用户名: 密码: 验证码:
典型钡基铁电及弛豫铁电体电子显微学及第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用电子显微术和第一性原理计算方法,研究了典型铁电体BaTiO_3和弛豫铁电体Ba(Ti_(1-x)Sn_x)O_3的微观结构与材料铁电和介电性能之间的关系。
     采用分子动力学方法和Girshberg-Yacoby模型研究了BaTiO_3的顺电-铁电相变过程。计算结果表明BaTiO_3顺电-铁电相变过程具有明显的有序-无序型铁电相变特征,铁电软模频率与温度之间满足Cochran线性关系。Girshberg-Yacoby模型揭示了BaTiO_3相变过程中介电函数发散现象的物理本质,它起源于软模与BaTiO_3中Ti离子的有序-无序之间的耦合。
     利用暗场成像和像差校正高分辨成像方法分别研究了成分为16%,20%和25%的Ba(Ti_(1-x)Sn_x)O_3的显微结构。暗场成像方法和像差校正高分辨图像的定量分析结果均表明成分为20%和25%的弛豫铁电体BTSn中存在着静态位移极化微区结构;而在成分为16%的铁电体BTSn中则只观察到具有较小位移的结构,不具有明显的极化微区结构。该实验结果表明弛豫铁电体中纳米尺度静态极化微区的产生可能是材料出现弛豫铁电性的重要因素。
     采用电子能量损失谱与第一性原理相结合的方法,分别研究了成分为16%,20%和25%的Ba(Ti_(1-x)Sn_x)O_3的能量损失函数。第一性原理计算得到的能量损失函数定性上与实验结果吻合。计算结果表明Ti-O成键具有强烈的轨道杂化,有助于铁电极化的稳定;Sn-O成键的轨道杂化效应较弱,因此Sn-O的铁电极化被抑制。该结果有助于理解BTSn材料从铁电性到弛豫铁电性转变的物理机制。
     利用第一性原理方法系统研究了BaMO3(M=Ti、Zr、Hf和Sn)的价带电子结构,Born有效电荷和原子相互作用力常数。计算结果表明Born有效电荷与轨道杂化之间存在着密切的联系,轨道杂化越强则Born有效电荷越大。对原子间相互作用力的分析表明,铁电极化的稳定与原子间的长程偶极-偶极相互作用力相关,而长程偶极-偶极相互作用力主要取决于原子的Born有效电荷,该结果成功地将材料的电子结构与物理性质统一为一个整体。
The microstructure of typical ferroelectric BaTiO_3and relaxor ferroelectricBa(Ti_(1-x)Sn_x)O_3were investigated to understand their ferroelectric and dielectric proper-ties using electron microscopy and first-principles calculations.
     The dynamic structure, the eigenfrequency of ferroelectric soft mode as a functionof temperature and dielectric divergence in the paraelectric-ferroelectric phase transitionof BaTiO_3were studied by effective Hamiltonian molecular dynamics and Girshberg-Yacoby model. The calculation results showed that the phase transition of BaTiO_3is oforder-disorder type and the eigenfrequency of soft mode as a function of temperatureobeys the Cochran linear law. Using the Girshberg-Yacoby model, it was revealed thatthe physical mechanism of dielectric divergence in the phase transition originates fromthe coupling between soft mode and the order-disorder Ti ions. As a result, the dielec-tric function is strongly dependent upon temperature and characterized by a divergentbehavior.
     The microstructure of Ba(Ti_(1-x)Sn_x)O_3(x=16%,20%and25%) was studied usingdark-field imaging and aberration-corrected high-resolution transmission electron mi-croscopy. The characterized structural diffuse scatterings along {100} were used fordark-field imaging and we found that there are characterized by bright static spot struc-tures in the relaxor BTSn (x=20%and25%), while they were not observed in the ferro-electric BTSn (x=16%). The atomic-resolution structures of BTSn were further inves-tigated and quantitative analysis of the HRTEM images showed that there exist staticpolar nanoregions in relaxor BTSn(x=20%and25%) with size of2nm. In ferroelec-tric BTSn(x=16%), only structures with small displacements were found. The resultsindicated that the static polar nanoregions may be a key factor of the materials’ relaxorproperties.
     The energy-loss fucntions (ELF) of BTSn were studied by combining electronenergy-loss spectroscopy and first-principle calculations. The theoretically predictedELFs are qualitatively in agreement with the experimental results. All the peaks in thedielectric functions and ELFs are explained based on the calculated electronic structuresbelow the Fermi surface. It is found that the Ti-O bond is strongly hybridized, whichhelps to stabilize the ferroelectric distortions. As a comparison, the ferroelectric instable Sn-O is suppressed due to the weak hybridization of Sn-O bond.
