用户名: 密码: 验证码:
间断甲状旁腺素[PTH(1-34)]治疗促进去势雌性大鼠成骨能力及其机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分间断甲状旁腺素[PTH(1-34)]治疗促进去势雌性大鼠股骨干骨折愈合的实验研究
     目的:研究PTH在小剂量间断使用时对卵巢去势状态下大鼠骨折愈合的作用,了解PTH在治疗骨质疏松时能否同时促进骨折愈合。方法:10周龄SPF级雌性SD大鼠行卵巢去势,6周后去势大鼠再次行右侧股骨干开放截骨克氏针内固定术。实验组和对照组各18只,术后当天起实验组皮下注射人甲状旁腺素[PTH(1-34)]30μg/kg/天;对照组注射等量体积生理盐水。在术后4周和6周时每组处死9只大鼠,取股骨骨折标本行X片、Micro-CT、骨密度、生物力学和组织学检查来判断PTH对于去势大鼠骨折愈合的作用。结果:标本骨痂直径测量结果显示在两时间点治疗组骨痂直径都高于对照组,6周时差异有统计学意义(P<0.05)。骨密度测量显示治疗组高于对照组,两时间点P<0.05。4周时治疗组和对照组X片都能见到骨折线,治疗组稍显模糊,对照组明显,骨痂密度低于治疗组,有骨痂不连续区域存在。治疗组骨折愈合7/9,对照组为4/9(P<0.05)。6周时治疗组和对照组骨折线都消失,治疗组骨密度明显高于对照组,骨痂横径大于对照组,两组X片骨痂测量6周时治疗组骨痂横径和对照组相比有统计学意义(P<0.05)。显微CT检查显示治疗组骨折周围有丰富的骨痂形成,骨痂成熟,皮质骨壳厚度明显高于对照组,骨折愈合进程较对照组提前,愈合质量更高。4周和6周时BV/TV高于对照组且有统计学意义(P<0.05)。生物力学测定结果显示4周和6周时治疗组最大载荷和对照组比较有统计学意义,p<0.05;4周时最大桡度优于对照组,P<0.05。4周时PTH组标本组织切片中发现骨折断端有新骨形成,可见成熟骨样组织,相反,在对照组无成熟骨形成,软骨和纤维组织占大多数。6周时PTH组标本组织切片发现骨折两端之间形成丰富的骨桥和成熟骨组织,骨组织互相连接形成骨小梁,周围皮质完整且较厚。对照组显示新骨成熟形成相对较晚,骨痂由细的骨小梁形成、皮质薄。组织形态测量学分析结果显示两者矿化沉积率(MAR)在4周时有统计学意义,P<0.05。结论:基于影像学、组织形态学、生物力学的研究结果显示在去势雌性大鼠股骨骨折间断使用甲状旁腺素治疗可以加速骨折的愈合进程、增加软骨痂和硬骨痂的量、提高骨痂的质量、增加骨痂矿化、加速骨痂的重建、提高骨痂的生物力学性能。研究结果支持临床使用间断PTH治疗用于绝经后骨质疏松性骨折以缩短骨折治疗时间和提高骨折愈合质量。
     第二部分间断甲状旁腺素[PTH(1-34)]治疗促进去势雌性大鼠脊柱后外侧植骨融合的实验研究
     目的:评价间断甲状旁腺素使用是否可以增强和促进脊柱植骨融合,对于需要行脊柱融合的骨质疏松患者有无促进融合和同时抗骨质疏松的作用。方法:10周龄SPF级雌性SD大鼠行卵巢去势,6周后去势大鼠再次经wiltse入路手术建立脊柱L4-5后外侧横突间自体髂骨植骨融合动物模型。实验组和对照组各18只。术后当天起实验组皮下注射人甲状旁腺素[PTH(1-34)]30μg/kg/天;对照组注射等量体积生理盐水。分别于术后4周和6周时每组随机选9只大鼠采血后处死,取融合脊柱节段标本行手工触诊、X片、Micro-CT、组织学检查和血清骨钙素(OC)、NTX检查来判断PTH对于去势大鼠脊柱融合的作用。结果:标本手动触诊检查判断植骨融合结果为4周时治疗组(PTH)为5/9,对照组(CNT)为2/9;6周时PTH组为8/9,CNT组为5/9。融合率有统计学意义,P<0.05。X线影像学分析显示PTH组4周和6周时融合影像学评分为2.03和3.66;对照组分别为1.45和2.56,P<0.05和P<0.01。Micro-CT扫描影像结果:PTH组新形成的骨量丰富,横突间融合骨连续,冠状面和横断面融合骨面积大于对照组,融合提前,融合骨质量提高。骨小梁结构参数分析结果和计量分析融合节段部位(L4横突上端至L5横突下端之间)的骨量都优于对照组,P<0.01或P<0.05。组织学检查结果:4周时PTH组脊柱标本组织切片中发现:横突间有新骨形成,可见成熟骨组织,骨小梁结构,骨髓腔。相反,在对照组无成熟骨形成,软骨和纤维组织占大多数。6周时PTH组脊柱标本组织切片发现:横突之间形成丰富的骨桥,成熟骨组织,互相连接形成骨小梁,并由发育良好的骨髓腔所包围,周围皮质完整且较厚。对照组新骨成熟形成相对较晚,融合物由细的骨小梁形成,皮质薄。组织形态学测量结果显示两者矿化沉积率(MAR)有统计学意义。4周时P<0.01;6周时P<0.05。4周和6周时骨钙素(OC)水平都明显高于对照组,P<0.05。4周时NTX水平PTH组显著高于对照组,P<0.05。结论;间断低剂量PTH使用在去势大鼠后外侧横突间髂骨植骨脊柱融合模型能缩短融合所需时间加速融合进程,获得更为坚强的融合效果,增加了脊柱融合的成功率,融合骨的数量和质量都得以增强。有望成为加速和增强脊柱融合和其他需要植骨的骨科手术的一种有效的辅助用药。
     第三部分间断甲状旁腺素[PTH(1-34)]治疗促进去势雌性大鼠脊柱后外侧植骨融合机理的实验研究
     目的:目前对甲状旁腺素促进骨折愈合或植骨融合的分子生物学机制研究少见,为进一步明确其作用机制我们采用去势大鼠脊柱融合模型设计了以下实验研究。方法:10周龄SPF级雌性SD大鼠行卵巢去势,6周后去势大鼠再次经wiltse入路手术建立脊柱L4-5后外侧横突间自体髂骨植骨融合动物模型。实验组和对照组各18只。术后当天起实验组皮下注射人甲状旁腺素30μg/kg/天;对照组注射等量体积生理盐水。实验组和对照组分别于术后4、7、14天放血处死。各时间点每组处死大鼠6只,取出腰椎植骨骨痂行Real Time PCR实时定量检测成骨和软骨细胞等相关基因表达。检测基因为ALP、OC、COL-I、COL-Ⅱ、COL-Ⅹ、IGF-Ⅰ、BMP2。结果1、成骨细胞分化相关基因实时定量检测结果:治疗组各时间点ALP表达量都高于对照组,但前两时间点无统计学差异,在14天时两者有显著统计学差别。P<0.01。骨钙素(OC)在7天和14天时治疗组和对照组相比有统计学差别,其中7天时P<0.05,14天时P<0.01。COL-Ⅰ在术后7天和14天时两组比较P<0.05。2、软骨细胞分化相关基因实时定量检测结果:COL-Ⅱ在术后4天、7天和14天时治疗组相比于对照组都有明显升高,其中7天时P<0.01,4天和14天时P<0.05。Col-Ⅹ于术后7天时治疗组较对照组高,但P>0.05。14天时高于对照组且有统计学意义,P<0.05。3、IGF-Ⅰ、BMP2基因实时定量检测结果:治疗组IGF-Ⅰ在术后4天和7天时相对于对照组都有明显升高,均有显著统计学意义(P<0.01)。在14天时治疗组仍高于对照组但无统计学区别。治疗组BMP2在术后14天时和对照组相比升高明显,P<0.05。其它时间点无区别。结论:1 PTH间断使用对于去势大鼠脊柱后外侧横突间自体髂骨移植促进了成骨细胞的增殖分化,COL-Ⅰ、ALP、OC的表达加强。2该模型中软骨细胞分化的基因COL-Ⅱ、COL-Ⅹ的表达增加说明PTH使用后促进了软骨细胞的分化成熟,与早期形成较大的软骨痂有关。3 IGF-Ⅰ是PTH合成作用的重要因子,该模型中的表达早于其它基因,有可能参与调节成骨和软骨细胞的分化,促进植骨修复。4 PTH使用后BMP2的表达增强说明在脊柱融合的进程中间断使用PTH有可能间接或者直接加强BMP2基因的表达。
PartⅠEnhancement of fracture healing by intermittent administration of PTH(1-34) in ovariectomized rats femoral fracture model
