用户名: 密码: 验证码:
数字刀口检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀口检测具有设备简单、成本低、检验精度高、非接触性测量无损伤、速度快等优点,但由于传统的刀口检测只能定性,不能定量的缺点,多年来一直没有得到突破性发展。随着计算机技术、图像处理技术的发展,使刀口检测数字化成为可能,给刀口仪配上CCD作实时图像采集、图像处理,运用计算机对检测图像进行分析处理,可以快速得到定量的检测结果,大大拓展了刀口检测的应用领域。
     论文阐述了国内外在光学元件面形检测的研究现状,介绍了各种光学元件面形的常用检测方法,明确了数字刀口检测技术这一研究课题的现实意义和实际应用价值,详细介绍了数字刀口检测的关键技术,并利用数字刀口检测技术对大口径光学元件和微光学元件进行了实验验证。所取得的主要研究成果包括:
     一、根据刀口检测的原理,比较分析了刀口切割理想像点和实际像点的图像差异,明确提出了刀口检测中暗场阈值的概念,首次给出了相应的数学表达式。
     二、结合具体的象素灰度随刀口位置变化的关系曲线,经过分析比较,首次选用了Boltzman模型进行曲线拟合,并给出了相应的数值计算方法。选择Boltzman模型有以下优点:不仅模型中各参数的物理意义明确,而且能简化计算过程,减小了计算量。
     三、针对大口径光学元件的特点,结合数字刀口检测技术的实验思想,抓住实际面元相对于理想面元的相对倾斜角这一核心参量,首次建立了大口径光学元件面形的数字刀口检测的几何模型,该模型具有形式简单,适用性广的优点。
    
    四川大学硕士学位论文
    四、针对在微光学元件的刀口检测中,阴影图不易识别的难题,根据反复实验
     和深入思考,提出了微光学元件阴影图的动态识别法。
    五、根据建立的几何模型,确定了实验方案的选择,完成了实验装置设计,建
     立了数字刀口检测的实验装置。通过实验测量证实能够恢复出完整的被检
     测面形的三维图像,进而可求出被检面形质量评价的有关参数,真正实现
     了定量、高速、精确的数字化检测,使刀口检测取得了突破性的技术进步。
    六、自行编制了一套进行数字刀口检测处理分析的程序,使得对大口径光学元
     件,微光元件的数字刀口检测具有兼容性,具有去离焦处理、面形重构的
     功能,能计算得到各项面形检测的评价参数:P一v值,RMS值。
    关键词:刀口检测数字化检测大口径光学元件微光学元件面形检测
     夕
    .........口......
Knife-edge testing technology has many advantages, for example simple equipments, low cost, with little damnification by noncontact testing, fast and high precision. For a long time, there has been no breakthrough on knife-edge testing technology because of its shortcoming in qualitative testing. With the development of computer technology and image processing technic, digital knife-edge testing technology has been put forward. The computer can be used to disposal the images recorded by the CCD detector and the quantificational results will be obtained soon. Therefore, the applied field of knife-edge testing technology has been broadened.This paper expatiates the status quo of surface characterization test of optical components domestic and overseas, and introduces the common means used to test surface characterization of optical components, sequentially puts forward the practical significance and applied value of this studies. After introducing the key steps of digital knife-edge testing technology in detail, we validate the testing on both large aperture optical component and micro-mirror array. The main results obtained from the experiments have been summarized as follows:1. According to the principle of knife-edge testing, we compare the perfect focus with actual focus to find the image difference between them when the knife-edge is moving, and put forward the concept of the darkening threshold of each pixel with corresponding mathematic expression.2. After analyse the curve of illumination response of one pixel while the knife-edge is moving through the image, we fit the measured illumination data with
    