     The valence electronic structures, Born effective charges (BEC) as well as inter-atomic force constants (IFC) of BaMO3(M=Ti,Zr,Hf and Sn) were systematically stud-ied by first-principles calculation. The spatial distribution of O2p valence electrons ofthesecompoundsare obtainedintheframeworkof Wannierfunctions. Wefoundthatthed orbitals of the transition metals Ti, Zr and Hf are all hybridized with O2p orbitals andthe3d orbitals of titanium are the most delocalized, while those of Zr and Hf are morelocalized. There are no evident hybridizations between tin and O2p orbitals. Furtheranalysis of the BECs revealed that the BECs are intimately associated with orbital hy-bridizations. Analysis of the IFCs indicate that the BECs and long-range dipole-dipoleinteractions between atoms play important roles in the promotion of ferroelectric insta-bilities.
引文
[1] Lines M E, Glass A M. Priciples and Applications of Ferroelectrics and Related Materials.Oxford: Clarendon,1977.
    [2] Wyckoff position. http://reference.iucr.org/dictionary/Wyckoff_position.
    [3] Cross L E. Relaxor ferroelectrics. Ferroelectrics,1987,76(1):241–267.
    [4] Tsurumi T, Soejima K, Kamiya T, et al. Mechanism of Diffuse Phase Transition in RelaxorFerroelectrics. Japanese Journal of Applied Physics,1994,33(Part1, No.4A):1959–1964.
    [5] Kanzig W. History of ferroelectricity1938-1955. Ferroelectrics,1987,74(1):285–291.
    [6]钟维烈.铁电体物理学.北京:科学出版社,1996.
    [7] Cochran W. Crystal Stability and the Theory of Ferroelectricity. Phys Rev Lett,1959,3:412–414.
    [8] Cochran W. Crystal stability and the theory of ferroelectricity. Advances in Physics,1960,9(36):387–423.
    [9] Fousek J. Ferroelectricity: Remarks on historical aspects and present trends. Ferroelectrics,1991,113(1):3–20.
    [10] King-Smith R D, Vanderbilt D. Theory of polarization of crystalline solids. Phys. Rev. B,1993,47:1651–1654.
    [11] Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach.Rev. Mod. Phys.,1994,66:899–915.
    [12] King-Smith R D, Vanderbilt D. First-principles investigation of ferroelectricity in perovskitecompounds. Phys Rev B,1994,49(9):5828–5844.
    [13] Zhong W, King-Smith R D, Vanderbilt D. Giant LO-TO splittings in perovskite ferroelectrics.Phys. Rev. Lett.,1994,72:3618–3621.
    [14] Zhong W, Vanderbilt D, Rabe K M. Phase Transitions in BaTiO3from First Principles. PhysRev Lett,1994,73(13):1861–1864.
    [15] Nishimatsu T, Waghmare U V, Kawazoe Y, et al. Fast molecular-dynamics simulation forferroelectric thin-film capacitors using a first-principles effective Hamiltonian. Phys Rev B,2008,78(10):104104.
    [16] Ghosez P, Cockayne E, Waghmare U V, et al. Lattice dynamics of BaTiO3,PbTiO3, andPbZrO3: A comparative first-principles study. Phys Rev B,1999,60:836–843.
    [17] Ghosez P, Gonze X, Lambin P, et al. Born effective charges of barium titanate: Band-by-banddecomposition and sensitivity to structural features. Phys. Rev. B,1995,51:6765–6768.
    [18] Ghosez P, Michenaud J P, Gonze X. Dynamical atomic charges: The case of ABO3com-pounds. Phys. Rev. B,1998,58:6224–6240.
    [19] Marzari N, Vanderbilt D. Maximally-localized Wannier functions in perovskites: Cubic Ba-TiO3. arXiv:cond-mat/9802210v1..
    [20] BhattacharjeeJ,WaghmareUV. Wannierorbitaloverlappopulation(WOOP),Wannierorbitalposition population (WOPP) and the origin of anomalous dynamical charges. Phys. Chem.Chem. Phys.,2010,12:1564–1570.
    [21] Luspin Y, Servoin J L, Gervais F. Soft mode spectroscopy in barium titanate. Journal ofPhysics C: Solid State Physics,1980,13(19):3761.
    [22] Ko J H, Kojima S, Koo T Y, et al. Elastic softening and central peaks in BaTiO[sub3] singlecrystals above the cubic-tetragonal phase-transition temperature. Applied Physics Letters,2008,93(10):102905.
    [23] Dul’kin E, Petzelt J, Kamba S, et al. Relaxor-like behavior of BaTiO[sub3] crystals fromacoustic emission study. Applied Physics Letters,2010,97(3):032903.
    [24]殷之文.电介质物理学.北京:科学出版社,2003.
    [25]张福学,王丽坤.现代压电学(中册).北京:科学出版社,2002.