     Aim: In the present study we evaluated the underlying mechanism by intermittent PTH would affect fracture healing in ovariectomized female Sprague-Dawley rats, and appreciation whether it could enhance fracture healing while administration for osteoporosis. Method: ten-weeks-old SPF scale female Sprague-Dawley rats were ovariectomized; unilateral femoral fractures were produced by open osteotomy and fixed with Kirschner wire six weeks later. Rats were divided into experimental group (n=18) and control group (n=18), the experimental group was treated with PTH(1-34) at a dose of 30μg/kg/day and the control group received same volume vehicle solution (normal saline).treatment were administered daily by subcutaneous injection since the day of fracture were produced. Nine rats from each group were killed and samples harvested for investigation on four and six weeks later, examination items were appreciated for affect of PTH included X ray, Micro-CT, bone mineral dentist, biomechanics and histology. Result: the diameter of callus of experimental group were larger than controls and it had significantly different between two groups at six weeks(P<0.05); bone mineral density(BMD) of the callus in the experimental group were significantly increased compared with controls at four and six weeks(P<0.05). results showed on four weeks after fracture the fracture line could be found, but it were more clear in control group and density of callus were low, seven fractures of nine in experimental group had healing and control group was four of nine(P<0.05).all fractures of two group had healed at six weeks with the callus density were high in experimental group, callus diameter of experimental group in X ray exceeded those of control group(P<0.05). Result of Micro-CT showed that PTH treatment induced a larger and more maturated callus than control group; the cortical thick of callus is significantly exceeded that of controls; the healing processes were early than controls and the quality of callus were improved; The BV/TV of experimental group were larger than that of controls(P<0.05). results of biomechanics show the maximum load of experimental group was significantly increased than that of controls at four and six weeks(P<0.05 ); the deflection under maximum load had significantly difference at six weeks (P<0.05). Histology results showed new mature bone were found at fracture site in experimental group at four weeks; however there were less bone formed in control group which main composed of cartilaginous and fibrosis like tissue. The experimental group showed there had plenty of callus with complete and thick cortical bone; trabecular bone were connecting each other. However, the trabecular and cortical bone were thin in control group, and the processes was lagged than experimental group. histomorphology showed the mineral apposition rate(MAR)between groups had significantly difference at four weeks(P < 0.05). Conclusion: these results based on radiography, histology and biomechanics suggest that intermittent treatment with low dose PTH(1-34) enhances the processes of femoral fracture healing in ovariectomized rat,induces a larger cartilaginous and hard callus formation; Improves the quality of callus; increases the mineralization procedure of callus; promotes the remodeling of callus and augments the biomechanical strength of fracture femoral. Results support opinion of treatment osteoporosis fracture of menopause female with intermittent administration PTH, which can reduce the time of fracture healing and improve the quality of callus.
