腔种植的探讨,口腔医学研究23 (2007), pp. 344-346.
    [10] Z. Du, J. Chen, F. Yan and Y. Xiao, Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats, Clin Oral Implants Res 20 (2009), pp. 145-150.
    [11] D.F. Fiorentino, M.W. Bond and T.R. Mosmann, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones, J Exp Med 170 (1989),pp. 2081-2095.
    [12] W.T. Windsor, R. Syto, A. Tsarbopoulos, R. Zhang, J. Durkin, S. Baldwin, et al., Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10, Biochemistry 32 (1993), pp. 8807-8815.
    [13] F. Willems, A. Marchant, J.P. Delville, C. Gerard, A. Delvaux, T. Velu, et al., Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes, Eur J Immunol 24 (1994), pp. 1007-1009.
    [14] M. Howard and A. O'Garra, Biological properties of interleukin 10, Immunol Today 13 (1992), pp. 198-200.
    [15] R. de Waal Malefyt, J. Haanen, H. Spits, M.G. Roncarolo, A. te Velde, C. Figdor, et al., Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression, J Exp Med 174 (1991), pp. 915-924.
    [16] M. Pretolani, Interleukin-10: an anti-inflammatory cytokine with therapeutic potential, Clin Exp Allergy 29 (1999), pp. 1164-1171.
    [17] D.M. Mosser and X. Zhang, Interleukin-10: new perspectives on an old cytokine, Immunol Rev 226 (2008), pp. 205-218.
    [18] H.B. Qiu, D.C. Chen, J.Q. Pan, D.W. Liu and S. Ma, Inhibitory effects of nitric oxide and interleukin-10 on production of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 in mouse alveolar macrophages, Zhongguo Yao Li Xue Bao 20 (1999), pp. 271-275.
    [19] D.H. Hsu, K.W. Moore and H. Spits, Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity, Int Immunol 4 (1992), pp. 563-569.
    [20] Y. Kotake, H. Sang, T. Tabatabaie, G.L. Wallis, D.R. Moore and C.A. Stewart, Interleukin-10 overexpression mediates phenyl-N-tert-butyl nitrone protection from endotoxemia, Shock 17 (2002), pp. 210-216.
    [21] A. Moroguchi, K. Ishimura, K. Okano, H. Wakabayashi, T. Maeba and H. Maeta, Interleukin-10 suppresses proliferation and remodeling of extracellular matrix of cultured human skin fibroblasts, Eur Surg Res 36 (2004), pp. 39-44.
    [22] M. Walmsley, P.D. Katsikis, E. Abney, S. Parry, R.O. Williams, R.N. Maini, et al., Interleukin-10 inhibition of the progression of established collagen-induced arthritis, Arthritis Rheum 39 (1996), pp. 495-503.
    [23] J.P. Brown, J.F. Zachary, C. Teuscher, J.J. Weis and R.M. Wooten, Dual role of interleukin-10 in murine Lyme disease: regulation of arthritis severity and host defense, Infect Immun 67 (1999), pp. 5142-5150.
    [24] S. Cuzzocrea, E. Mazzon, L. Dugo, I. Serraino, D. Britti, M. De Maio, et al., Absence of endogeneous interleukin-10 enhances the evolution of murine type-II collagen-induced arthritis, Eur Cytokine Netw 12 (2001), pp. 568-580.
    [25] M. Puliti, C. Von Hunolstein, C. Verwaerde, F. Bistoni, G. Orefici and L. Tissi, Regulatory role of interleukin-10 in experimental group B streptococcal arthritis, Infect Immun 70 (2002), pp. 2862-2868.
    [26] R.K. Sellon, S. Tonkonogy, M. Schultz, L.A. Dieleman, W. Grenther, E. Balish, et al., Resident enteric bacteria are necessary for development of spontaneous colitis and immunesystem activation in interleukin-10-deficient mice, Infect Immun 66 (1998), pp. 5224-5231.
    [27] K.L. Madsen, J.S. Doyle, M.M. Tavernini, L.D. Jewell, R.P. Rennie and R.N. Fedorak, Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice, Gastroenterology 118 (2000), pp. 1094-1105.
    [28] D.J. Berg, R. Kuhn, K. Rajewsky, W. Muller, S. Menon, N. Davidson, et al., Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance, J Clin Invest 96 (1995), pp. 2339-2347.
    [29] A. Al-Rasheed, H. Scheerens, D.M. Rennick, H.M. Fletcher and D.N. Tatakis, Accelerated alveolar bone loss in mice lacking interleukin-10, J Dent Res 82 (2003), pp. 632-635.
    [30] A. Al-Rasheed, H. Scheerens, A.K. Srivastava, D.M. Rennick and D.N. Tatakis, Accelerated alveolar bone loss in mice lacking interleukin-10: late onset, J Periodontal Res 39 (2004), pp. 194-198.
    [31] S.L. Cohen, A.M. Moore and W.E. Ward, Interleukin-10 knockout mouse: a model for studying bone metabolism during intestinal inflammation, Inflamm Bowel Dis 10 (2004), pp. 557-563.