    Boltzman model, and then present the numeric calculating method. The Boltzman model is chosen not only because the physical meaning of each parameter inside is definite but also the model can simplify the calculating process.3. Aiming at the characteristics of large aperture optical component, combining with the experimental thoughts of the digital knife-edge testing technology and tightly holding the relative slope of each surface unit, we establish the geometry model of large aperture optical component for the digital knife-edge testing for the first time, which model has the simple form and can be applied extensively.4. The great difficulty is to identify the shadow image in micro-mirror array testing. We experiment again and again with deep consideration and put forward the dynamic identifying method in the course of micro-mirror array testing.5. Based on the geometry model which had been established, we make sure the choice of the experiment project and complete the experimental equipment design of the digital knife-edge testing. We validate the reconstruction of the full surface in three dimensionalities and calculate the relevant parameters of the tested surface characterization, and then make a breakthrough in knife-edge testing for realize the quantitative, high speed and precise testing.6. The software used to process experimental data has been programmed, which includes several kinds of functions, such as P-V and RMS value calculation and reconstruction of the actual three-dimension surface. What's most important is the software can be applied to both large aperture optical component and micro-mirror array.
引文
[1] 杨力, 《先进光学制造技术》,科学出版社,北京,2001;
    [2] Michael Bray, Stitching interferometer for large plano optics using a standard interferometer. SPIE. 1977(3134) 39-50;
    [3] 许乔,顾元元,柴林等,大口径光学元件波前功率谱密度检测,光学学报,2001 Vol.21(3);
    [4] 白剑,程上彝,杨国光,大口径镜面的多孔径拼接技术,光学学报,1997 Vol.17(7);
    [5] 刘军,舒晓武,白剑,刘承,大口径数字波面检测技术的研究,光学仪器,2003 Vol.25(6);
    [6] 张蓉竹,杨春林,许乔,蔡邦维,使用子孔径拼接法检测大口径光学元件,光学技术, 2001 Vol.25(6);
    [7] 张蓉竹博士学位论文《ICF系统光学元件高精度波前检测技术研究》2003.4;
    [8] 杨国光, 《先进光学测试技术》,浙江大学出版社,杭州,2001:
    [9] 张亦奕,贺节,商广义等,原子力显微镜,光学学报,1995,15(1):112—116;
    [10] 许乔,叶钧,包正康等,热熔微透镜列阵的综合性能测试,仪器仪表学报,1996,17(1):125—128;
    [11] Zamkotsian F, Dohlen K , Lanzonni P , et al . Knife-edge test for characterization of sub-nanometer deformations in micro-optical surfaces, SPIE, 1999, Vol. 3782:328—336:
    [12] Frederic Zamokotsian, Kjetil Dohlen, Yeronique Buat, Denis Burgarella, Micro-Mirror Array Unit-Magnification Multi-Object Spectrograph for NGST, SPIE ,2000, Vol. 4013: 580-586;
    [13] G.M. Popov, Possible space telecope optics testing in the Space, SPIE Vol. 3356:934-937:
    [14] Arthur Ho, Klaus Ehrmann, A Knife-edge System for Evaluating Contact Lenses, SPIE, Vol. 3908:102-107;
    [15] Walter D. Furlan, Laura Munoz-Escriva, Amparo Pons, Manuel Martinez-Corral, Analysis of lens aberrations using aretinoscope as a Foucault test, SPIE, 2000, Vol. 3831:408-411;
    
    [16] Reinhard Voelkel, Philippe Nussbaum, Jean Christophe Roulet, Design, fabrication, and testing of micro-optical components for sensors and microsystems, SPIE. Vol. 3099:196-211;
    [17] Weijian Tian, Jianwen Yang, Zhengkang Bao, New method for measuring the properties of optical systems with micro-optic components, SPIE, 2000,Vol. 2899:263-268;
    [18] Keith 0 Mersereau, Randall J Crisci, Casimir R Nijander, Testing and measurement of microlenses,SPIE, Vol. 1992:210-215;
    [19] Lindlein, Norbert,Schwider, Johannes, Optical measurement methods for refractive microlenses and arrays, SPIE, 2001, Vol. 4455:264-271;
    [20] Hale, Leonard G, Motamedi, M.E. ; Gunning, William J. .Optical testing and characterization of mirolens arrays, Proceedings of SPIE - The International Society for Optical Engineering, v 1751, 1993, p 47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700