     PartⅡIntermittent PTH(1-34) augments Spinal Fusion in an Ovariectomized rat posterolateral Spinal Fusion Model with iliac crest bone graft
     Aim: In the present study we tested the hypothesis that intermittent administration parathyroid hormone(PTH) improves spinal fusion outcomes in the ovariectomized female Sprague-Dawley rat posterolateral spinal fusion model,and appreciation whether it could enhance graft bone healing while administration for osteoporosis. Method: ten-weeks-old SPF scale female Sprague-Dawley rats were ovariectomized and underwent a bilateral posterolateral L4-5 spine fusion procedure by wiltse approach six weeks later; the graft material is a morselized auto-iliac crest bone graft. the animals were divided into 2 groups of 18 animals. Starting on postoperative day, experimental group was received daily subcutaneous injections of recombinant PTH(1–34) at a dose of 30μg/kg/day, whereas control group received a daily subcutaneous injection of same volume vehicle solution (normal saline). Nine rats from each group were killed and samples harvested for investigation on four and six weeks later, L4-5 vertebral segments were removed and analyzed with manual bending, X ray, Micro-CT and histomorphometry. Serum bone metabolism markers (OC, NTX) were analyzed. Results: Manual palpation identified fusion in two of nine (control) versus five of nine (PTH) animals at four weeks, and five of nine (control) versus eight of nine (PTH) in six weeks (P<0.05). A radiographic scoring system of PTH group resulted in an average score of 2.03 and 3.66 at four and six weeks, correspondence scores of control group were 1.45 and 2.56(P<0.05 and P<0.01).Result of Micro-CT showed that the continuous fusion mass between L4-5 transverse process of experimental group were larger than controls and fusion area had significantly different in both cross section and coronal section. PTH(1–34) accelerated the spinal fusion and acquired solid fusion mass, Improve the quantity and quality of fusion callus. parameter of Fusion bone mass(L4-5) by Micro-CT analysis were also improved with PTH treatment (P<0.01 or P<0.05). Histology results showed new mature bone, trabecular bone and marrow cavity were found at fusion site in experimental group at four weeks; however, there were less bone formed in control group which main composed of cartilaginous and fibrosis like tissue. The experimental group showed there had plenty of fusion callus with complete and thick cortical bone between L4-5 transverse process; trabecular bone were connecting each other and enclosing by marrow cavity. The trabecular and cortical bone were thin in control group, and the processes was lagged than experimental group. histomorphology showed the mineral apposition rate(MAR)between groups had significantly difference at four weeks and six weeks(P<0.01 and P<0.05). Serum OC levels were significantly higher in the PTH group than in the control group at two time point(P<0.05). The CTX levels in the PTH group were higher than in the control group at four weeks(P<0.05). Conclusion: these results suggest that intermittent treatment with low dose PTH(1-34) augmented posterolateral spine fusion with auto-iliac bone graft in ovariectomized female Sprague-Dawley rats. PTH(1–34) enhanced bone formation leading to the acceleration of the spinal fusion, which reduce the time of spine graft healing and acquires solid fusion mass, increase posterolateral fusion success and Improve the quantity and quality of fusion callus. Based on the results of this study, these findings suggest that PTH has promise for use as an adjunctive agent to improve spinal fusion and all other skeletal reconstruction surgeries requiring bone grafts in clinical medicine.
     PartⅢMechanisms for the enhancement of posterolateral spine fusion in ovariectomized rats treated with intermittent PTH(1-34)
     Aim: In the present study, we analyzed the underlying molecular mechanism by which exogenous PTH would affect osteogenesis and chondrogenesis in an ovariectomized rat spine arthrodesis model. Methods: ten-weeks-old SPF scale female Sprague-Dawley rats were ovariectomized and underwent a bilateral posterolateral L4-5 spine fusion procedure by wiltse approach six weeks later; the graft material is a morselized auto-iliac crest bone graft. the animals were divided into 2 groups of 18 animals. Starting on postoperative day, experimental group was received daily subcutaneous injections of recombinant PTH(1–34) at a dose of 30μg/kg/day, whereas control group received a daily subcutaneous injection of same volume vehicle solution (normal saline). six rats from each group were killed on four, seven, fourteen days later , graft callus was harvested for gene expression investigation on osteogenesis and chondrogenesis by RT-PCR, the level of expression of ALP, OC, COL-I, COL-Ⅱ, COL-Ⅹ, IGF-Ⅰ, BMP2 were analyzed. Results: 1、mRNA expression of osteoblast-related gene. The expression of ALP in PTH group was increased than control group significantly at fourteen days(P<0.01) and without difference at four and seven days; osteocalcin expression in PTH treated was increased markedly than controls at seven and fourteen days (P<0.05 and P<0.01); The expression of COL-Ⅰin PTH group was significantly increased than controls at seven and fourteen days(P<0.05). 2、mRNA expression of chondrocyte-related gene. The expression of COL-Ⅱwas up-regulated markedly in PTH treatment group at three experimental point(7days:P<0.01,4 and 14days:P<0.05).the expression of Col-Ⅹwas increased in PTH treated rats at seven and fourteen days, which has statistical difference at fourteen days(P<0.05). 3、mRNA expression of IGF-Ⅰand BMP2. gene expression of IGF-Ⅰin PTH treated were significantly increased at four and seven days(P<0.01), there had much expression but without difference at fourteen days. The expression of BMP2 in PTH group was up-regulated at fourteen days(P < 0.05)and without difference at other time. Conclusion: 1 intermittent administration PTH enhances proliferation and differentiation of osteoblast in an ovariectomized rat spinal fusion model with auto-iliac bone graft, the expression of COL-Ⅰ, ALP and OC were up-regulated. 2 the level of chondrocytes -related gene COL-Ⅱand COL-Ⅹwere increased markedly in the PTH treated group, it suggest treatment with PTH in spine fusion facilitates proliferation and differentiation of chondrocyte, which leads to a larger soft callus formation. 3 IGF-Ⅰis an important factor for the anabolic effect of PTH, because of the early expression of IGF-Ⅰthan other gene in this model, it may augment graft bone healing by stimulated proliferation and differentiation of chondrocyte and osteoblast. 4 the increased BMP2 expression in PTH group suggest that the expression of BMP2 maybe enhance directly or indirectly in the processes of spine fusion treatment with PTH.
引文
[1] Gruber R, Koch H, Doll BA, et al.Fracture healing in the elderly patient. Exp Gerontol. 2006;41(11):1080-1093.
    [2] McCann RM, Colleary G, Geddis C,et al.Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res. 2008;26(3):384-393.
    [3] Giannoudis P, Tzioupis C, Almalki T, et al.Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 200738 Suppl 1:S90-99.
    [4] Cao Y, Mori S, Mashiba T, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res. 2002;17(12):2237-2246.
    [5] Odvina CV, Zerwekh JE, Rao DS,et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J C Endocrinol Metab. 2005;90(3):1294-1301.
    [6] Schneider JP. Should bisphosphonates be continued indefinitely? An unusual fracture in a healthy woman on long-term alendronate. Geriatrics. 2006;61(1):31-33.
    [7] Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand. 2001;72(3):304-307.
    [8] Jahng JS, Kim HW. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Orthopedics. 2000;23(10):1089-1094.
    [9] Namkung-Matthai H, Appleyard R, Jansen J etal. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28(1):80-86.
    [10] Meyer RA Jr, Tsahakis PJ, Martin DF, et al. Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res. 2001;19(3):428-435.
    [11] Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14(6):960-968.
    [12] Komatsubara S, Mori S, Mashiba T, et al. Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005;36(4):678-687.