    [26] Jia C L, Mi S B, Urban K, et al. Atomic-scale study of electric dipoles near charged anduncharged domain walls in ferroelectric films. Nature Materials,2008,7:57–61.
    [27] Poykko S, Chadi D J. Ab initio study of180°domain wall energy and structure in PbTiO3.Applied Physics Letters,1999,75(18):2830–2832.
    [28] Jia C L, Mi S B, Urban K, et al. Effect of a Single Dislocation in a Heterostructure Layer onthe Local Polarization of a Ferroelectric Layer. Phys. Rev. Lett.,2009,102:117601.
    [29] Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Na-ture,2003,422:506.
    [30] Gao P, Nelson C T, Jokisaari J R, et al. Revealing the role of defects in ferroelectric switchingwith atomic resolution. Nature Communications,2011,2:591.
    [31] WangJ,NeatonJB,ZhengH,etal. EpitaxialBiFeO3MultiferroicThinFilmHeterostructures.Science,2003,299(5613):1719–1722.
    [32] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in mul-tiferroic BiFeO3films at room temperature. Nature Materials,2006,5:823.
    [33] Valencia S, Crassous A, Bocher L, et al. Interface-induced room-temperature multiferroicityin BaTiO3. Nature Materials,2011,10:753.
    [34] Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3heterointerface.Nature,2004,427:423.
    [35] Gariglio S, Reyren N, Caviglia A D, et al. Superconductivity at the LaAlO3/SrTiO3interface.Journal of Physics: Condensed Matter,2009,21(16):164213.
    [36] Bokov A, Ye Z G. Recent progress in relaxor ferroelectrics with perovskite structure. Journalof Materials Science,2006,41:31–52.10.1007/s10853-005-5915-7.
    [37] Smolenskii G A, Isupov V A, Agronovskaya A I, et al. Ferroelectrics with diffuse phasetransitions. Soviet Physics Solid State,1961,2:2584.
    [38] Chu F, Setter N, Tagantsev A K. The spontaneous relaxor-ferroelectric transition ofPb(Sc0.5Ta0.5)O3. Journal of Applied Physics,1993,74(8):5129–5134.
    [39] Sciau P, Calvarin G, Ravez J. X-ray diffraction study of BaTi0.65Zr0.35O3andBa0.92Ca0.08Ti0.75Zr0.25O3compositions: influence of electric field. Solid State Communi-cations,1999,113(2):77–82.
    [40] Simon A, Ravez J, Maglione M. The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. Journal of Physics: Condensed Matter,2004,16(6):963.
    [41] Yasuda N, Ohwa H, Asano S. Dielectric Properties and Phase Transitions of Ba(Ti1-xSnx)O3Solid Solution. Japanese Journal of Applied Physics,1996,35(Part1, No.9B):5099–5103.
    [42] Wei X Y, Feng Y J, Yao X. Dielectric relaxation behavior in barium stannate titanateferroelectric ceramics with diffused phase transition. Applied Physics Letters,2003,83(10):2031–2033.
    [43] Lei C, Bokov A A, Ye Z G. Ferroelectric to relaxor crossover and dielectric phase diagram inthe BaTiO3-BaSnO3system. Journal of Applied Physics,2007,101(8):084105.
    [44] Anwar S, Sagdeo P R, Lalla N P. Crossover from classical to relaxor ferroelectrics inBaTi1xHfxO3ceramics. Journal of Physics: Condensed Matter,2006,18(13):3455.
    [45] Anwar S, Sagdeo P R, Lalla N P. Study of the relaxor behavior in BaTi1-xHfxO3(0.20≤x≤0.30) ceramics. Solid State Sciences,2007,9(11):1054–1060.
    [46] Yu Z, Ang C, Jing Z, et al. Dielectric properties of Ba(Ti,Ce)O3from102to105Hz in thetemperature range85-700K. Journal of Physics: Condensed Matter,1997,9(14):3081.
    [47] Burns G, Dacol F H. Glassy polarization behavior in ferroelectric compoundsPb(Mg1/3Nb2/3)O3and Pb(Zn1/3Nb2/3)O3. Solid State Communications,1983,48(10):853–856.
    [48] Tholence J L. Spin-glass versus “blocking” in dilute EuxSr1-xS. Journal of Applied Physics,1979,50(B11):7369–7371.
    [49] Tholence J L. On the frequency dependence of the transition temperature in spin glasses.Solid State Communications,1980,35(2):113–117.
    [50] Shtrikman S, Wohlfarth E P. The theory of the Vogel-Fulcher law of spin glasses. PhysicsLetters A,1981,85(8-9):467–470.
    [51] Viehland D, Jang S J, Cross L E, et al. Freezing of the polarization fluctuations in lead mag-nesium niobate relaxors. Journal of Applied Physics,1990,68(6):2916–2921.