    [32] H.Y. Chen, W.C. Chen, C.M. Hsu, F.J. Tsai and C.H. Tsai, Tumor necrosis factor alpha, CYP 17, urokinase, and interleukin 10 gene polymorphisms in postmenopausal women: correlation to bone mineral density and susceptibility to osteoporosis, Eur J Obstet Gynecol Reprod Biol 122 (2005), pp. 73-78.
    [33] B.L. Park, I.K. Han, H.S. Lee, L.H. Kim, S.J. Kim, J.S. Shin, et al., Association of interleukin 10 haplotype with low bone mineral density in Korean postmenopausal women, J Biochem Mol Biol 37 (2004), pp. 691-699.
    [34] A. Gur, A. Denli, K. Nas, R. Cevik, M. Karakoc, A.J. Sarac, et al., Possible pathogenetic role of new cytokines in postmenopausal osteoporosis and changes during calcitonin plus calcium therapy, Rheumatol Int 22 (2002), pp. 194-198.
    [35] L.X. Xu, T. Kukita, A. Kukita, T. Otsuka, Y. Niho and T. Iijima, Interleukin-10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast-like cells in rat bone marrow culture system, J Cell Physiol 165 (1995), pp. 624-629.
    [36] A.C. Lovibond, S.J. Haque, T.J. Chambers and S.W. Fox, TGF-beta-induced SOCS3 expression augments TNF-alpha-induced osteoclast formation, Biochem Biophys Res Commun 309 (2003), pp. 762-767.
    [37] M.H. Hong, H. Williams, C.H. Jin and J.W. Pike, The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins, J Bone Miner Res 15 (2000), pp. 911-918.
    [38] J.M. Owens, A.C. Gallagher and T.J. Chambers, IL-10 modulates formation of osteoclasts in murine hemopoietic cultures, J Immunol 157 (1996), pp. 936-940.
    [39] H.H. Shin, J.E. Lee, E.A. Lee, B.S. Kwon and H.S. Choi, Enhanced osteoclastogenesis in 4-1BB-deficient mice caused by reduced interleukin-10, J Bone Miner Res 21 (2006), pp. 1907-1912.
    [40] D. Liu, S. Yao and G.E. Wise, Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle, Eur J Oral Sci 114 (2006), pp. 42-49.
    [41] S.G. Mohamed, E. Sugiyama, K. Shinoda, H. Taki, H. Hounoki, H.O. Abdel-Aziz, et al., Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression ofc-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells, Bone 41 (2007), pp. 592-602.
    [42] K.E. Evans and S.W. Fox, Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus, BMC Cell Biol 8 (2007), p. 4.
    [43] H. Sasaki, L. Hou, A. Belani, C.Y. Wang, T. Uchiyama, R. Muller, et al., IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo, J Immunol 165 (2000), pp. 3626-3630.
    [44] P. Van Vlasselaer, B. Borremans, R. Van Den Heuvel, U. Van Gorp and R. de Waal Malefyt, Interleukin-10 inhibits the osteogenic activity of mouse bone marrow, Blood 82 (1993), pp. 2361-2370.
    [45] P. Van Vlasselaer, B. Borremans, U. van Gorp, J.R. Dasch and R. De Waal-Malefyt, Interleukin 10 inhibits transforming growth factor-beta (TGF-beta) synthesis required for osteogenic commitment of mouse bone marrow cells, J Cell Biol 124 (1994), pp. 569-577.
    [46] R. Dresner-Pollak, N. Gelb, D. Rachmilewitz, F. Karmeli and M. Weinreb, Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones, Gastroenterology 127 (2004), pp. 792-801.
    [47] M. Claudino, T.P. Garlet, C.R. Cardoso, G.F. de Assis, R. Taga, F.Q. Cunha, et al., Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice, Eur J Oral Sci 118 (2010), pp. 19-28.
    [48] A.E. Chernoff, E.V. Granowitz, L. Shapiro, E. Vannier, G. Lonnemann, J.B. Angel, et al., A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses, J Immunol 154 (1995), pp. 5492-5499.
    [49] K. Shetty, G.Y. Wu and C.H. Wu, Gene therapy of hepatic diseases: prospects for the new millennium, Gut 46 (2000), pp. 136-139.
    [50] D. Chanda, T. Isayeva, S. Kumar, G.P. Siegal, A.A. Szafran, K.R. Zinn, et al., Systemic osteoprotegerin gene therapy restores tumor-induced bone loss in a therapeutic model of breast cancer bone metastasis, Mol Ther 16 (2008), pp. 871-878.
    [51] P.J. Kostenuik, B. Bolon, S. Morony, M. Daris, Z. Geng, C. Carter, et al., Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice, Bone 34 (2004), pp. 656-664.
    [52] M. Ulrich-Vinther, E.M. Schwarz, F.S. Pedersen, K. Soballe and T.T. Andreassen, Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties, Bone 37 (2005), pp. 751-758.
    [53] G. Zhang, X. Gao, Y.K. Song, R. Vollmer, D.B. Stolz, J.Z. Gasiorowski, et al., Hydroporation as the mechanism of hydrodynamic delivery, Gene Ther 11 (2004), pp. 675-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700