    [13] Barnes GL, Kakar S, Vora S, et al. Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am. 2008;90(Suppl 1):120-127.
    [14] Nakajima A, Shimoji N, Shiomi K, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-2047.
    [15] Alkhiary YM, Gerstenfeld LC, Krall E, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am.2005;87(4):731-741.
    [16] Prevrhal S, Njeh CF, Jergas M, Genant HK.Imaging and bone densitometry of osteoporosis. In: An YH, ed.Internal fixation in osteoporotic bone. New York: Thieme Inc. 2002:51-69.
    [17] Dreinhofer KE, Anderson M, Feron JM, ET AL.Multinational survey of osteoporotic fracture management. Osteoporos Int. 2005;16( Suppl 2):S44-53.
    [18] Seebeck J, Goldhahn J, Morlock MM et al. Mechanical behavior of screws in normal and osteoporotic bone. Osteoporos Int. 2005;16(Suppl 2):S107-111.
    [19] Syed AA, Agarwal M, Giannoudis PV, et al. Distal femoral fractures: long-termoutcome following stabilisation with the LISS. Injury. 2004;35(6):599-607.
    [20] Schneider E, Goldhahn J, Burckhardt P. The challenge: fracture treatment in osteoporotic bone. Osteoporos Int. 2005;16 (Suppl 2):S1-2.
    [21] Einhorn TA. The science of fracture healing.J Orthop Trauma. 2005;19(10 Suppl):S4-6.
    [22] Li X, Quigg RJ, Zhou J, et al.Early signals for fracture healing. J Cell Biochem. 2005;95(1):189-205.
    [23] Meyer RA Jr, Meyer MH, Tenholder M, et al. Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am. 2003; 85-A(7):1243-1254.
    [24] Li X, Nishimura I. Altered bone remodeling pattern of the residual ridge in ovariectomized rats. Prosthet Dent.1994; 72(3):324-330.
    [25] Cranney A, Tugwell P, Zytaruk N, et al. Meta-analyses of therapies for postmenopausal osteoporosis. IV. Meta-analysis of raloxifene for the prevention and treatment of postmenopausal osteoporosis. Endocr Rev. 2002;23(4):524-528.
    [26] Augat P, Simon U, Liedert A, et al.Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16 (Suppl 2):S36-43.
    [27] D'Ippolito G, Schiller PC, Ricordi C, et al.Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115-1122.
    [28] Rodriguez JP, Garat S, Gajardo H, et al. Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem. 1999;75(3):414-423.
    [29] Joldersma M, Klein-Nulend J, Oleksik AM, et al.Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women. Am J Physiol Endocrinol Metab. 2001;280(3):E436-442.
    [30] Walsh WR, Sherman P, Howlett CR, et al.Fracture healing in a rat osteopenia model. Clin Orthop Relat Res. 1997;342:218-227.
    [31] Bergman RJ, Gazit D, Kahn AJ, et al.Age-related changes in osteogenic stem cells inmice. J Bone Miner Res. 1996;11(5):568-577.
    [32] Gimble JM, Robinson CE, Wu X, et al.The function of adipocytes in the bone marrow stroma: an update. Bone. 1996;19(5):421-428.
    [33] Lill CA, Fluegel AK, Schneider E. Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma. 2000;14(8):559-565.
    [34] Lill CA, Hesseln J, Schlegel U, et al. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res. 2003;21(5):836-842.
    [35] Wang JW, Li W, Xu SW, et al. Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model. Chinese Journal of Traumatology. 2005;8(2):111-116.
    [36] Qiao L, Xu KH, Liu HW, et al. Effects of ovariectomy on fracture healing in female rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36(1):108-111.
    [37] Kubo T, Shiga T, Hashimoto J, et al.Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol.1999; 68(5-6):197-202.
    [38] Hao YJ, Zhang G, Wang YS, et al. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. 2007;Bone. 41(4):631-638.
    [39] Kolios L, Sehmisch S, Daub F, et al. Equol but not genistein improves early metaphyseal fracture healing in osteoporotic rats. Planta Med. 2009;75(5):459-465.
    [40] Giannoudis PV, Schneider E.Principles of fixation of osteoporotic fractures. J Bone Joint Surg Br. 2006;88(10):1272-1278.
    [41] Mandu-Hrit M, Haque T, Lauzier D, et al. Early injection of OP-1 during distraction osteogenesis accelerates new bone formation in rabbits. Growth Factors. 2006;24(3):172-183.
    [42] Tsiridis E, Morgan EF, Bancroft JM, et al. Effects of OP-1 and PTH in a newexperimental model for the study of metaphyseal bone healing. J Orthop Res.2007; 25(9):1193-1203.
    [43] Morgan EF, Mason ZD, Bishop G, et al. Combined effects of recombinant human BMP-7 (rhBMP-7) and parathyroid hormone (1-34) in metaphyseal bone healing. Bone. 2008;43(6):1031-1038.
    [44] Kwek EB, Goh SK, Koh JS, et al. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39(2):224-231.
    [45] Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927-2938.
    [46] Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26(5):688-703.
    [47] Hock JM. Anabolic actions of PTH in the skeletons of animals. Musculoskelet Neuronal Interact.2001;2(1):33-47.
    [48] Andreassen TT, Cacciafesta V. Intermittent parathyroid hormone treatment enhances guided bone regeneration in rat calvarial bone defects. J Craniofac Surg. 2004;15(3):424-427.
    [49] Seebach C, Skripitz R, Andreassen TT, et al. Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats.J Orthop Res. 2004;22(3):472-478.
    [50] Nozaka K, Miyakoshi N, Kasukawa Y, et al. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone.2008; 42(1):90-97.
    [51] Hashimoto T, Shigetomi M, Ohno T, et al. Sequential treatment with intermittent low-dose human parathyroid hormone (1-34) and bisphosphonate enhances large-size skeletal reconstruction by vascularized bone transplantation. Calcif Tissue Int.2007;81(3):232-239.
    [52] Chen H, Frankenburg EP, Goldstein SA, et al.Combination of local and systemic parathyroid hormone enhances bone regeneration. Clin Orthop Relat Res. 2003;416:291-302.
    [53] Rozen N, Lewinson D, Bick T, et al. Fracture repair: modulation of fracture-callus and mechanical properties by sequential application of IL-6 following PTH 1-34 or PTH 28-48. Bone. 2007;41(3):437-445.