    [52] Viehland D, Li J F, Jang S J, et al. Dipolar-glass model for lead magnesium niobate. PhysRev B,1991,43:8316–8320.
    [53] VogelH. Thetemperaturedependencelawoftheviscosityoffluids. PhysikalischeZeitschrift,1921,22:645–646.
    [54] Fulcher G S. Analysis of recent measurements of the viscosity of glasses. Journal of theAmerican Ceramic Society,1925,8(6):339–355.
    [55] Cross L E. Relaxorferroelectrics: An overview. Ferroelectrics,1994,151(1):305–320.
    [56] Bonneau P, Garnier P, Calvarin G, et al. X-ray and neutron diffraction studies of the dif-fuse phase transition in Pb(Mg1/3Nb2/3)O3ceramics. Journal of Solid State Chemistry,1991,91(2):350–361.
    [57] Vakhrushev S, Nabereznov A, Sinha S K, et al. Synchrotron X-ray scattering study of leadmagnoniobaterelaxorferroelectriccrystals. JournalofPhysicsandChemistryofSolids,1996,57(10):1517–1523. Proceeding of the3rd Williamsburg Workshop on Fundamental Experi-ments on Ferroelectrics.
    [58] You H, Zhang Q M. Diffuse X-Ray Scattering Study of Lead Magnesium Niobate SingleCrystals. Phys Rev Lett,1997,79:3950–3953.
    [59] Liu Y, Withers R L, Wei X Y, et al. Structured diffuse scattering and polar nano-regionsin the Ba(Ti1-xSnx)O3relaxor ferroelectric system. Journal of Solid State Chemistry,2007,180(3):858–865.
    [60] Liu Y, Withers R L, Nguyen B, et al. Structurally frustrated polar nanoregions in BaTiO3-based relaxor ferroelectric systems. Applied Physics Letters,2007,91(15):152907.
    [61] Pasciak M, Welberry T R. Diffuse scattering and local structure modeling in ferroelectrics.Zeitschrift für Kristallographie,2011,226:113–125.
    [62] Xu G, Shirane G, Copley J R D, et al. Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3. Phys Rev B,2004,69:064112.
    [63] Vakhrushev S B, Kvyatkovsky B E, Naberezhnov A A, et al. Glassy phenomena in disorderedperovskite-like crystals. Ferroelectrics,1989,90(1):173–176.
    [64] Hirota K, Ye Z G, Wakimoto S, et al. Neutron diffuse scattering from polar nanoregions inthe relaxor Pb(Mg1/3Nb2/3)O3. Phys Rev B,2002,65:104105.
    [65] La-Orauttapong D, Toulouse J, Robertson J L, et al. Diffuse neutron scattering study of adisordered complex perovskite Pb(Zn1/3Nb2/3)O3crystal. Phys Rev B,2001,64:212101.
    [66] Stock C, Birgeneau R J, Wakimoto S, et al. Universal static and dynamic properties of thestructural transition in Pb(Zn1/3Nb2/3)O3. Phys Rev B,2004,69:094104.
    [67] Yoshida M, Mori S, Yamamoto N, et al. TEM observation of polar domains in relaxor ferro-electric Pb(Mg1/3Nb2/3)O3. Ferroelectrics,1998,217(1):327–333.
    [68] Jeong I K, Darling T W, Lee J K, et al. Direct Observation of the Formation of Polar Nanore-gions in Pb(Mg1/3Nb2/3)O3Using Neutron Pair Distribution Function Analysis. Phys RevLett,2005,94:147602.
    [69] LaulhéC,HippertF,BellissentR,etal. LocalstructureinBaTi1xZrxO3relaxorsfromneutronpair distribution function analysis. Phys Rev B,2009,79:064104.
    [70] Dul’kin E, Roth M, Janolin P E, et al. Acoustic emission study of phase transitions andpolarnanoregionsinrelaxor-basedsystems:ApplicationtothePbZn13Nb23O3familyofsinglecrystals. Phys Rev B,2006,73:012102.
    [71] RothM,MojaevE,Dul’kinE,etal. PhaseTransitionataNanometerScaleDetectedbyAcous-ticEmissionwithintheCubicPhasePb(Zn1/3Nb2/3)O3-xPbTiO3RelaxorFerroelectrics. PhysRev Lett,2007,98:265701.
    [72] Dkhil B, Gemeiner P, Al-Barakaty A, et al. Intermediate temperature scale T in lead-basedrelaxor systems. Phys Rev B,2009,80:064103.
    [73] KoJH,KimDH,KojimaS. Centralpeaks,acousticmodes,andthedynamicsofpolarnanore-gions in Pb[(Zn13Nb23)xTi1x]O3single crystals studied by Brillouin spectroscopy. Phys RevB,2008,77:104110.