    [54] Manabe T, Mori S, Mashiba T, et al. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone. 2007;40(6):1475-1482.
    [55] Holzer G, Majeska RJ, Lundy MW, et al. Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res. 1999;366:258-263.
    [56] Andreassen TT, Willick GE, Morley P, et al. Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004;74(4):351-356.
    [57] Nakazawa T, Nakajima A, Shiomi K et al. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone 2005;37(5):711-719.
    [58] Kakar S, Einhorn TA, Vora S, et al.Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res. 2007;22(12):1903-1912.
    [59] Kim HW, Jahng JS. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J. 1999;19:71-77.
    [1] Huang RC, Khan SN, Sandhu HS, et al. Alendronate inhibits spine fusion in a rat model. Spine 2005;30(22):2516–2522.
    [2] Mofidi A, Sedhom M, O'Shea K, et al. Is high level of disability an indication for spinal fusion? Analysis of long-term outcome after posterior lumbar interbody fusion using carbon fiber cages. J Spinal Disord Tech. 2005;18(6):479-484.
    [3] Babat LB, McLain R, Milks R,et al.The effects of the antiresorptive agents calcitonin and pamidronate on spine fusion in a rabbit model. Spine J. 2005;5(5):542-547.
    [4] Grauer JN, Bomback DA, Lugo R, et al. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J. 2004;4(3):281-286.
    [5] Rao RD, Bagaria VB, Cooley BC.Posterolateral intertransverse lumbar fusion in a mouse model: surgical anatomy and operative technique. Spine J. 2007;7(1):61-67.
    [6] Rao RD, Bagaria V, Gourab K, et al. Autograft containment in posterolateral spine fusion. Spine J. 2008;8(4):563-569.
    [7] Salamon ML, Althausen PL, Gupta MC, et al. The effects of BMP-7 in a rat posterolateral intertransverse process fusion model. J Spinal Disord Tech. 2003;16(1):90-95.
    [8] Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine. 1995;20(4):412-420.
    [9] Hidaka C, Goshi K, Rawlins B, et al. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine. 2003;28:2049–2057.
    [10] Drespe IH, Polzhofer GK, Turner AS, et al.Animal models for spinal fusion. Spine J. 2005;5(6 Suppl):209S-216S.
    [11] Khan SN, Lane JM. Spinal fusion surgery: animal models for tissue-engineered bone constructs. Biomaterials. 2004;25(9):1475-1485.
    [12] Giannoudis P, Tzioupis C, Almalki T, et al.Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38 Suppl 1:S90-99.
    [13] Namkung-Matthai H, Appleyard R, Jansen J etal. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28(1):80-86.
    [14] Lu J, Bhargav D, Wei AQ, et al. Posterolateral intertransverse spinal fusion possible in osteoporotic rats with BMP-7 in a higher dose delivered on a composite carrier. Spine. 2008;33(3):242-249.
    [15] Snider RK, Krumwiede NK, Snider LJ, et al. Factors affecting lumbar spinal fusion. J Spinal Disord. 1999;12(2):107-114.
    [16] Sama AA, Khan SN, Myers ER, et al. High-dose alendronate uncouples osteoclast and osteoblast function: a study in a rat spine pseudarthrosis model. Clin Orthop Relat Res. 2004;425:135-142.
    [17] Ondra SL, Marzouk S. Revision strategies for lumbar pseudarthrosis. Neurosurg Focus. 2003;15(3):E9.
    [18] DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144-151.
    [19] Peterson B, Iglesias R, Zhang J, et al.Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyondconventional autologous bone grafting. Spine. 2005;30(3):283-289.
    [20] Hsu WK, Wang JC, Liu NQ, et al.Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am. 2008;90(5):1043-1052.
    [21] Lu SS, Zhang X, Soo C, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007;7(1):50-60.
    [22] Bomback DA, Grauer JN, Lugo R, et al. Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine. 2004;29(15):1612-1617.
    [23] Takikawa S, Bauer TW, Kambic H, et al. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J Biomed Mater Res. Part A. 2003;65(1):37-42.
    [24] Peterson B, Whang PG, Iglesias R, et al. Osteoinductivity of commercially available demineralized bone matrix: preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86-A(10):2243-2250.
    [25] Kanayama M, Hashimoto T, Shigenobu K, et al. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine. 2006;31(10):1067-1074.
    [26] Grauer JN, Patel TC, Erulkar JS, et al. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine. 2001;26(2):127-133.
    [27] Vaccaro AR, Patel T, Fischgrund J, et al. A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J. 2005;14(7):623-629.
    [28] Vaccaro AR, Whang PG, Patel T, et al.The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J. 2008;8(3):457-465.
    [29] Axelrad TW, Einhorn TA. Bone morphogenetic proteins in orthopaedic surgery.Cytokine Growth Factor Rev. 2009;20(5-6):481-488.
    [30] Takahata M, Ito M, Abe Y, et al. The effect of anti-resorptive therapies on bone graft healing in an ovariectomized rat spinal arthrodesis model. Bone. 200843 (6):1057 -1066.
    [31] Lehman RA Jr, Kuklo TR, Freedman BA,et al. The effect of alendronate sodium on spinal fusion: a rabbit model. Spine J. 2004;4(1):36-43.
    [32] Xue Q, Li H, Zou X, et al.The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model.Spine. 2005;30 (10): 1116-1121.
    [33] Lawrence JP, Ennis F, White AP, et al. Effect of daily parathyroid hormone (1-34) on lumbar fusion in a rat model. Spine J. 2006;6(4):385-390.
    [34] Nakazawa T, Nakajima A, Shiomi K, et al. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37(5):711-719.
    [35] Misof BM, Roschger P, Cosman F, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88(3):1150-1156.
    [36] Andreassen TT, Cacciafesta V. Intermittent parathyroid hormone treatment enhances guided bone regeneration in rat calvarial bone defects. J Craniofac Surg. 2004;15(3):424-427.
    [37] Andreassen TT, Willick GE, Morley P, et al. Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004;74(4):351-356.
    [38] Bilezikian JP, Rubin MR, Finkelstein JS. Parathyroid hormone as an anabolic therapy for women and men. J Endocrinol Invest. 2005;28(8 Suppl):41-49.
    [39] Komatsubara S, Mori S, Mashiba T, et al. Human parathyroid hormone (1-34)accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005;36(4):678-687.
    [40] Alkhiary YM, Gerstenfeld LC, Krall E, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am.2005;87(4):731-741.
    [41] Seebach C, Skripitz R, Andreassen TT, et al. Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats.J Orthop Res. 2004;22(3):472-478.
    [42] Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand. 2001;72(3):304-307.
    [43] Abe Y, Takahata M, Ito M, et al. Enhancement of graft bone healing by intermittent administration of human parathyroid hormone (1-34) in a rat spinal arthrodesis model. Bone. 2007;41(5):775-785.
    [44] O'Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34(2):121-130.
    [45] Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering?. Philos Transact A Math Phys Eng Sci. 2004;362(1825):2821-2850.
    [46] Zipfel GJ, Guiot BH, Fessler RG.Bone grafting. Neurosurg Focus. 2003;14(2):e8.
    [47] Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. Spine J. 2002;2(3):206-215.
    [48] Buxton EC, Yao W, Lane NE. Changes in serum receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and interleukin-6 levels in patients with glucocorticoid-induced osteoporosis treated with human parathyroid hormone (1-34). J Clin Endocrinol Metab. 2004;89(7):3332-3336.
    [49] Barnes GL, Kakar S, Vora S, et al. Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am. 2008;90 Suppl 1:120-127.
    [50] Vahle JL, Long GG, Sandusky G, et al. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32(4):426-438.
    [51] Nakajima A, Shimoji N, Shiomi K, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-2047.
    [52] Sato M, Vahle J, Schmidt A, et al. Abnormal bone architecture and biomechanical properties with near-lifetime treatment of rats with PTH. Endocrinology. 2002;143(9):3230-242.
    [53] Jolette J, Wilker CE, Smith SY, et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34(7):929-940.
    [54] Tashjian AH Jr, Chabner BA. Commentary on clinical safety of recombinant human parathyroid hormone 1-34 in the treatment of osteoporosis in men and postmenopausal women. J Bone Miner Res. 2002;17(7):1151-1161.
    [55] Harper KD, Krege JH, Marcus R, et al. Osteosarcoma and teriparatide? J Bone Miner Res. 2007;22(2):334.
    [56] Tashjian AH Jr, Gagel RF. Teriparatide [human PTH(1-34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res. 200621(3):354-365.
    [57] Horwitz MJ, Tedesco MB, Gundberg C, et al. Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2003;88(2):569-575.
    [58] Ito M, Nishida A, Koga A, et al. Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone. 2002; 31(3):351-358.
    [59] Iida-Klein A, Lu SS, Cosman F, et al. Effects of cyclic vs. daily treatment with human parathyroid hormone (1-34) on murine bone structure and cellular activity. Bone. 2007;40(2):391-398.
    [1] Grauer JN, Bomback DA, Lugo R, et al. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J. 2004;4(3):281-286.
    [2] Rao RD, Bagaria VB, Cooley BC.Posterolateral intertransverse lumbar fusion in a mouse model: surgical anatomy and operative technique. Spine J. 2007;7(1):61-67.
    [3] Nakajima A, Shimoji N, Shiomi K, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-2047.
    [4] Nakazawa T, Nakajima A, Shiomi K et al. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone 2005;37(5):711-719.
    [5] Nakajima F, Ogasawara A, Goto K, et al. Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor. J Orthop Res. 2001;19(5):935-944.
    [6] Li X, Quigg RJ, Zhou J, et al.Early signals for fracture healing. J Cell Biochem. 2005;95(1):189-205.
    [7] Desai BJ, Meyer MH, Porter S, et al. The effect of age on gene expression in adult and juvenile rats following femoral fracture. J Orthop Trauma. 2003;17(10):689-698.
    [8] Meyer RA Jr, Meyer MH, Tenholder M, et al. Gene expression in older rats with delayed union of femoral fractures. J Bone Joint Surg Am. 2003;85-A(7):1243-1254.
    [9] Meyer RA Jr, Meyer MH, Phieffer LS, et al. Delayed union of femoral fractures in older rats:decreased gene expression BMC Musculoskelet Disord.2001;2:2.
    [10] Aronow MA, Gerstenfeld LC, Owen TA, et al. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol. 1990;143(2):213-221.
    [11] Stucki U, Schmid J, H?mmerle CF, et al. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans. Clin Oral Implants Res. 2001;12(2):121-127.
    [12] Lynch MP, Stein JL, Stein Gs, et al. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216(1):35-45.
    [13] Stein GS, Lian JB, Owen TA. Bone cell differentiation: a functionally coupled relationship between expression of cell-growth- and tissue-specific genes. Curr Opin Cell Biol. 1990;2(6):1018-1027.
    [14] Boanini E, Torricelli P, Gazzano M, et al. Nanocomposites of hydroxyapatite withaspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials. 2006;27(25):4428-4433.
    [15] Boskey AL, Gadaleta S, Gundberg C, et al. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 1998;23(3):187-196.
    [16] Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143(3):420-430.
    [17] Aubin J, Turksen K, Heersche NM. Osteoblastic cell lineage. In: Noda M (ed) Cellular and molecular biology of bone. Academic Press Inc. San Diego, CA, 1993 p2.
    [18] Owen TA, Holthuis J, Markose E, et al. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(13):5129-5133.
    [19] Stein GS, Lian JB.Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14(4):424-442.
    [20] Karsenty G. The genetic transformation of bone biology. Genes Dev. 1999;13(23):3037-3051.
    [21] Lomri A, Marie PJ, Tran PV, et al. Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 1988;9:165-175.
    [22] Pettway GJ, Meganck JA, Koh AJ, et al.Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone. 2008;42(4):806-818.
    [23] Ishizuya T, Yokose S, Hori M, et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest. 1997;99(12):2961-2970.
    [24] Wang YH, Liu Y, Rowe DW. Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures. Am J Physiol Endocrinol Metab. 2007;292(2):E594-603.
    [25] Abe Y, Takahata M, Ito M, et al. Enhancement of graft bone healing by intermittent administration of human parathyroid hormone (1-34) in a rat spinal arthrodesis model. Bone. 2007;41(5):775-785.
    [26] Andrikopoulos K, Suzuki HR, Solursh M, et al. Localization of pro-alpha 2(V) collagen transcripts in the tissues of the developing mouse embryo. Dev Dyn. 192;195(2):113-120.
    [27] Yao S, Pan F, Wise GE. Chronological gene expression of parathyroid hormone-related protein (PTHrP) in the stellate reticulum of the rat: implications for tooth eruption. Arch Oral Biol. 2007;52(3):228-232.