    [74] Ko J H, Kim D H, Tsukada S, et al. Crossover in the mechanism of ferroelectric phase transi-tion of Pb[(Mg1/3Nb2/3)1xTix]O3single crystals studied by Brillouin light scattering. PhysRev B,2010,82:104110.
    [75] Blinc R, Laguta V, Zalar B c v. Field Cooled and Zero Field Cooled207Pb NMR and the LocalStructure of Relaxor PbMg1/3Nb2/3O3. Phys Rev Lett,2003,91:247601.
    [76] Glinchuk M D, Farhi R. A random field theory based model for ferroelectric relaxors. Journalof Physics: Condensed Matter,1996,8(37):6985.
    [77] Bokov A A. Ferroelectric domains and polar clusters in disordered structures. Ferroelectrics,1997,190(1):197–202.
    [78] Timonin P N. Griffiths’ phase in dilute ferroelectrics. Ferroelectrics,1997,199(1):69–81.
    [79] Westphal V, Kleemann W, Glinchuk M D. Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys Rev Lett,1992,68:847–850.
    [80] Randall C A, Bhalla A S. Nanostructural-Property Relations in Complex Lead Perovskites.Japanese Journal of Applied Physics,1990,29(Part1, No.2):327–333.
    [81] Burton B P, Cockayne E, Waghmare U V. Correlations between nanoscale chemical and polarorder in relaxor ferroelectrics and the lengthscale for polar nanoregions. Phys Rev B,2005,72:064113.
    [82] Tinte S, Burton B P, Cockayne E, et al. Origin of the Relaxor State in Pb(B′xB1x)O3Per-ovskites. Phys Rev Lett,2006,97:137601.
    [83] Jin H Z, Zhu J, Miao S, et al. Ordered domains and polar clusters in lead magnesium niobatePb(Mg1/3Nb2/3)O3. Journal of Applied Physics,2001,89(9):5048–5052.
    [84] Miao S, Zhang X, Zhu J. Direct Compositional Analysis of Ordered Domains in Pure andLa-Doped Pb(Mg1/3Nb2/3)O3by Analytical Electron Microscopy Techniques. Journal ofthe American Ceramic Society,2001,84(9):2091–2095.
    [85] Lu N, Zhu J. Electron low energy-loss functions of Pb(Mg1/3Nb2/3)O3: Theory and experi-ment. Journal of Applied Physics,2008,104(3):034109.
    [86] ShvartsmanVV,KleemannW,DecJ,etal. DiffusephasetransitioninBaTi1-xSnxO3ceramics:An intermediate state between ferroelectric and relaxor behavior. Journal of Applied Physics,2006,99(12):124111.
    [87] Laulhé C, Hippert F, Kreisel J, et al. EXAFS study of lead-free relaxor ferroelectricBaTi1xZrxO3at the Zr K edge. Phys Rev B,2006,74:014106.
    [88] Jeong I K, Park C Y, Ahn J S, et al. Ferroelectric-relaxor crossover in Ba(Ti1xZrx)O3studiedusing neutron total scattering measurements and reverse Monte Carlo modeling. Phys Rev B,2010,81:214119.
    [89] Dul’kin E, Petzelt J, Kamba S, et al. Relaxor-like behavior of BaTiO3crystals from acousticemission study. Applied Physics Letters,2010,97(3):032903.
    [90] Yan R, Guo Z, Tai R, et al. Observation of long range correlation dynamics in BaTiO3nearTCby photon correlation spectroscopy. Applied Physics Letters,2008,93(19):192908.
    [91] Tai R Z, Namikawa K, Sawada A, et al. Picosecond View of Microscopic-Scale PolarizationClusters in Paraelectric BaTiO3. Phys Rev Lett,2004,93:087601.
    [92] Bokov A A, Rodriguez B J, Zhao X, et al. Compositional disorder, polar nanoregions anddipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics. Zeitschrift für Kristallo-graphie,2010,226:99–107.
    [93] Blinc R, Dolin ek J, Gregorovi A, et al. Local Polarization Distribution and Edwards-Anderson Order Parameter of Relaxor Ferroelectrics. Phys Rev Lett,1999,83:424–427.
    [94] Pirc R, Blinc R. Spherical random-bond-random-field model of relaxor ferroelectrics. PhysRev B,1999,60:13470–13478.
    [95]朱静,叶恒强,温树林,等.高空间分辨分析电子显微学.北京:科学出版社,1985.
    [96] Williams D B, Carter C B. Transmission electron microscopy. New York: Plenum,1996.
    [97] Hirsch P B, Howie A, Nicholson R B, et al. Electron Microscopy of Thin Crystals.1st ed.,London: Butterworths,1965.
    [98]陈世朴,王永瑞.金属电子显微分析.北京:机械工业出版社,1982.
    [99] Cowley J M. Diffraction physics.3rd ed., New York: Elsevier Science,1995.