    [28] Kakar S, Einhorn TA, Vora S, et al.Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res. 2007;22(12):1903-1912.
    [29] Bell DM, Leung KK, Wheatley SC, et al. SOX9 directly regulates the type-II collagen gene. Nat Genet. 1997;16(2):174-178.
    [30] Miyakoshi N, Kasukawa Y, Linkhart TA, et al. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology. 2001;142(10):4349-4356.
    [31] Yamaguchi M, Ogata N, Shinoda Y, et al. Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology. 2005;146(6):2620-2628.
    [32] Watson P, Lazowski D, Han V, et al. Parathyroid hormone restores bone mass and enhances osteoblast insulin-like growth factor I gene expression in ovariectomized rats. Bone. 1995;16(3):3573-65.
    [33] Okazaki K, Jingushi S, Ikenoue T, et al. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res. 2003;21(3):511-520.
    [34] Trippel SB. Potential role of insulinlike growth factors in fracture healing. Clin OrthopRelat Res.1998;(355 Suppl):S301-313.
    [35] Harvey AK, Yu XP, Frolik CA, et al. Parathyroid hormone-(1-34) enhances aggrecan synthesis via an insulin-like growth factor-I pathway. J Biol Chem. 1999;274(33):23249-23255.
    [36] Thaller SR, Dart A, Tesluk H. The effects of insulin-like growth factor-1 on critical-size calvarial defects in Sprague-Dawley rats. Ann Plast Surg. 1993;31(5):429-433.
    [37] Thaller SR, Hoyt J, Tesluk H, et al. Effect of insulin-like growth factor-1 on zygomatic arch bone regeneration: a preliminary histological and histometric study. Ann of Plast Surg. 1993;31(5):421-428.
    [38] Yamaguchi M, Ogata N, Shinoda Y, et al. Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology. 2005146(6):2620-2628.
    [39] Bikle DD, Sakata T, Leary C, et al.Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res. 2002;17(9):1570-1578.
    [40] Zipfel GJ, Guiot BH, Fessler RG.Bone grafting. Neurosurg Focus. 2003;14(2):e8.
    [41] Kon T, Cho TJ, Aizawa T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004-1014.
    [42] Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci. 2004;362(1825):2821-2850.
    [1] Khan SN, Cammisa FP Jr, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77-86.
    [2] Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002;84:1032-1044.
    [3] Einhorn TA. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am. 2003;85(Suppl 3):82-88.
    [4] Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1-34) on fracturesand bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434-1441.
    [5] Dempster DW, Cosman F, Kurland ES et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846-1853.
    [6] Pierroz DD, Bouxsein ML, Rizzoli R, et al. Combined treatment with aβ-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone. 2006;39(2):260-267.
    [7] Nakazawa T, Nakajima A, Shiomi K et al. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1-34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37(5):711-719.
    [8] Komatsubara S, Mori S, Mashiba T et al. Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005;36(4):678-687.
    [9] Andreassen TT, Willick GE, Morley P, et al. Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004;74(4):351-356.
    [10] Holzer G, Majeska RJ, Lundy MW, et al. Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res.1999;366:258-263.
    [11] Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand. 2001;72(3):304-307.
    [12] Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. JBone Miner Res. 1999;14(6):960-968.
    [13] Jahng JS, Kim HW. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Orthopedics. 2000;23(10):1089-1094.
    [14] Nakajima A, Shimoji N, Shiomi K et al.: Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1-34). J Bone Miner Res. 2002;17(11):2038-2047.
    [15] Chen H, Frankenburg EP, Goldstein SA, et al. Combination of local and systemic parathyroid hormone enhances bone regeneration. Clin Orthop Relat Res. 2003;416:291-302.
    [16] Seebach C, Skripitz R, Andreassen TT, et al. Intermittent parathyroid hormone (1-34) enhances mechanical strength and density of new bone after distraction osteogenesis in rats. J Orthop Res. 2004;22(3):472-478.
    [17] Alkhiary YM, Gerstenfeld LC, Krall E, et al.: Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg. 2005;87(4):731-741.
    [18] Bostrom MP, Gamradt SC, Asnis P, et al. Parathyroid hormone-related protein analog RS-66271 is an effective therapy for impaired bone healing in rabbits on corticosteroid therapy. Bone. 2000;26(5):437-442.
    [19] Skripitz R, Andreassen TT, Aspenberg P. Parathyroid hormone (1-34) increases the density of rat cancellous bone in a bone chamber. A dose-response study. J Bone Joint Surg(Br).2000;82(1):138-141.
    [20] Skripitz R, Aspenberg P. Implant fixation enhanced by intermittent treatment with parathyroid hormone. J Bone Joint Surg( Br).2001;83(3):437-440.
    [21] Fang J, Zhu YY, Smilye et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA .1996; 93(12):5753-5758.
    [22] Hock JM, Krishnan V, Onyia JE, et al. Osteoblast apoptosis and bone turnover. J Bone Miner Res. 2001;16(6):975-984.
    [23] Hock JM. Anabolic actions of PTH in the skeletons of animals. J MusculoskeletNeuronal Interact. 2001;2(1):33-247.
    [24] Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev. 2005;26(5):688-703.
    [25] Li X, Liu H, Qin L,et al. Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem.2007; 282(45):33086-33097.
    [26] Morley P, Whitfield J, Willick G. Anabolic effects of PTH on bone. Trends Endocrinol Metab. 1997;8:225-231. Khosla S, Westendorf JJ, Oursler MJ.Building bone to reverse osteoporosis and repair fractures. J Clin Invest. 2008;118(2):421-428.
    [27] Stanislaus D, Devanarayan V, Hock J. In vivo comparison of AP-1 gene activation in response to hPTH 1-34 and hPTH 1-84 in the distal femur metaphyses of young mice. Bone. 2000; 27(6):819-826
    [28] Liang JD, Hock JM, Sandusky GE, et al. Immunohistochemical localization of selected early response genes expressed in trabecular bone of young rats given hPTH 1-34. Calcif Tissue Int. 1999; 65(5):369-373.
    [29] Lee S, Lorenzo J. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology. 1999;140(8):3552-3561.
    [30] McCauley L, Koh-Paige A, Chen H, et al. PTH stimulates fra-2 expression in osteoblastic cells in vivo and in vitro. Endocrinology. 2001;142(5):1975-1981.