    [100] Ishizuka K. Contrast transfer of crystal images in TEM. Ultramicroscopy,1980,5:55–65.
    [101] Bethe H A. Theory of Diffraction of Electrons by Crystals. Ann Physik,1928,87:55–129.
    [102] Cowley J M, Moodie A F. The scattering of electrons by atoms and crystals. I. A new theo-retical approach. Acta Cryst,1957,10:609–619.
    [103] MacTempasX. http://www.totalresolution.com/.
    [104] Kirkland E J. Advanced Computing in Electron Microscopy. New York: Plenum,1998.
    [105] H tch M J, Stobbs W M. Quantitative comparison of high resolution TEM images with imagesimulations. Ultramicroscopy,1994,53:191–203.
    [106] Du K, Hochmeister K, Phillipp F. Quantitative comparison of image contrast and patternbetween experimental and simulated high-resolution transmission electron micrographs. Ul-tramicroscopy,2007,107:281–292.
    [107] Thust A. High-Resolution Transmission Electron Microscopy on an Absolute Contrast Scale.Phys Rev Lett,2009,102(22):220801.
    [108] Krivanek O L, Dellby N, Lupini A R. Towards sub-angstrom electron beams. Ultrami-croscopy,1999,78(1-4):1–11.
    [109] Haider M, Rose H, Uhlemann S, et al. A spherical-aberration-corrected200kV transmissionelectron microscope. Ultramicroscopy,1998,75(1):53–60.
    [110] Zemlin F, Weiss K, Schiske P, et al. Coma-free alignment of high resolution electron micro-scopes with the aid of optical diffractograms. Ultramicroscopy,1978,3(0):49–60.
    [111] Foschepoth M, Kohl H. Amplitude Contrast—A Way to Obtain Directly Interpretable High-Resolution Images in a Spherical Aberration Corrected Transmission Electron Microscope.physica status solidi (a),1998,166(1):357–366.
    [112] Lentzen M, Jahnen B, Jia C L, et al. High-resolution imaging with an aberration-correctedtransmission electron microscope. Ultramicroscopy,2002,92(3-4):233–242.
    [113] JiaCL,LentzenM,UrbanK. Atomic-ResolutionImagingofOxygeninPerovskiteCeramics.Science,2003,299(5608):870–873.
    [114] Jia C L, Lentzen M, Urban K. High-Resolution Transmission Electron Microscopy UsingNegative Spherical Aberration. Microscopy and Microanalysis,2004,10:174–184.
    [115] Jia C L, Houben L, Thust A, et al. On the benefit of the negative-spherical-aberration imagingtechnique for quantitative HRTEM. Ultramicroscopy,2010,110:500–505.
    [116] Egerton R F. Electron Energy-Loss Spectroscopy in the Electron Microscopy.2nd ed., NewYork: Plenum,1996.
    [117] Electron energy loss spectroscopy. http://en.wikipedia.org/wiki/Electron_energy_loss_spectroscopy.
    [118] MansonS. The calculationofphotoionizationcross sections:Anatomic view. In:Cardona M,Ley L,(eds.). Proceedings of Photoemission in Solids I. Springer Berlin/Heidelberg,1978:135–163.
    [119] Heine V. Electronic structure from the point of view of the local atomic environment. SolidState Physics,35:1–126.
    [120] Born M, Oppenheimer J R. Quantum theory of the molecules. Ann der Phys,1927,84:457–484.
    [121] Fermi E. Un metodo statistico per la determinazione di alcune proprieta dell’atomo. Rend.Lincei,1927,6:602–607.
    [122] Thomas L H. The calculation of atomic fields. Proc Camb Phil Soc,1927,23:542–548.
    [123] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev,1964,136(3B):B864–B871.
    [124] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects.Phys Rev,1965,140(4A):A1133–A1138.
    [125] Dirac P A M. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedingsof the Cambridge Philosophical Society,1930,26(03):376–385.
    [126] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations formany-electron systems. Phys Rev B,1981,23(10):5048–5079.
    [127] Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. PhysRev Lett,1980,45(7):566–569.
    [128] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas corre-lation energy. Phys Rev B,1992,45(23):13244–13249.
    [129] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. PhysRev Lett,1996,77(18):3865–3868.
    [130] Becke A D. Density-functional exchange-energy approximation with correct asymptotic be-havior. Phys Rev A,1988,38(6):3098–3100.
    [131] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density. Phys Rev B,1988,37(2):785–789.
    [132] Zhong W, Vanderbilt D, Rabe K M. First-principles theory of ferroelectric phase transitionsfor perovskites: The case of BaTiO3. Phys Rev B,1995,52(9):6301–6312.