    [31] Tyson D, Swarthout J, Partridge N. Increased osteoblastic c-fos expression by parathyroid hormone requires protein kinase A phosphorylation of the cyclic adenosine 3',5'-monophosphate response elementbinding protein at serine 133. Endocrinology. 1999;140(3):1255-1261.
    [32] McCabe LR, Kockx M, Lian J, et al. Selective expression of fos- and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res. 1995;218(1):255-262.
    [33] Lee K, Deeds J, Chiba S, et al. Parathyroid hormone induces sequential c-fos expression in bone cells in vivo: in situ localization of its receptor and c-fos messenger ribonucleic acids. Endocrinology. 1994;134(1):441-450.
    [34] Greenfield E, Horowitz M, Lavish S. Stimulation byparathyroid hormone of interleukin-6 and leukemia inhibitory factor expression in osteoblasts is an immediate-early gene response induced by cAMP signal transduction. J Biol Chem. 1996;271(18):10984-10989.
    [35] Onyia J, Miles R, Yang X, et al. In vivo demonstration that human parathyroid hormone 1-38 inhibits the expression of osteoprotegerin in bone with the kinetics of an immediate early gene. J Bone Miner Res. 2000;15(5):863-871.
    [36] Onyia J, Bidwell J, Herring J, et al. In vivo,human parathyroid hormone fragment (hPTH 1-34) transiently stimulates immediate early response gene expression, but not proliferation, in trabecular bone cells of young rats. Bone. 1995;17(5):479-484.
    [37] Pfeilshifter J, Laukhuf F, Muller-Beckmann B, et al. Parathyroid hormone increases the concentration of insulin-like growth factor-1 and transforming growth factor beta-1 in rat bone. J Clin Invest. 1995;96(2):767-774.
    [38] Hurley M, Tetradis S, Huang Y, et al. Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J Bone Miner Res. 1999;14(5):776-783.
    [39] Wu Y, Kumar R. Parathyroid hormone regulates transforming growth factor beta1 and beta2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res. 2000; 15(5):879-884.
    [40] Bogdanovic Z, Huang Y, Dodig M, et al. Parathyroid hormone inhibits collagen synthesis and the activity of rat col1a1 transgenes mainly by a cAMP-mediated pathway in mouse calvariae. J Cell Biochem. 2000;77(1):149-158.
    [41] Tetradis S, Nervina JM, Nemoto K, et al.Parathyroid hormone induces expression of the inducible cAMP early repressor in osteoblastic MC3T3-E1 cells and mouse calvariae.J Bone Miner Res. 1998;13(12):1846-1851.
    [42] Dobnig H, Turner R. The effects of programmed administration of human parathyroid hormone fragment (1-34) on bone histomorphometry and serum chemistry in rats. Endocrinology. 1997;138(11):4607-4612.
    [43] Watson P, Lazowski D, Han V, et al. Parathyroid hormone restores bone mass and enhances osteoblast insulin-like growth factor I gene expression in ovariectomized rats. Bone. 1995; 16(3):357-365.
    [44] Watson P, Fraher L, Kisiel M, et al. Enhanced osteoblast development after continuous infusion of hPTH (1-84) in the rat. Bone.1999;24(2):89-94.
    [45] Nishida S, Yamaguchi A, Tanizawa T, et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone. 1994;15 (6):717-723.
    [46] Jerome C, Johnson C, Lees C. Effect of treatment for 3 months with human parathyroid hormone 1-34 peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 1995;17(Suppl 4):415-420.
    [47] Jerome C, Vafai CJ, Kaplan K, et al. Effect of treatment for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 1999; 25(3):301-309.
    [48] Hodsman AB, Fraher LJ, Watson PH, et al. Anabolic PTH and the skeleton controlled trial to compare the efficacy of cyclical parathyroid hormone versus cyclical parathyroid hormone and sequential calcitonin to improve bone mass in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 1997; 82(2):620-628.
    [49] Stanislaus D, Yang X, Liang J, et al. In vivo regulation of apoptosis in metaphyseal trabecular bone of young rats by synthetic human parathyroid hormone, hPTH 1-34 fragment. Bone. 2000; 27(2):209-218.
    [50] Manolagas S. Editorial: cell number versus cell vigor - what really matters to a regenerating skeleton? Endocrinology. 1999;140(10):4377-4381.
    [51] Manolagas S. Birth and death of bone cells: basic regulatory mechanisms andimplications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115-137.
    [52] Bellido T, Ali AA, Plotkin Li, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem.2003;278:50259-50272.
    [53] Bikle, D.D., et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res. 2002;17)(9):1570-1578.
    [54] Jilka R L, Weinstein R S, Bellido T, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104 (4):439-446.
    [55] Dobnig, H., and Turner, R.T. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology. 1995.136(8):3632-3638.
    [56] Leaffer D, Sweeney M, Kellerman LA, et al. Modulation of osteogenic cell ultrastructure by RS-23581, an analog of human parathyroid hormone (PTH)-related peptide-(1-34), and bovine PTH-(1-34). Endocrinology. 1995;136(8):3624-3631.
    [57] Chan GK, Deckelbaum RA, Bolivar I, et al. PTHrP inhibits adipocyte differentiation by down-regulating PPARγactivity via a MAPK-dependent pathway. Endocrinology . 2001;142(1):4900-4909.
    [58] Rickard DJ, Wang FL, Rodriguez-Rojas AM, et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006;39(6):1361-1372.
    [59] Andreassen TT, Cacciafesta V. Intermittent parathyroid hormone treatment enhances guided bone regeneration in rat calvarial bone defects. J Craniofac Surg. 2004;15(3):424-429.
    [60] Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone(1-34) for 2 years and relevanceto human safety. Toxicol Pathol. 2002;30(3):312-321.
    [61] Hodsman AB, Fraher LJ, Watson PH, et al. A randomized controlled trial to compare the efficacy of cyclical parathyroid hormone versus cyclical parathyroid hormone and sequential calcitonin to improve bone mass in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 1997;82(2):620-628..
    [62] Hodsman AB, Hanley DA, Ettinger MP, et al. Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab 2003;88(11):5212-5220.
    [63] Body JJ, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87(10):4528-4535.
    [64] Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003;349(13):1207-1215.
    [65] Miller PD, Bilezikian JP, Deal C, et al. Clinical use of teriparatide in the real world: initial insights. Endocr Pract. 2004; 10(2):139-148.
    [66] Rubin MR, Bilezikian JP. Parathyroid hormone as an anabolic skeletal therapy. Drugs. 2005; 65(17):2481-2498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700