    [133] Wei X, Feng Y, Hang L, et al. Abnormal C-V curve and clockwise hysteresis loop in fer-roelectric barium stannate titanate ceramics. Materials Science and Engineering B,2005,120(1-3):64–67. The8th International Symposium on Ferroic Domains (ISFD-8,2004).
    [134] VASP simulation package. http://cms.mpi.univie.ac.at/vasp/.
    [135] Wien2k simulation package. http://www.wien2k.at/index.html.
    [136] Bl chl P E. Projector augmented-wave method. Phys Rev B,1994,50:17953–17979.
    [137] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wavemethod. Phys Rev B,1999,59:1758–1775.
    [138] Lyddane R H, Sachs R G, Teller E. On the Polar Vibrations of Alkali Halides. Phys Rev,1941,59:673–676.
    [139]黄昆.固体物理学.北京:高等教育出版社,1988.
    [140] YamadaY,ShiraneG,LinzA. StudyofCriticalFluctuationsinBaTiO3byNeutronScattering.Phys Rev,1969,177:848–857.
    [141] Vogt H, Sanjurjo J A, Rossbroich G. Soft-mode spectroscopy in cubic BaTiO3by hyper-Raman scattering. Phys Rev B,1982,26:5904–5910.
    [142] Gervais F. In: Button K,(eds.). Proceedings of Infrared and Millimeter Waves. New York:Academic,1983:279–339.
    [143] Buixaderas E, Kamba S, Petzelt J. Lattice Dynamics and Central-Mode Phenomena inthe Dielectric Response of Ferroelectrics and Related Materials. Ferroelectrics,2004,308(1):131–192.
    [144] Ponomareva I, Bellaiche L, Ostapchuk T, et al. Terahertz dielectric response of cubic BaTiO3.Phys Rev B,2008,77:012102.
    [145] Harada J, Watanabe M, Kodera S, et al. Diffuse Streak Diffraction Pattern of Electron andX-Rays due to Low Frequency Optical Mode in Tetragonal BaTiO3. Journal of the PhysicalSociety of Japan,1965,20(4):630–631.
    [146] Comes R, Lambert M, Guinier A. The chain structure of BaTiO3and KNbO3. Solid StateCommunications,1968,6(10):715–719.
    [147] Ravel B, Stern E A, Vedrinskii R I, et al. Local structure and the phase transitions of BaTiO3.Ferroelectrics,1998,206(1):407–430.
    [148] Chaves A S, Barreto F C S, Nogueira R A, et al. Thermodynamics of an eight-site order-disorder model for ferroelectrics. Phys Rev B,1976,13:207–212.
    [149] Cohen RE. Originof ferroelectricityin perovskiteoxides. Nature,1992,358(6382):136–138.
    [150] Bond S D, Leimkuhler B J, Laird B B. The Nosé-Poincaré Method for Constant TemperatureMolecular Dynamics. Journal of Computational Physics,1999,151(1):114–134.
    [151] Neder R B, Proffen T. Diffuse Scattering and Defect Structure Simulations-A Cook BookUsing the Program DISCUS. Oxford: Oxford University Press,2008.
    [152] Xie L, Li Y L, Yu R, et al. Dynamic microscopic structures and dielectric response in thecubic-to-tetragonalphasetransitionforBaTiO3studiedbyfirst-principlesmoleculardynamicssimulation. Journal of Applied Physics,2011,109(5):054101.
    [153] Kwei G H, Lawson A C, Billinge S J L, et al. Structures of the ferroelectric phases of bariumtitanate. The Journal of Physical Chemistry,1993,97(10):2368–2377.
    [154] Ghosez P, Gonze X, Michenaud J P. Lattice dynamics and ferroelectric instability of bariumtitanate. Ferroelectrics,1997,194(1):39–54.
    [155] Papanicolaou N I, Lagaris I E, Evangelakis G A. Modification of phonon spectral densities ofthe (001) copper surface due to copper adatoms by molecular dynamics simulation. SurfaceScience,1995,337(1-2):L819–L824.
    [156] Heino P. Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics. EurPhys J B,2007,60(2):171–179.
    [157] Sankar P, Sanyal R, Singh R K. Phonons in condensed materials. India: Allied Publishers,2004.
    [158] Kremer F, Sch nhals A. Broadband Dielectric Spectroscopy. Berlin Heidelberg: SpringerVerlag,2003.
    [159] Hill N, PriceVaughan W E, Price A H, et al. Dielectric properties and molecular behaviour.New York: Van Nostrand,1969.
    [160] B ttcher C J F, Bordewijk P. Theory of Electric Polarization. New York: Elsevier,1980.
    [161] Girshberg Y, Yacoby Y. Ferroelectric phase transitions in perovskites with off-center iondisplacements. Solid State Communications,1997,103(7):425–430.
    [162] Girshberg Y, Yacoby Y. Ferroelectric phase transitions and off-centre displacements in sys-tems with strong electron-phonon interaction. Journal of Physics: Condensed Matter,1999,11(48):9807.
    [163] Girshberg Y, Yacoby Y. Off-centre displacements and ferroelectric phase transition in diluteKTa1-xNbxO3. Journal of Physics: Condensed Matter,2001,13(39):8817.
    [164] Pirc R, Blinc R. Off-center Ti model of barium titanate. Phys Rev B,2004,70:134107.
    [165] Ko J H, Kojima S, Koo T Y, et al. Elastic softening and central peaks in BaTiO3singlecrystals above the cubic-tetragonal phase-transition temperature. Applied Physics Letters,2008,93(10):102905.
    [166] Lu S G, Xu Z K, Chen H. Tunability and relaxor properties of ferroelectric barium stannatetitanate ceramics. Applied Physics Letters,2004,85(22):5319–5321.
    [167] VakhrushevS. Polarnanoregionsandnanodomainsinrelaxors. ProceedingsofAbstractBookof the11th European Meeting on Ferroelectricity, Bled, Slovenia,2007.219.
    [168] Bokov A A. Kinetics of a diffuse phase transition in crystals with frozen disorder. Physics ofthe Solid State,1994,36:19–30.
    [169] Qian H, Bursill L A. Random-field Potts Model for the polar domains of lead magne-sium niobate and lead scandium tantalate. International Journal of Modern Physics B,1996,10:2027–2047.
    [170]吕宁. PMN和KNN的电子显微学及第一性原理研究[博士学位论文].北京:清华大学材料系,2010.
    [171] Launay M, Boucher F, Moreau P. Evidence of a rutile-phase characteristic peak in low-energyloss spectra. Phys Rev B,2004,69:035101.
    [172] Moreau P, Cheynet M. Improved comparison of low energy loss spectra with band structurecalculations: the example of BN filaments. Ultramicroscopy,2003,94(3-4):293–303.
    [173] Katti K S, Qian M, Dogan F, et al. Dopant Effect on Local Dielectric Properties in BariumTitanate Based Electroceramics Determined by Transmission EELS. Journal of the AmericanCeramic Society,2002,85(9):2236–2243.
    [174] Posternak M, Resta R, Baldereschi A. Role of covalent bonding in the polarization of per-ovskite oxides: The case of KNbO3. Phys. Rev. B,1994,50:8911–8914.
    [175] PiesW,WeissA. In:HellwegeKH,HellwegeAM,(eds.).ProceedingsofLandolt-B rnstein:Numerical Data and Functional Relationships in Science and Technology. Berlin: Springer,1975:.
    [176] Maekawa T, Kurosaki K, Yamanaka S. Thermal and mechanical properties of perovskite-typebarium hafnate. Journal of Alloys and Compounds,2006,407(1-2):44–48.
    [177] Maekawa T, Kurosaki K, Yamanaka S. Thermal and mechanical properties of polycrystallineBaSnO3. Journal of Alloys and Compounds,2006,416(1-2):214–217.
    [178] Mulliken R S. Electronic Population Analysis on LCAO[Single Bond]MO Molecular WaveFunctions. I. The Journal of Chemical Physics,1955,23(10):1833–1840.
    [179] Bader R F W. Atoms in Molecules-A Quantum Theory. Oxford: Oxford University Press,1990.
    [180] HenkelmanG,ArnaldssonA,JónssonH. AfastandrobustalgorithmforBaderdecompositionof charge density. Computational Materials Science,2006,36(3):354–360.
    [181] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Bader chargeallocation. Journal of Computational Chemistry,2007,28(5):899–908.
    [182] Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without latticebias. Journal of Physics: Condensed Matter,2009,21(8):084204.
    [183] Axe J D. Apparent Ionic Charges and Vibrational Eigenmodes of BaTiO3and Other Per-ovskites. Phys Rev,1967,157:429–435.
    [184] Gonze X, Charlier J C, Allan D, et al. Interatomic force constants from first principles: Thecase of α-quartz. Phys. Rev. B,1994,50:13035–13038.
    [185] Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors,and interatomic force constants from density-functional perturbation theory. Phys Rev B,1997,55:10355–10368.
    [186] Parlinski K, Li Z Q, Kawazoe Y. First-Principles Determination of the Soft Mode in CubicZrO2. Phys Rev Lett,1997,78:4063–4066.
    [187] Spaldin N A, Fiebig M. The Renaissance of Magnetoelectric Multiferroics. Science,2005,309(5733):391–392.
    [188] ZhuC,XiaK,QianGR,etal. Hydrostaticpressureinducedstructuralinstabilityanddielectricproperty of cubic BaZrO3. Journal of Applied Physics,2009,105(4):044110.
    [189] Atomic orbital. http://en.wikipedia.org/wiki/Atomic_orbital.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700